Analysis of Economics Data
 Chapter 3 The Sample Mean

(C) A. Colin Cameron
Univ. of Calif. Davis

November 2022

CHAPTER 3: The Sample Mean

- Now consider statistical inference
- extrapolating from sample to population
- here from sample mean \bar{x} to population mean μ.
- Basic idea is that the sample values x_{1}, \ldots, x_{n} (lower case)
- are realizations of random variables X_{1}, \ldots, X_{n} (upper case)
- So the sample mean $\bar{x}=\left(x_{1}+\cdots+x_{n}\right) / n$
- is a realization of the random variable $\bar{X}=\left(X_{1}+\cdots+X_{n}\right) / n$
- This chapter: distribution of \bar{X} from underlying distribution of X.
- Next chapter: The two main tools of statistical inference
- Confidence intervals for the population mean μ
- Hypothesis tests on μ.

Outline

(1) Random Variables
(2) Sample Generated by an Experiment
(3) Random Samples
(1) Properties of the Sample Mean
(0) Sampling from a Finite Population
(0) Estimation of the Population Mean
(- Nonrepresentative Samples
(8) Computer Generation of a Random Sample

- Datasets: COINTOSSMEANS, CENSUSAGEMEANS

3.1 Random Variables

- A random variable is a variable whose value is determined by the outcome of an experiment.
- An experiment is an operation whose outcome cannot be predicted with certainty.
- Example: the experiment is tossing a coin and the random variable takes value 1 if heads and 0 if tails.
- Example: the experiment is randomly selecting a person from the population and the associated random variable takes value equal to their annual earnings.
- Standard notation
- X (or Y or Z) denotes a random variable
- x (or y or z) denotes the values taken by X (or Y or Z).

Example: Coin toss

- Simplest case is a random variable that takes one of only two possible values.
- Consider toss of fair coin with $X=1$ if heads and $X=0$ if tails. Then

$$
X= \begin{cases}0 & \text { with probability } 0.5 \\ 1 & \text { with probability } 0.5\end{cases}
$$

Mean of a Random Variable

- Mean of X, denoted μ or μ_{X}
- is the probability-weighted average of all possible values of X in the population.
- μ is also denoted $\mathrm{E}[X]$
- the expected value of the random variable X
- the long-run average value expected if we draw a value of X at random, draw a second value of X at random, and so on, and then obtain the average of these values.

$$
\begin{aligned}
\mu \equiv \mathrm{E}[X] & =x_{1} \times \operatorname{Pr}\left[X=x_{1}\right]+x_{2} \times \operatorname{Pr}\left[X=x_{2}\right]+\cdots \\
& =\sum_{x} x \cdot \operatorname{Pr}[X=x] .
\end{aligned}
$$

- Note that
- \sum_{x} means the sum over all possible values x can take
- and the possible values of x are denoted $x_{1}, x_{2}, x_{3}, \ldots$

Example of Mean

- Fair coin toss: X takes values 0 or 1 with equal probabilities

$$
\begin{aligned}
\mu & =\sum_{x} x \times \operatorname{Pr}[X=x] \\
& =\operatorname{Pr}[X=0] \times 0+\operatorname{Pr}[X=1] \times 1 \\
& =0.5 \times 0+0.5 \times 1 \\
& =0.5
\end{aligned}
$$

- Unfair coin: $X=1$ with probability 0.6 and $X=0$ with probability 0.4
- $\mu=0 \times 0.4+1 \times 0.6=0.6$.

Variance and Standard Deviation

- Variance σ^{2}
- measures the variability in X around μ
- equals the expected value of $(X-\mu)^{2}$, the squared deviation of X from the mean μ
- probability-weighted average of $x_{1}^{*}, x_{2}^{*}, \ldots$

$$
\begin{aligned}
\sigma^{2} & \equiv \mathrm{E}\left[(X-\mu)^{2}\right] \\
& =\left(x_{1}-\mu\right)^{2} \times \operatorname{Pr}\left[X=x_{1}\right]+\left(x_{2}-\mu\right)^{2} \times \operatorname{Pr}\left[X=x_{2}\right]+\cdots \\
& =\sum_{x}(x-\mu)^{2} \times \operatorname{Pr}[X=x] .
\end{aligned}
$$

- Population standard deviation σ is square root of the variance
- measured in the same units as X.

