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Chapter 7

CHAPTER 7: Statistical Inference for Bivariate Regression

Recall univariate
I sample mean x̄ estimates population mean µ
I under suitable assumptions t = x̄�µ

se(x̄ ) is a draw from T (n� 1)
I use this as basis for con�dence intervals and hypothesis tests on µ.

Now for bivariate regression
I sample slope coe¢ cient b2 estimates population slope coe¢ cient β2
I under suitable assumptions t = b2�β2

se(b2)
is a draw from T (n� 2)

I use this as basis for con�dence interval and hypothesis tests on β2.
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7.1 Example: House Price and Size

7.1 Example: House Price and Size

Key regression output for statistical inference with n = 29:

Variable Coe¢ cient Standard Error t statistic p value 95% conf. interval
Size 73.77 11.17 6.60 0.000 50.84 96.70
Intercept 115017.30 21489.36 5.35 0.000 70924.76 159109.8

[price = b1 + b2size is an estimate of price = β1 + β2size.

Coe¢ cient of Size
I b2 = 73.77 is least squares estimate of slope β2

Standard error of Size
I the estimated standard deviation of b2
I the default standard error of b2 equals 11.17.
I (later: alternative heteroskedastic-robust standard errors).
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7.1 Example: House Price and Size

Example (continued)

We have with n = 29:

Variable Coe¢ cient Standard Error t statistic p value 95% conf. interval
Size 73.77 11.17 6.60 0.000 50.84 96.70
Intercept 115017.30 21489.36 5.35 0.000 70924.76 159109.8

Con�dence interval for size
I 95% con�dence interval for β2
I is b2 � t27,.025 � se(b2) = (50.84, 96.70).

t statistic of Size tests whether there is any relationship
I is for test of H0 : β2 = 0 against Ha : β2 6= 0
I in general t = (estimate� hypothesized value)/standard error.
I t2 = b2/se(b2) = 73.77/11.17 = 6.60.

p value of Size
I is p-value for a two sided test
I p2 = Pr[jT27 j > j6.60j] = 0.00.

c A. Colin Cameron Univ. of Calif. Davis ()AED Ch.7: Bivariate Regression Inference November 2022 5 / 32



7.2 The t-statistic

7.2 The t Statistic

The statistical inference problem
I Sample: by = b1 + b2x where b1 and b2 are least squares estimates
I Population: E[y jx ] = β1 + β2x and y = β1 + β2x + u.
I Estimators: b1 and b2 are estimators of β1 and β2.

Goal
I inference on the slope parameter β2.

This is based on a T (n� 2) distributed statistic

T =
estimate� parameter

standard error
=
b2 � β2
se(b2)

� T (n� 2).
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7.2 The t-statistic

Why use the T(n-2) Distribution?

Make assumptions 1-4 given in the next slide.
I then Var[b2 ] = σ2u/ ∑ni=1(xi � x̄)2.

But we don�t know σ2u
I we replace it with the estimate s2e =

1
n�2 ∑ni=1(yi � byi )2.

This leads to noise in fse(b2)g2 = s2e / ∑n
i=1(xi � x̄)2

I so the statistic T = (b2 � β2)/se(b2) is better approximated by
T (n� 2) than by N(0, 1).

The T (n� 2) distribution
I is the exact distribution if additionally the errors ui are normally
distributed

I otherwise it is an approximation, one that computer packages use.
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7.2 The t-statistic Model Assumptions

Model Assumptions

Data assumption is that there is variation in the sample regressors
so that ∑n

i=1(xi � x̄)2 = 0.
Population assumptions 1-4

I 1. The population model is y = β1 + β2x + u.
I 2. The error has mean zero conditional on x: E[ui jxi ] = 0.
I 3. The error has constant variance conditional on x:
Var[ui jxi ] = σ2u .

I 4. The errors for di¤erent observations are statistically
independent: ui is independent of uj .

Assumptions 1-2 imply a linear conditional mean and yield unbiased
estimators

E[y jx ] = β1 + β2x .

Additional assumptions 3-4 yield the variance of estimators.

c A. Colin Cameron Univ. of Calif. Davis ()AED Ch.7: Bivariate Regression Inference November 2022 8 / 32



7.3 Con�dence Intervals Con�dence Interval for the Slope Parameter

7.3 Con�dence Interval for the Slope Parameter

Recall: A 95 percent con�dence interval is approximately

estimate� 2� standard error

I here a 95% con�dence interval is b2 � tn�2;.025 � se(b2).

A 100(1� α) percent con�dence interval for β2 is

b2 � tn�2,α/2 � se(b2),

where
I b2 is the slope estimate
I se(b2) is the standard error of b2
I tn�2;α/2 is the critical value in Stata using invttail(n-2,α/2).
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7.3 Con�dence Intervals What Level of Con�dence?

What Level of Con�dence?

