Analysis of Economics Data Chapter 4: Statistical Inference for the Mean

> © A. Colin Cameron Univ. of Calif. Davis

> > November 2022

CHAPTER 4: Statistical Inference

- Extrapolate from sample mean \bar{x} to population mean μ .
- Given the sample, confidence intervals give a range of values that μ is likely to full into.
- Hypothesis tests are used to determine whether or not a specified value or range of values of μ is plausible, given the sample.
- While we focus on μ , the methods generalize to inference on other parameters.

Chapter 4

Outline

- Example: Mean Annual Earnings
- t Statistic and t Distribution
- Onfidence Intervals
- Two-sided Hypothesis Tests
- Two-sided Hypothesis Test Examples
- One-sided Hypothesis Tests
- Generalization of Confidence Intervals and Hypothesis Tests
- Proportions Data
 - Datasets: EARNINGS, GASPRICE, EARNINGSMALE, REALGDPPC.

4.1 Example: Mean Annual Earnings

- Sample of 171 female full-time workers aged 30 in 2010.
- Descriptive statistics obtained using Stata summarize command
 - . summarize earnings

Variable	Obs	Mean	Std. Dev.	Min	Max
earnings	171	41412.69	25527.05	1050	172000

- Key statistics:
 - Mean: sample mean \bar{x}
 - Std. Dev.: standard error s measures the precision of x̄ as an estimate of μ.
- The next slides present methods for statistical inference on μ that are explained in detail in the remainder of the chapter.

95% Confidence Interval for the Mean

- A 95% confidence interval for a parameter is a range of likely values that the parameter lies in with 95% confidence.
- 95% Confidence interval for μ obtained using Stata mean command.
 - . mean earnings

	M	C + 4	F		T., 4 11
Mean estimation			Number	of obs =	171

	Mean	Std. Err.	[95% Conf.	Interval]
earnings	41412.69	1952.103	37559.21	45266.17

- Key statistics:
 - Mean: sample mean \bar{x} is the estimate of μ
 - Std. Err: standard error measures the precision of \bar{x} as an estimate of μ

★ this equals $s/\sqrt{n} = 25527.05/\sqrt{171} = 1952.1$.

95% Confidence Interval Calculation

• In general a confidence interval is

estimate $\pm~$ critical value \times standard error

- Here we consider the population mean μ .
- The estimate is $\bar{x} = 41412.69$
- The standard error measures the precision of \bar{x} as an estimate of μ

• $se(\bar{x}) = s/\sqrt{n} = 25527.05/\sqrt{171} = 1952.1.$

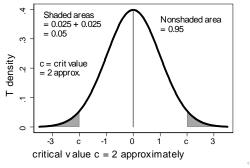
- The 95% critical value is approximately 2
 - more precisely here c = 1.974 as $\Pr[|T_{170}| \le 1.974] = 0.95$.
- The 95% confidence interval is then

 $\bar{x} \pm c \times se(\bar{x}) = 41412.69 \pm 1.974 \times 1952.1 = (37559, 45266).$

- 4 週 ト - 4 三 ト - 4 三 ト

Critical Value for the Confidence Interval

- For μ use the T distribution with n-1 degrees of freedom
 - very similar to standard normal distribution except with fatter tails.
- Let T_{n-1} denoted a random variable that is T(n-1) distributed.
- The critical value c for a 95% conf. interval is that value for which
 - the probability that $|T_{n-1}| \le c = 0.95$
 - equivalently the probability that $T_{n-1} \ge c = 0.05/2 = 0.025$.



Critical value for 95% conf. int.

Hypothesis test on the Mean

- Hypothesis test using Stata ttest command
 - as illustrative example test whether or not $\mu = 40,000$.

```
. ttest earnings = 40000
```

One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
earnings	171	41412.69	1952.103	25527.05	37559.21	45266.17
mean Ho: mean	= mean(earn = 40000	ings)		degrees	t = of freedom =	
	n < 40000) = 0.7649		a: mean != 4 T > t) =			n > 40000) = 0.2351
$ullet$ We test $H_0:\mu=$ 40000 against $H_{a}:\mu eq$ 40000.						