Example of Variance and Standard Deviation

- Fair coin toss: X takes values 0 or 1 with equal probabilities so $\mu=0.5$.
- Variance

$$
\begin{aligned}
\sigma^{2} & =\sum_{x}(x-\mu)^{2} \times \operatorname{Pr}[X=x] \\
& =\operatorname{Pr}(0-0.5)^{2} \times[X=0]+(1-0.5)^{2} \times \operatorname{Pr}[X=1] \\
& =0.25 \times 0.5+0.25 \times 0.5 \\
& =0.25
\end{aligned}
$$

- Standard deviation

$$
\sigma=\sqrt{0.25} \simeq 0.5
$$

3.2 Random Samples

- A sample of size n takes values denoted x_{1}, \ldots, x_{n}.
- These values are realizations or outcomes of the random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- Example: four consecutive coin tosses with results tails, heads, heads and heads
- random variable X_{1} has realized value $x_{1}=0$
- random variable X_{2} takes value $x_{2}=1$
- random variable X_{3} takes value $x_{3}=1$
- random variable X_{4} takes value $x_{4}=1$.

Sample Mean is a Random Variable

- Sample of size n has observed values $x_{1}, x_{2}, \ldots, x_{n}$.
- These are realizations of the random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- Sample mean is the average

$$
\bar{x}=\left(x_{1}+x_{2}+\cdots+x_{n}\right) / n=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- This is a realization of the random variable

$$
\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{n}\right) / n=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

Aside: Sample Variance and Standard Deviation

- Similarly any other sample statistic (such as the median) is a realization of a random variable
- In addition to the sample mean we focus on the sample variance and sample standard deviation.
- Sample variance is average of squared deviations of x around \bar{x}
- not around μ since μ is unknown

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- The sample variance is a realization of the random variable

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

- Taking the square root gives the sample standard deviation s which is a realization of the random variable S.

3.3 Sample Generated from an Experiment: Coin Tosses

- We consider a simple experiment that generates many samples
- hence many sample means \bar{x}
- then summarize the resulting distribution of the many \bar{x}.
- Population: Outcomes from experiment of tossing a coin
- $X=1$ if heads and $X=0$ if tails
- Population mean $\mu=\mathrm{E}[X]=0.5$ and standard deviation $\sigma=0.5$.
- Sample: $n=30$
- random sample of size 30 from 30 coin tosses
- there are 10 heads and 20 tails, so $\bar{x}=10 / 30=0.333$
- histogram of this single sample is given in left panel of next slide.

Example: Coin Tosses (continued)

- Left panel: x's from 1 sample of size 30 with 20 heads and 10 tails
- Right panel: $\bar{x}^{\prime} s$ for 400 samples of size 30

Example: Coin Tosses (continued)

- Randomly draw 400 different samples, each of size 30
- then $\bar{x}_{1}=.333, \bar{x}_{2}=.500, \bar{x}_{3}=533, \ldots$.
- Histogram (plus kernel density estimate) for the 400 means from the 400 samples of size 30 is given in right panel of previous slide.
- roughly centered on the population mean
\star the average of the 400 means is 0.499 , close to $\mu=0.5$.
- much less variability in these 400 means than in the original population
\star the standard deviation of the 400 means is 0.086
\star much less than the population standard deviation of $\sigma=0.5$
- the density estimate is roughly that of the normal.

3.4 Properties of the Sample Mean

- The properties of \bar{X} depend on the properties of $X_{1}, X_{2}, \ldots, X_{n}$
- such as the means and variances of $X_{1}, X_{2}, \ldots, X_{n}$
- and whether their values depend in part on other values.
- In this chapter we consider the simplest and standard set of assumptions in introductory statistics
- $X_{1}, X_{2}, \ldots, X_{n}$ have common mean μ and common variance σ^{2}
- $X_{1}, X_{2}, \ldots, X_{n}$ are statistically independent
« statistical independence means that the value taken by X_{2}, for example, is not influenced by the value taken by $X_{1}, X_{3}, \ldots, X_{n}$.
- In later chapters we relax these assumptions
- e.g. regression allows for different means for different observations.