There is no best choice of con�dence level
I most common choice is 95% (or 90% or 99%)

Interpretation
I the calculated 95% con�dence interval for β2 will correctly include β2
95% of the time

I if we had many samples and in each sample formed a 95% con�dence
interval, then 95% of these con�dence intervals will include the true
unknown β2.
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7.3 Con�dence Intervals Example: House Price and Size

Example: House Price and Size

For regress house price on house size a 95% con�dence interval is

b2 � tn�2,α/2 � se(b2)
= 73.77� t27,.025 � 11.17
= 73.77� 2.052� 11.17
= 73.77� 22.93
= (50.84, 96.70).

This is directly given in computer output from regression.
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7.4 Tests of Statistical Signi�cance Tests of Statistical Signi�cance

7.4 Tests of Statistical Signi�cance
A regressor x has no relationship with y if β2 = 0.
A test of �statistical signi�cance� is a two-sided test of whether
β2 = 0. So test

H0 : β2 = 0 against Ha : β2 6= 0.

Test statistic is then

t =
b2

se(b2)
� T (n� 2).

Reject if jtj is large as then jb2j is large
I How large?
I Large enough that the value of jtj is a low probability event.

Use either p value approach or critical value approach
I reject at level 0.05 if p = PrfjTn�2 j > jtj] < 0.05
I or equivalently reject at level 0.05 if jtj > c = tn�2;.025.

This method generalizes to other formulas for se(b2).
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7.4 Tests of Statistical Signi�cance Example: House Price and Size

Example: House Price and Size

For regress house price on house size with n = 29

t =
b2

se(b2)
=
73.77
11.17

= 6.60

p = Pr[jTn�2j > jtj] = Pr[jT27j > 6.60] = 0.000
I so reject H0 : β2 = 0 at signi�cance level 0.05 as p < 0.05.

c = tn�2;.025 = t27,.025 = 2.052
I so reject H0 at signi�cance level 0.05 as jtj = 6.60 > c .

Conclude that house size is statistically signi�cant at level 0.05.
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7.4 Tests of Statistical Signi�cance Economic Signi�cance versus Statistical Signi�cance

Economic Signi�cance versus Statistical Signi�cance

A regressor is of economic signi�cance if its coe¢ cient is of large
enough value for it to matter in practice

I economic signi�cance depends directly on b2 and the context

By contrast, statistical signi�cance depends directly on t which is
the ratio b2/se(b2).
With large samples se(b2)! 0 as n! ∞

I so we may �nd statistical signi�cance
I even if b2 is so small that it is of little economic signi�cance.
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7.4 Tests of Statistical Signi�cance Tests based on the Correlation Coe¢ cient

Tests based on the Correlation Coe¢ cient

An alternative way to measure statistical signi�cance, used in many
social sciences, uses the correlation coe¢ cient jrxy j.
Then reject the null hypothesis of no association if jrxy j is su¢ ciently
large

I this gives similar results to tests based on t = b2/se(b2) if default
standard errors are used.

Weaknesses of tests using the correlation coe¢ cient
I this method cannot relax assumptions 3-4
I this method cannot be used if we wish to add additional regressors
I and it tells little about economic signi�cance.

c A. Colin Cameron Univ. of Calif. Davis ()AED Ch.7: Bivariate Regression Inference November 2022 15 / 32



7.5 Two-sided Hypothesis Tests

7.5 Two-sided Hypothesis Tests

A two-sided test on the slope coe¢ cient is a test of

H0 : β2 = β�2 against Ha : β2 6= β�2.

Use t-statistic where β2 = β�2. So compute

t =
b2 � β�2
se(b2)

� T (n� 2).

Reject if jtj is large as then jb2 � β�2 j is large
I How large?

F Large enough that such a large jt j is a low probability event.
I Use either p value approach or critical value approach.
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7.5 Two-sided Hypothesis Tests Example: House Price and Size

Example: House Price and Size

For house price example with β�2 = 90

t =
b2 � 90
se(b2)

=
73.77� 90
11.17

= �1.452.

p-value approach
I p = Pr[jT27 j > j � 1.452j = 0.158.
I do not reject H0 at level 0.05 as p = 0.158 > 0.05.

Critical value approach at level 0.05:
I c = t27;.025 = 2.052.
I do not reject H0 at level 0.05 as jtj = 1.452 < c = 2.052.

In either case we do not reject H0 : β2 = 90 against Ha : β2 6= 90 at
level 0.05.

I conclude that house price does not increase by $90 per square foot.
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7.5 Two-sided Hypothesis Tests Example: House Price and Size

p-value approach: Compute p = Pr[jTn�2j > jtj].
critical value approach: compute c so that reject if jtj > c .
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= p
= Pr[| T|  > | t| ]
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7.5 Two-sided Hypothesis Tests Rejection using p-values

Rejection using p-values

p-value approach (at level α = 0.05)
I Assume that β2 = β�2, i.e. H0 is true.
I Obtain the p-value

F the probability (or signi�cance level) of observing a jTn�2 j � jt j, where
this probability is calculated under the assumption that β2 = β�2 .