- The test statistic is t = 0.7237.
- The *p*-value is 0.4703 (as we test against $H_a: \mu \neq 40000$).
- Since p > 0.05 we do not reject H_0 : $\mu = 40000$ at level 0.05.

Hypothesis test calculation

• In general a t test statistic is

$$t = \frac{\text{estimate } - \text{ hypothesized value}}{\text{standard error}}$$

Here

$$t = \frac{\bar{x} - \mu_0}{se(\bar{x})} = \frac{41412.69 - 40000}{1952.1} = 0.7237.$$

- The *p*-value is the probability of observing a value at least as large as this in absolute value.
- Here p equals the probability that $|T_{170}| \ge 0.7237 = 0.4703$.
- Since this probability exceeds 0.05 we do not reject H_0 .

4.2 t Statistic and t distribution

- Estimate μ using \bar{x} which is the sample value of draw of the random variable \bar{X}
- So far we have E[X̄] = μ and Var[X̄] = σ²/n for a simple random sample.
- \bullet For confidence intervals and hypothesis tests on μ we need a distribution
 - under certain assumptions \bar{X} is normally distributed
 - but with variance that depends on the unknown σ^2
 - we replace σ^2 by the estimate s^2
 - this leads to use of the t-statistic and the t distribution

★ similar to the standard normal but with fatter tails.

Normal Distribution and the Central Limit Theorem

- We assume a simple random sample where
 - **A.** X_i has common mean $\mu : E[X_i] = \mu$ for all *i*.
 - **B.** X_i has common variance σ^2 : $Var[X_i] = \sigma^2$ for all *i*.
 - ▶ **C.** Statistically independence: X_i is statistically independent of X_j , $i \neq j$.
- Then $ar{X} \sim (\mu, \sigma^2/n)$, i.e. $ar{X}$ has mean μ and variance σ^2/n .
- Under these assumptions the standardized variable $Z = \frac{\bar{X} \mu}{\sigma / \sqrt{n}} \sim (0, 1).$
- The central limit theorem (a remarkable result) states that if additionally the sample size is large Z is normally distributed

$$Z = rac{ar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) ext{ as } n o \infty.$$

The t-statistic

• Now replace the unknown σ^2 by an estimator $S^2 - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (X_i - \bar{X})^2$

$$r = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - X)^2.$$

$$T=\frac{\bar{X}-\mu}{S/\sqrt{n}}.$$

• The distribution for T is complicated. The standard approximation is T has the t distribution with (n-1) degrees of freedom

$$T \sim T(n-1)$$

Comments

- different degrees of freedom correspond to different t distributions
- $T \sim T(n-1)$ exactly in the very special case that X_{is} are normally distributed
- otherwise T is not T(n-1) exactly but is the standard approximation.

12 / 49

The t-statistic (continued)

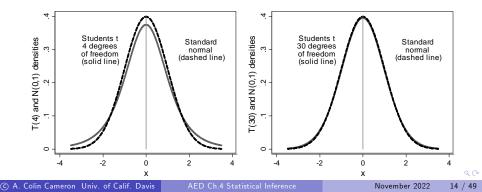
• In summary, inference on μ is based on the sample *t*-statistic is

$$t = \frac{\bar{x} - \mu}{se(\bar{x})} = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

- \bar{x} is the sample mean
- $se(\bar{x})$ is the standard error of \bar{x}
- s is the sample standard deviation.
- The statistic t is viewed as a realization of the T(n-1) distribution.

The t Distribution

- t distribution has probability density function that is bell-shaped
 - $\Pr[a < T < b]$ is the area under the curve between *a* and *b*
- The t distribution has fatter tails than the standard normal.
- T_v denotes a random variable that has the T(v) distribution.
- Different values of v correspond to different T distributions
 - t_{∞} is the same as N(0, 1).