Population Assumptions

- Population
- = set of all observations (or experimental outcomes).
- Sample
- = subset selected from the population.
- Properties of \bar{x} depend on the random variable \bar{X}
- hence on assumptions about process generating $X_{1}, X_{2}, \ldots, X_{n}$.
- We assume a simple random sample where
- A. X_{i} has common mean $\mu: \mathrm{E}\left[X_{i}\right]=\mu$ for all i.
- B. X_{i} has common variance $\sigma^{2}: \operatorname{Var}\left[X_{i}\right]=\sigma^{2}$ for all i.
- C. X_{i} is statistically independent of $X_{j}, i \neq j$.
- Shorthand notation: $X_{i} \sim\left(\mu, \sigma^{2}\right)$
- means X_{i} are distributed with mean μ and variance σ^{2}.

Mean and Variance of the Sample Mean

- Consider $\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{n}\right) / n$ for $X_{i} \sim\left(\mu, \sigma^{2}\right)$.
- The (population) mean of the sample mean is

$$
\mu_{\bar{X}} \equiv \mathrm{E}[\bar{X}]=\mu
$$

- The (population) variance of the sample mean is

$$
\sigma_{\bar{X}}^{2} \equiv \mathrm{E}\left[\left(\bar{X}-\mu_{\bar{X}}\right)^{2}\right]=\frac{\sigma^{2}}{n},
$$

- The (population) standard deviation is $\sigma_{\bar{\chi}}=\sigma / \sqrt{n}$.
- Sample mean is less variable than the underlying data
- since $\sigma_{\bar{X}}^{2}<\sigma^{2}$.
- Sample mean is close to μ as $n \rightarrow \infty$
- since $\mathrm{E}[\bar{X}]=\mu$ and variance $\sigma_{\bar{X}}^{2}=\sigma^{2} / n \rightarrow 0$ as $n \rightarrow \infty$.

Aside: Proof for Mean of the Sample Mean

- Recall

$$
\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{n}\right) / n
$$

- Proof uses
- $\mathrm{E}[a X]=a \mathrm{E}[X]$
- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$ and assumption A (common mean of X_{i}).
- Then

$$
\begin{aligned}
\mathrm{E}[\bar{X}] & =\mathrm{E}\left[\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right] \\
& =\frac{1}{n} \mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right] \\
& =\frac{1}{n}\left\{\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]\right\} \\
& =\frac{1}{n}\{\mu+\mu+\cdots+\mu\} \\
& =\mu .
\end{aligned}
$$

Aside: Variance of the Population Mean

- Proof in Appendix B. 2 uses that
- $\operatorname{Var}[a X]=a^{2} \mathrm{E}[X]$ in general
- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$ for independent variables
- and assumptions A-C.
- Then

$$
\begin{aligned}
\operatorname{Var}[\bar{X}] & =\operatorname{Var}\left[\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)\right] \\
& =\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left[X_{1}+X_{2}+\ldots+X_{n}\right] \\
& =\left(\frac{1}{n}\right)^{2}\left\{\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{n}\right]\right\} \\
& =\left(\frac{1}{n}\right)^{2} \sigma^{2}+\cdots+\left(\frac{1}{n}\right)^{2} \sigma^{2} \\
& =\left(\frac{1}{n}\right)^{2}\left\{\sigma^{2}+\cdots+\sigma^{2}\right\} \\
& =\left(\frac{1}{n}\right)^{2} \times n \sigma^{2} \\
& =\frac{1}{n} \sigma^{2} .
\end{aligned}
$$

Normal Distribution and the Central Limit Theorem

- We have shown to date that $\bar{X} \sim\left(\mu, \sigma^{2} / n\right)$
- In general, subtracting the mean and dividing by the standard deviation yields a random variable with mean 0 and variance 1 .
- So here the standardized variable

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim(0,1) .
$$

- The central limit theorem (a remarkable result) proves normality as the sample size gets large

$$
Z \sim N(0,1) \text { as } n \rightarrow \infty
$$

- The central limit theorem holds under assumptions A-C
- and also under some weaker conditions.

