Analysis of Economics Data Chapter 1: Analysis of Economics Data

© A. Colin Cameron Univ. of Calif. Davis

November 2022

CHAPTER 1: Analysis of Economics Data

- This book provides an introduction to econometrics.
- This uses a subset of statistical methods
 - most notably regression analysis
 - an outcome y varies with one or more variables.
- The book emphasizes economic interpretation of economics-related data.

Chapter Outline

- Statistical Methods
- Types of Data
- Regression Analysis
- Overview

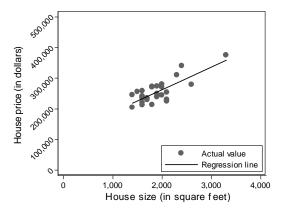
1.1 Statistical Methods

- There are two aspects to statistical analysis of data
 - Descriptive analysis
 - mean, median, standard deviation, ...
 - ★ graphs and charts such as histograms and bar charts
 - Statistical inference
 - extrapolate from the sample to the population
 - ★ often using confidence intervals and/or hypothesis tests
 - ★ this is more challenging than data summary
- Much of this book entails statistical inference.

1.2 Types of Data

- There are broad types of data:
 - Numerical data that are continuous
 - * e.g. GDP, earnings.
 - Numerical data that are discrete.
 - ★ e.g. number of doctor visits by an individual in one year
 - Categorical data
 - ★ e.g. employed, unemployed or out of the labor force.
- The book focuses on continuous numerical data
 - this is the data type usually analyzed in economics
 - more advanced courses adapt the methods of this book to the other types of data.

Observational Data


- Observational data
 - based on observed behavior in an uncontrolled environment
 - economics data are most often observational.
- Experimental data
 - observations on the results of experiments that can be controlled by the investigator.
- It is difficult to establish causal effects using observational data
 - e.g. in determining the causal effect of a college degree on earnings we need to control for individual self-selection into college
 - advanced econometrics research seeks to estimate causal relationships even with observational data.
- The book focuses on measuring association (not causation) using observational data
 - causal methods are presented in ch. 17 and in some case studies in ch. 13.

Three Types of Data Collection

- Distinguish between three types of data collection:
 - cross-section
 - ★ individuals (people, firms, countries, ...) at a point in time
 - ★ denoted by subscript i = 1, ..., n, e.g. x_i
 - time series
 - ★ over time for the same individual (stock price, US GDP, ...)
 - ★ denoted by subscript t = 1, ..., T, e.g. x_t
 - panel data (or longitudinal data)
 - ★ individuals over time
 - ★ denoted by subscripts i and t, e.g. x_{it}.
- The same basic statistical methods apply in all cases
 - but each has its own special considerations for statistical inference
 - ★ notably computing standard errors (the precision of estimates)
 - and has its own special considerations for model specification.
- We focus on cross-section data
 - this is the simplest and most common case.

1.3 Regression Analysis

- Economic data analysis focuses on regression analysis.
- Example in chapters 5-7 is relationship between house price (y) and house size in square feet (x) for 29 sales
 - ▶ slope is 74 so one more square foot associated with \$74 higher price

Book Outline

- Univariate data (chapters 2-4)
 - single series x
 - covered in introductory statistics.
- Bivariate data (chapters 5-9)
 - two series y and x
 - regression line is $y = b_1 + b_2 x$
- Multivariate data (chapters 10-15)
 - many series
 - regression line is $y = b_1 + b_2x_2 + b_3x_3 + \cdots + b_kx_k$
- Further Topics (chapters 16-17).

Background

- Summation notation is used throughout

 - e.g. $\sum_{i=1}^{3} (2+3/i) = (2+3/1) + (2+3/2) + (2+3/3) = 11.5.$
- Calculus is used occasionally but is not essential
 - Let Δy denote the change in y and Δx denote the change in x
 - ▶ Then $\Delta y/\Delta x$ is the change in y when x changes by one unit.
 - ▶ The derivative dy/dx equals $\Delta y/\Delta x$ as $\Delta x \rightarrow 0$.
- Natural logarithms and exponentials are used (Chapter 9).
- Expected values are used (Chapter 3). In particular
 - ▶ Population mean $\mu = E[X]$
 - Population variance $\sigma^2 = E[(X \mu)^2]$

Key Learning Tool

- Learning-by-doing.
 - ▶ Do data examples using an econometrics or statistical package
 - ▶ Do chapter exercises and course assignments.