Probabilities for the t Distribution

- **Probabilities** are the area under the t probability density function.
 - e.g. $\Pr[a < T < b]$ is the area under the curve from a to b
- Computing these probabilities requires a computer.
- The Stata function ttail(v,t) gives $\Pr[T_v > t]$
 - e.g. $\Pr[T_{170} > 0.724] = \text{ttail}(170, 0.724) = 0.235.$
- The R function 1-pt(t,v) gives $\Pr[T_v > t]$
 - e.g. $\Pr[T_{170} > 0.724] = 1 pt(0.724, 170) = 0.235.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Inverse Probabilities for the t Distribution

- For confidence intervals we need to find the inverse probability
 - called a critical value.
- Definition: the **inverse probability** or **critical value** $c = t_{\nu,\alpha}$ is that value such that the probability that a $T(\nu)$ distributed random variable exceeds $t_{\nu,\alpha}$ equals α .

$$\Pr[T_{v} > t_{v,\alpha}] = \alpha.$$

• i.e. the area in the right tail beyond $t_{\nu,\alpha}$ equals α .

- Example: $\Pr[T_{170} > 1.654] = 0.05$ so $c = t_{170,.05} = 1.654$.
- The Stata function invttail(v,a) gives a such that $\Pr[T_v > t] = a$

• e.g. $c = t_{170,.05} = invttail(170,.05) = 1.654$.

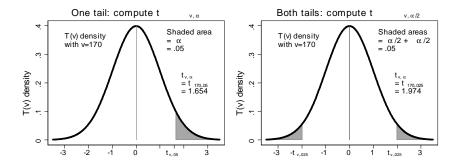
• The R function is qt(1-a,v) e.g. qt(0.95,170) = 1.654.

E Sac

イロト イポト イヨト イヨト

Inverse probabilities (continued)

- Left panel: $\Pr[T_{170} > 1.654] = 0.05$, so $t_{170,.05} = 1.654$.
- Right panel: $\Pr[-1.974 < T_{170} < 1.974] = 0.05$
 - using $\Pr[T_{170} > 1.974] = 0.025$ and $t_{170,.025} = 1.974$.



→ Ξ →

4.3 Confidence Intervals

- For simplicity focus on 95% confidence intervals.
- A 95 percent confidence interval for the population mean is

$$\bar{x} \pm t_{n-1,.025} \times se(\bar{x}),$$

- \bar{x} is the sample mean
- ▶ $t_{n-1,.025}$ is exceeded by a T(n-1) random variable with probability 0.025
- $se(\bar{x}) = s/\sqrt{n}$ is the standard error of the sample mean.
- The area in the tails is 0.025 + 0.025 = 0.05
 - leaving area 0.95 in the middle
 - hence a 95% confidence interval.

Example: Mean Annual Earnings

- Here $\bar{x} = 41413$, $se(\bar{x}) = s/\sqrt{n} = 1952$, n = 171, and $t_{170,.025} = 1.974$.
- A 95% confidence interval (CI) is

$$ar{x} \pm t_{n-1,lpha/2} imes \left(s/\sqrt{n}
ight) = 41413 \pm 1.974 imes 1952 \ = 41413 \pm 3853 \ = (37560, 45266).$$

- A 95% confidence interval for population mean earnings of thirty year-old female full-time workers is
 - (\$37,560, \$45,266)
 - this was the result obtained earlier using the Stata mean command.