Normal Distribution (continued)

- Now convert back to the original \bar{X}.
- We have

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \text { as } n \rightarrow \infty .
$$

- Then \bar{X} is approximately normally distributed in large samples

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right) \text { approximately for large } n .
$$

- We will use this result to do statistical inference on μ.
- However, the variance σ^{2} / n is unknown as σ^{2} is unknown
- we will have to get an estimate
- replace σ^{2} by its estimate s^{2}
- where s is the sample standard deviation of X.

Standard Error of the Sample Mean

- Estimated variance of \bar{X} is

$$
s_{\bar{X}}^{2}=\frac{s^{2}}{n}=\frac{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

- Estimated standard deviation of \bar{X}

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}=\frac{\sqrt{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}{\sqrt{n}} .
$$

- $s_{\bar{X}}$ is called the standard error of the sample mean \bar{X}.
- The term "standard error" means estimated standard deviation
- various estimators each have a distinct standard error
- a reported "standard error" in computer output need not be $s_{\bar{X}}$.
- Use the notation

$$
\operatorname{se}(\bar{X})=s / \sqrt{n} .
$$

Summary for the Sample Mean

(1) Sample values x_{1}, \ldots, x_{n} are observed values of the random variables X_{1}, \ldots, X_{n}.
(2) Individual X_{i} have common mean μ and variance σ^{2} and are independent.
(3) Average \bar{X} of n draws of X_{i} has mean μ and variance σ^{2} / n.
(9) Standardized statistic $Z=(\bar{X}-\mu) /(\sigma / \sqrt{n}) \sim(0,1)$ has mean 0 and variance 1 .
(5) Z is standard normal as size $n \rightarrow \infty$ by the central limit theorem.
(0) For large n a good approximation is that $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$
(The standard error of \bar{X} equals s / \sqrt{n}, where "standard error" is general terminology for "estimated standard deviation".

3.5 Sampling from a Population: 1880 Census

- Now consider an example of sampling from a population.
- Population: $N=50,169,452$
- all people recorded as living in the U.S. in 1880
- the average age is 24.13 years, so $\mu=24.13$
- the standard deviation of age is 18.61 , so $\sigma=\mathbf{1 8 . 6 1}$
- histogram is given in the next slide.

Example: 1880 Census (continued)

- Population
- Probabilities decline with age (clearly not the normal)
- Peaks due to rounding at five and ten years

Entire 1880 Census

Example: 1880 Census (continued)

- Single sample: $n=25$
- random sample of size 25 from the entire U.S. population
- the average age is 27.84 , so $\overline{\mathbf{x}}=\mathbf{2 7 . 8 4}$
- the standard deviation of age is 20.71, so $\mathbf{s}=\mathbf{2 0 . 7 1}$
- these are similar to, but not exactly equal to, μ and σ
- histogram of $x^{\prime} s$ in a single sample is given in left panel of next slide.
- Many samples of size 25
- randomly draw 100 different samples, each of size 25
- then $\bar{x}_{1}=27.84, \bar{x}_{2}=19.40, \bar{x}_{3}=23.28$ years, \ldots.
- average of the 100 sample means is 23.78 , close to $\mu=24.13$.
- standard deviation of the 100 means is 3.76 , close to

$$
\sigma / \sqrt{n}=18.61 / \sqrt{25}=3.72
$$

- histogram of $\bar{x}^{\prime} s$ across 100 samples is given in right panel of next slide.

Example: 1880 Census (continued)

- 100 different means from 100 different samples, each of size 25
- histogram (left) and kernel density estimate (right)
- looks like normal with mean μ and standard deviation much less than σ

One Sample of size 25

100 Sample Means

3.6 Estimation of the Sample Mean

- Desire a good point estimate of population mean μ
- why use \bar{x} rather than some other estimate?
- A desirable estimator of μ has distribution
- centered on μ
- with as little variability around μ as possible.