Derivation of a 95% Confidence Intervals

- We derive a 95% confidence interval from first principles.
- For simplicity consider a sample with n = 61, in which case n 1 = 60 and $t_{60,.025} = 2.0003$. Thus

 $\Pr[-2.0003 < T_{60} < 2.0003] = 0.95.$

• Round to $\Pr[-2 < T < 2] = 0.95$ and substituting $T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$ yields

$$\Pr\left[-2 < \frac{\bar{X} - \mu}{S / \sqrt{n}} < 2\right] = 0.95.$$

• Convert to an interval that is centered on μ as follows

$$\begin{array}{rl} \Pr\left[-2 < \frac{\bar{X} - \mu}{S/\sqrt{n}} < 2\right] &= 0.95 \\ \Pr\left[-2S/\sqrt{n} < \bar{X} - \mu < 2S/\sqrt{n}\right] &= 0.95 & \text{times } S/\sqrt{n} \\ \Pr\left[-\bar{X} - 2S/\sqrt{n} < -\mu < -\bar{X} + 2S/\sqrt{n}\right] &= 0.95 & \text{subtract } \bar{X} \\ \Pr\left[\bar{X} + 2S/\sqrt{n} > \mu > \bar{X} - 2S/\sqrt{n}\right] &= 0.95 & \text{times } -1. \end{array}$$

Derivation (continued)

Re-ordering the final inequality yields

$$\Pr\left[\bar{X} - 2 \times S / \sqrt{n} < \mu < \bar{X} + 2S / \sqrt{n}\right] = 0.95.$$

- Replace random variables by their observed values
 - ▶ the interval $(\bar{x} 2 \times s / \sqrt{n}, \bar{x} + 2 \times s / \sqrt{n})$ is called a 95% confidence interval for μ .
- More generally with sample size *n* the critical value is $t_{n-1,.025}$.
- A 95% confidence interval is $(\bar{x} t_{n-1,.025} \times se(\bar{x}), \bar{x} + t_{n-1,.025} \times se(\bar{x})).$
- This is the confidence interval formula given earlier.

What Level of Confidence?

- Ideally narrow confidence intervals with high level of confidence.
- But trade-off: more confidence implies wider interval
 - e.g. 100% confidence is μ in $(-\infty, \infty)$.
- What value of confidence should we use?
 - no best value in general
 - common to use a 95% confidence interval.
- A $100(1-\alpha)\%$ percent confidence interval for the population mean is

$$\bar{x} \pm t_{n-1,a/2} imes \left(s/\sqrt{n} \right)$$
.

- ▶ $\alpha = 0.05$ (so $\alpha/2 = 0.025$) gives a 95% confidence interval as $100 \times (1 0.05) = 95$.
- ▶ next most common are 90% ($\alpha = 0.10$) and 99% ($\alpha = 0.01$) confidence intervals

Critical t values

- Table presents $t_{\nu,\alpha/2}$ for various confidence levels (α) and $\nu = n 1$.
- The 95% confidence intervals critical values are bolded

Confidence Level	$100(1 - \alpha)$	90%	95%	99%
Area in both tails	α	0.10	0.05	0.01
Area in single tail	α/2	0.05	0.025	0.005
t value for $v = 10$	$t_{10,\alpha/2}$	1.812	2.228	3.169
t value for $v = 30$	$t_{30,\alpha/2}$	1.697	2.042	2.750
t value for $ u=100$	$t_{100,\alpha/2}$	1.660	1.980	2.626
t value for $v=\infty$	$t_{\infty,\alpha/2}$	1.645	1.960	2.576
standard normal value	$z_{\alpha/2}$	1.645	1.960	2.576

- Note that $t_{v,.025} \simeq 2$ for v > 30.
- An approximate 95% confidence interval for μ is therefore a two-standard error interval
 - the sample mean plus or minus two standard errors.

Interpretation

- Interpretation of confidence intervals is conceptually difficult.
- The correct interpretation of a 95 percent confidence interval is that if constructed for each of an infinite number of samples then it will include μ 95% of the time
 - of course we only have one sample.
- 1880 Census example (we know $\mu=$ 24.13) in Chapter 3
 - ▶ First sample of size 25: 95% confidence interval (17.99, 34.81)
 - Second sample: 95% CI (13.12, 25.54), and so on.
- For the particular 100 samples drawn
 - \blacktriangleright two samples had 95% confidence intervals that did not include μ
 - ★ 20th sample had 95% interval (8.57, 23.90)
 - ★ 50th sample had 95% interval (11.49, 21.45)
 - > so here 98% of the samples had 95% confidence interval that included μ (versus theory 95%).

4.4 Two-Sided Hypothesis Tests

• A two-sided test or two-tailed test for the population mean is a test of the null hypothesis

$$H_0: \mu = \mu^*$$

where μ^* is a specified value for μ , against the **alternative** hypothesis

$$H_a: \mu \neq \mu^*.$$

- In the next example $\mu^* = 40000$.
- Called two-sided as the alternative hypothesis includes both $\mu>\mu^*$ and $\mu<\mu^*.$
- We need to either reject H_0 or not reject H_0 .

Significance Level of a Test

- A test either rejects or does not reject the null hypothesis.
- The decision made may be in error.
- A type I error occurs if H_0 is rejected when H_0 is true.
 - e.g. H_0 is person is innocent. A type I error is to reject H_0 and find the person guilty, when in fact the person was innocent.
- The **significance level** of a test, denoted *α*, is the pre-specified maximum probability of a type I error that will be tolerated.
- Often $\alpha = 0.05$. A 5% chance of making a type I error.

The t-test Statistic

- Obviously reject $H_0: \mu = \mu^*$ if \bar{x} is a long way from μ^* .
- Transform to $t = (\bar{x} \mu^*) / se(\bar{x})$ as this has known distribution.
- Equivalently reject *H*₀ : if the *t* statistic is large in absolute value where

$$t = \frac{\bar{x} - \mu^*}{se(\bar{x})} = \frac{\bar{x} - \mu^*}{s/\sqrt{n}}$$

- Example: Test whether or not population mean female earnings equal \$40,000.
- Here $H_0: \mu = 40000$ and n = 171, $\bar{x} = 41412$, s = 25527, so $se(\bar{x}) = s/\sqrt{n} = 1952$

$$t = \frac{\bar{x} - \mu}{se(\bar{x})} = \frac{41412 - 40000}{1952} = 0.724.$$

• The *t*-statistic is a draw from the T(170) distribution, since n = 171.

3

< ロト < 同ト < ヨト < ヨト

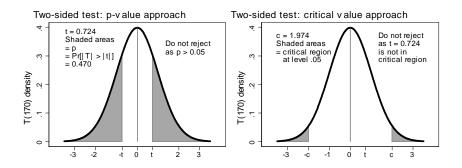
Rejection Using p-values

- How likely are we to obtain a draw from T(170) that is $\geq |0.724|$?
- The *p*-value is the probability of observing a t-test statistic at least as large in absolute value as that obtained in the current sample.
- For a two-sided test of $H_0: \mu = \mu^*$ against $H_a: \mu
 eq \mu^*$ the p-value is

$$p = \Pr[|T_{n-1}| \ge |t|].$$

- H_0 is rejected at significance level α if $p < \alpha$, and is not rejected otherwise.
- Earnings example
 - $p = \Pr[|T_{170}| \ge 0.724] = 0.470.$
 - since p > 0.05 we do not reject H_0 .

- Left panel: *p*-value
- Right panel: critical value



< 🗇 🕨

Rejection using Critical Regions

- Alternative equivalent method is the following
 - base rejection directly on the value of the *t*-statistic
 - requires table of critical values rather than computer for p-values.
- A critical region or rejection region is the range of values of t that would lead to rejection of H₀ at the specified significance level α.
- For a two-sided test of $H_0: \mu = \mu^*$ against $H_a: \mu \neq \mu^*$, and for specified α , the **critical value** c is such that

$$c = t_{n-1,\alpha/2}$$
 (so equivalently $\Pr[|T_{n-1}| \ge c] = \alpha$).