Parameter, Estimator and Estimate

- A parameter is a constant that determines in part the distribution of X.
- An estimator is a method for estimating a parameter.
- An estimate is the particular value of the estimator obtained from the sample.
- For estimation of the mean of X using the sample mean
- the parameter is μ
- the estimator is the random variable \bar{X}
- the estimate is the sample value \bar{x}.

Unbiased Estimators

- An unbiased estimator of a population parameter
- has expected value that equals the population parameter.
- The sample mean is unbiased for μ
- since $\mathrm{E}[\bar{X}]=\mu$.

Minimum Variance Estimators

- Other estimators may also be unbiased and consistent for μ
- e.g. sample median in the case where X is symmetrically distributed
- discriminate between such estimators using their variance.
- A best estimator or efficient estimator
- has minimum variance among the class of consistent estimators (or of unbiased estimators).
- Under assumptions A-C the sample mean has variance σ^{2} / n
- for X that is normal, Bernoulli, binomial or Poisson no other unbiased estimator has lower variance
- for X with other distributions the sample mean is often close to having the lowest variance
- generally the sample mean is used to estimate μ.

Consistent Estimators

- Consistency is a more advanced concept that considers behavior as the sample size goes to infinity.
- A consistent estimator of a population parameter
- is one that is almost certainly arbitrarily close to the population parameter as the sample size gets very large.
- A sufficient condition for consistency is
- any bias disappears as the sample size gets very large
- the variance goes to zero as the sample size gets very large
- The sample mean is consistent for μ under assumptions A-C
- it is unbiased
- the variance $\sigma_{\bar{X}}^{2}=\sigma^{2} / n \rightarrow 0$ as $n \rightarrow \infty$.

3.7 Samples other than Simple Random Samples

- Recall simple random sample means data are independent and from the same distribution.
- Representative Samples
- Still from same distribution but no longer statistically independent.
- Then can adapt methods using an alternative formula for $\operatorname{se}(\bar{x})$.
- Nonrepresentative samples
- Now different observations may have different μ
- e.g. Survey readers of Golf Digest not representative of population.
- Big problem.
- Weighted mean can still be used if population weights are known
- $\pi_{i}=$ probability that $i^{\text {th }}$ observation is included in the sample.
- sample weights $w_{i}=1 / \pi_{i}$
- weighted mean $\bar{x}_{w}=\left[\sum_{i=1}^{n} w_{i} x_{i}\right] /\left[\sum_{i=1}^{n} w_{i}\right]$.

3.8 Computer Generation of a Random Variable

- A (pseudo) uniform random number generator
- creates values between 0 and 1
- any value between 0 and 1 is equally likely
- successive values appear to be independent of each other.
- To simulate 30 coin tosses
- draw 30 uniform random numbers
- result is heads if the uniform random number exceeds 0.5
- For Census example
- if uniform random number is between 0 and $1 / N$, where $N=$ $50,169,452$, we choose the first person, etcetera
- The sequence depends on the starting value called the seed
- always set the seed (e.g. equal to 10101).

Example Stata Code to give 400 sample means

- The following advanced Stata code obtains the 400 sample means in the coin toss example of Chapter 3.2
- the program generates one sample of size 30 of x equal 1 or 0
- the simulate command does this 400 times
- this gives 400 observations on variable xbar.
program onesample, rclass
drop _all
set obs 30
generate u = runiform()
generate $x=u>0.5$
summarize x
return scalar xbar $=r(m e a n)$
end
simulate $x b a r=r(x b a r)$, seed(10101) reps (400): onesample summarize

Some in-class Exercises

(1) Suppose $X=100$ with probability 0.8 and $X=600$ with probability 0.2 . Find the mean, variance and standard deviation of X.
(2) Consider random samples of size 25 from the random variable X that has mean 100 and variance 400 . Give the mean, variance and standard deviation of the mean \bar{X}.