- H_0 is rejected at significance level α if |t| > c, and is not rejected otherwise.
- Earnings example:
 - if $\alpha = 0.05$ then $c = t_{170,0.025} = 1.974$.
 - do not reject H_0 since t = 0.724 and |0.724| < 1.974.

• The critical value is illustrated in right panel of the preceding figure.

Which Significance level?

- Decreasing the significance level α
 - decreases the area in the tails that defines the rejection region
 - makes it less likely that H_0 is rejected.
- It is most common to use $\alpha = 0.05$, called a test at the 5% significance level
 - then a type I error is made 1 in 20 times.
- This is a convention and in many applications other values of α may be warranted.
 - e.g. What if H_0 : no nuclear war? Then use $\alpha > 0.05$.
- Reporting *p*-values allows the reader to easily test using their own preferred value of α .
- Further discussion under test power.

Relationship to Confidence Intervals

- Two-sided tests can be implemented using confidence intervals.
- If the H_0 value μ^* falls inside the $100(1 \alpha)$ percent confidence interval then do not reject H_0 at level α .
- Otherwise reject H_0 at significance level α .

Summary

- A summary of the preceding example is the following.
- The p-value and critical value approaches are alternative methods that lead to the same conclusion.

くほと くほと くほと

4.5 Hypothesis Testing Example 1: Gasoline Prices

- Test at α = .05 claim that the price of regular gasoline in Yolo County is neither higher nor lower than the norm for California.
 - one day's data from a website that provides daily data on gas prices
 - average California price that day was \$3.81
 - $H_0: \mu = 3.81$ is tested against $H_a: \mu \neq 3.81$.
- n = 32, $\bar{x} = 3.6697$ and s = 0.1510.
- $t = (3.6697 3.81)/(0.1510/\sqrt{32}) = -5.256.$
- *p* value method: $p = \Pr[|T_{31}| > 5.256] = 0.000$
 - reject H_0 at level .05 since p < .05.
- Critical value method: $c = t_{31,.025} = 2.040$.
 - reject H_0 at level .05 since |t| = 5.256 > c = 2.040.
- Reject the claim that reject the claim that population mean Yolo County gas price equals the California state-average price.

Example 2: Male Earnings

- Test at $\alpha = .05$ the claim that population mean annual earnings for 30 year-old U.S. men with earnings in 2010 exceed \$50,000
 - claim that > 50000 is set up as the alternative hypothesis
 - $H_0: \mu \le 50000$ is tested against $H_a: \mu > 50000$.
- n = 191, $\bar{x} = 52353.93$ and s = 65034.74.
- $t = (52353.93 50000) / (65034.74 / \sqrt{191}) = 0.5002.$
- p value method: $p = \Pr[T_{190} > 0.500] = 0.310$.
 - do not reject H_0 at level .05 since p > .05.
- Critical value method: $c = t_{190..05} = 1.653$.
 - do not reject H_0 at level .05 since t = 0.500 > c = 1.653.
- Do not reject the claim that population mean earnings exceed \$50.000.

くほと くほと くほと

Example 3: Price Inflation

- Test at $\alpha = .05$ claim that U.S. real GDP per capita grew on average at 2.0% over the period 1960 to 2020
 - ▶ use year-to-year percentage changes in U.S. real GDP per capita.
 - $H_0: \mu = 2.0$ tested against $H_a: \mu \neq 2.0$.

•
$$n = 241$$
, $\bar{x} = 1.9904$ and $s = 2.1781$.

- $t = (1.9904 2.0)/(2.1781/\sqrt{241}) = -0.068.$
- *p* value method: $p = \Pr[|T_{258}| > 0.0680] = 0.946$
 - do not reject H_0 at level .05 since p < .05.
- Critical value method: $c = t_{241,.025} = 1.970$
 - do not reject H_0 at level .05 since |t| = 0.068 < c = 1.970.
- Do not reject the claim that population mean growth was 2.0%.

< 回 ト < 三 ト < 三 ト

4.6 One-sided Directional Hypothesis Tests

- An upper one-tailed alternative test is a test of H₀ : µ ≤ µ^{*} against H_a : µ > µ^{*}.
- A lower one-tailed alternative test is a test of $H_0: \mu \ge \mu^*$ against $H_a: \mu < \mu^*$.
- For one-sided tests the statement being tested is specified to be the alternative hypothesis.
- And if a new theory is put forward to supplant an old, the new theory is specified to be the alternative hypothesis.
- Example: Test claim that population mean earnings exceed \$40,000
 - test $H_0: \mu \le 40000$ against $H_a: \mu > 40000$.

- 本間下 本臣下 本臣下 三臣

P-Values and Critical Regions

- Use the usual *t*-test statistic $t = (\bar{x} \mu^*) / se(\bar{x})$.
- For an upper one-tailed alternative test
 - $p = \Pr[T_{n-1} \ge t]$ is *p*-value
 - $c = t_{n-1,\alpha}$ is critical value at significance level α
 - reject H_0 if $p < \alpha$ or, equivalently, if t > c.

For a lower one-tailed alternative test

- $p = \Pr[T_{n-1} \leq t]$ is *p*-value
- $c = -t_{n-1,\alpha}$ is critical value at significance level α
- H_0 if $p < \alpha$ or, equivalently, if t < c.

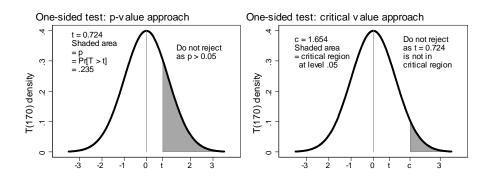
< 回 ト < 三 ト < 三 ト

Example: Mean Annual Earnings

- Evaluate the claim that the population mean exceeds \$40,000.
- Test of $H_0: \mu \leq 40000$ against $H_a: \mu > 40000$
 - the claim is specified to be the alternative hypothesis
 - a detailed explanation is given next
 - and we reject if t is large and positive.
- From earlier t = 0.724 .
- *p* value method: $p = \Pr[T_{170} \ge .724] = 0.235$
 - do not reject H_0 at level 0.05 since p > 0.05.
- Critical value method: $c = t_{170,.05} = 1.654$
 - do not reject H_0 at level 0.05 since t = 0.724 < c = 1.654.

A D A D A D A

- Left panel: p-value
- Right panel: critical value



Specifying the Null Hypothesis in One-sided Test

- Suppose claim is that population mean earnings exceed \$40,000.
- Potential method 1: test $H_0: \mu \leq 40000$ against $H_a: \mu > 40000$
 - Reject H_0 if \bar{x} quite a bit higher than 40000. e.g. 43,000.
 - Then claim that $\mu > 40000$ is supported if $\bar{x} > 43000$.
- Potential method 2: test $H_0: \mu \ge 40000$ against $H_a: \mu < 40000$
 - Reject H_0 if \bar{x} quite a bit smaller than than 40000. e.g. 37,000.
 - So do not reject H_0 if $\bar{x} > 37000$.
 - Then claim that $\mu >$ 40000 is supported if $\bar{x} >$ 37000
 - Much more likely to accept the claim than with method 1.
- The statistics philosophy: need strong evidence to support a claim
 - the first specification is therefore used
 - ► the statement being tested is specified to be the alternative hypothesis.

4.7 Generalize Confidence Intervals and Hypothesis Tests

- Consider general case of an estimate of a parameter
 - with standard error the estimated standard deviation of the estimate
 - generalizes \bar{x} is an estimate of μ with standard error $se(\bar{x})$.
- For the models and assumptions considered in this book

$$t = rac{ ext{estimate} - ext{parameter}}{ ext{standard error}} \sim T(v)$$
 distribution

where the degrees of freedom v vary with the setting.

• The $100(1 - \alpha)$ % confidence interval for the unknown parameter is

estimate $\pm t_{v,\alpha/2} \times$ standard error.

- Most often use 95% confidence level and $t_{v,.025} \simeq 2$ for v > 30.
- So an approximate 95% CI is a two-standard error interval

estimate $\pm 2 \times$ standard error.

- Margin of error in general is half the width of a confidence interval.
 - For 95% confidence intervals, since $t_{v,.025} \simeq 2$,

Margin of error $\simeq 2 \times$ Standard error.

Generalization of Hypothesis Tests

- Two-sided test at significance level α of
 - \blacktriangleright H₀ : a parameter equals a hypothesized value against
 - ► H_a : that it does not.
- Calculate the *t*-statistic

$$t = rac{ ext{estimate} - ext{hypothesized parameter value}}{ ext{standard error}}$$

- under H_0 t is the sample realization of a T(v) random variable.
- Two-sided hypothesis test at significance level α :
 - *p*-value approach: reject H_0 if $p < \alpha$ where $p = \Pr[|T_v| > t]$
 - critical value approach: reject H_0 if |t| > c where $c = t_{v,\alpha/2}$ satisfies $\Pr[T_v > t_{v.\alpha/2}] = \alpha$
 - the two methods lead to the same conclusion.

4.8 Proportions Data

- Consider proportion of respondents voting Democrat.
- Code data as $x_i = 1$ if vote Democrat and $x_i = 0$ if vote Republican
 - the sample mean \bar{x} is the proportion voting Democrat.
 - the sample variance $s^2 = n\bar{x}(1-\bar{x})/(n-1)$

★ in this special case of binary data.

- Example: 480 of 921 voters intend to vote Democrat (and 441 vote Republican)
 - $\bar{x} = (480 \times 1 + 440 \times 0)/921 = 0.5212$
 - ▶ $s^2 = 921 \times 0.5212 \times (1 0.5212)/920 = 0.2498.$

Inference for Proportions Data

• View each outcome as result of random variable

$$X = \begin{cases} 1 & \text{with probability } p & \text{if vote Democrat} \\ 0 & \text{with probability } 1 - p & \text{if vote Republican} \end{cases}$$

- Then \bar{X} has mean p and variance $\sigma^2/n = p(1-p)/n$.
- Can do analysis using earlier results with the usual standard error of \bar{x}

▶ here
$$s^2/n = n\bar{x}(1-\bar{x})/(n-1) = \bar{x}(1-\bar{x})/(n-1)$$

- But usually confidence intervals substitute \bar{x} for p in $\sigma^2/n = p(1-p)/n$
 - so standard error of \bar{x} is $\bar{x}(1-\bar{x})/n$
- And hypothesis tests of $H_0: p = p^*$ also substitute for p and use

$$t = \frac{\bar{x} - p^*}{\sqrt{p^*(1 - p^*)/n}}$$

Key Stata Commands

```
use EARNINGSBOTH.DTA, clear
* Confidence interval
mean earnings
mean earnings, level(90)
* Hypothesis test
ttest earnings = 40
* Upper tail probability
display ttail(170,0.724)
* Critical value or inverse tail probability
display invttail(170,0.025)
```

Computing the p-value and Critical Value

- Example of computer commands to get p and c
 - for t = t, degrees of freedom v, and test at level α
- Two-sided tests
 - Stata: p = 2*ttail(v, |t|) and $c = invttail(v, \alpha/2)$
 - R: p = 2 * (1 pt(|t|, v)) and $c = qt(1 \alpha/2, v)$
 - Excel: p = TDIST(|t|, v, 2) and $c = \text{TINV}(2\alpha, v)$

Some in-class Exercises

- Suppose observations in a sample of size 25 have mean 200 and standard deviation of 100. Give the standard error of the sample mean.
- Suppose n = 100, x̄ = 500 and s = 400. Provide an approximate 95% confidence interval for the population mean.
- Suppose observations in a sample of size 100 have mean 300 and standard deviation of 90. Test the claim that the population mean equals 280 at the 5% significance level.