I If p < 0.05 then reject H0
F reason there was less than .05 chance of observing our t, given

β2 = β�2 .
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7.5 Two-sided Hypothesis Tests Rejection using Critical Values

Rejection using Critical values

Critical value approach (at level α = 0.05)
I Assume that β2 = β�2, i.e. H0 is true.
I Find the critical value

F the value c such that Pr[jTn�2 j � c ] = 0.05
I If jtj > c then reject H0

F reason: there was less than .05 chance of observing our t, given
β2 = β�2 .
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7.5 Two-sided Hypothesis Tests Relationship of Tests to Con�dence Interval

Relationship of Tests to Con�dence Interval

For a two-sided test of H0 : β2 = β�2
I if the null hypothesis value β�2 falls inside the 100(1� α) percent
con�dence interval then do not reject H0 at signi�cance level α.

I otherwise reject H0 at signi�cance level α.

House example
I 95% con�dence interval for β2 is (50.84, 96.70)
I reject H0 : β2 = 0 at level 0.05 as the 95% con�dence interval does
not include 0.
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7.6 One-sided Directional Hypothesis Tests

7.6 One-sided Directional Hypothesis Tests
One-sided test on the slope coe¢ cient is a test of

Upper one-tailed alternative H0 : β2 � β�2 against Ha : β2 > β�2
Lower one-tailed alternative H0 : β2 � β�2 against Ha : β2 < β�2

The statement being tested is speci�ed to be the alternative
hypothesis.
Use same t-statistic as in two-sided case. So

t =
b2 � β�2
se(b2)

� T (n� 2).

What will di¤er is the rejection region
I For H0 : β2 � β�2 against Ha : β2 > β�2 reject in the right tail

F p = Pr[Tn�2 > t ]

I For H0 : β2 � β�2 against Ha : β2 < β�2 reject in the left tail
F p = Pr[Tn�2 < t ].
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7.6 One-sided Directional Hypothesis Tests Example: House Price and Size

Example: House Price and Size
House price example suppose claim is that house price rises by less
than $90 per square foot, i.e. β2 < 90.

Test H0 : β2 � 90 against Ha : β2 < 90 (lower tailed alternative).

t =
b2 � 90
se(b2)

=
73.77� 90
11.17

= �1.452.

p-value approach:
I p = Pr[T27 < t] = Pr[T27 < �1.452]
= Pr[T27 > 1.452] =ttail(27, 1.452) = 0.079 < 0.05.

F where we have used the symmetry of the t distribution.

Critical value approach at level 0.05:
I c = �t27,.05 = �invttail(27, .05) = �1.70 and t � �1.70.

In either case we do not reject H0 : β2 � 90 at signi�cance level 0.05.
At level 0.05 there is not enough evidence to support the claim

I note that the claim would be supported if we tested at level 0.10.
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7.6 One-sided Directional Hypothesis Tests Computer-generated t statistic

Computer generated t-statistic

Computer gives a t-statistic
I this is t = b2/se(b2)
I suitable for testing β2 = 0.

Computer gives a p-value
I this is for a two-sided test of H0 : β2 = 0 against Ha : β2 6= 0.

For a one-sided test of statistical signi�cance
I if b2 is of the expected sign then halve the printed p-value.
I if b2 is not of the expected sign then reject since p > 0.5

Example: if expect β2 > 0 then upper tailed alternative test
I test H0 : β2 � 0 against Ha : β2 > 0 at level .05
I if b2 > 0 then halve the printed p value and reject H0 if this is less
than .05

I if b2 < 0 we will not reject H0 i.e. conclude β2 is not greater than zero.

c A. Colin Cameron Univ. of Calif. Davis ()AED Ch.7: Bivariate Regression Inference November 2022 24 / 32



7.7 Robust Standard Errors

7.7 Robust Standard Errors

Default standard errors (and associated t statistics, p values and
con�dence intervals) make assumptions 1-4

I called default because this is what computer automatically computes

Robust standard errors
I Keep assumptions 1-2
I Relax assumptions 3-4 in three common ways depending on data type
I Are commonly-used in practice.

In each case get an alternative formula for se(b2), say serob(b2)

Then base inference on

t =
b2 � β2
serob(b2)

.
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7.7 Robust Standard Errors Heteroskedastic Robust Standard Errors

Heteroskedastic Robust Standard Errors

Relax assumption 3 that all errors have the same variance
I called the assumption of homoskedastic errors.

Instead allow Var[ui jxi ] = σ2i which varies with i
I called heteroskedastic errors.

This is the standard assumption in modern econometrics.

Then the heteroskedasticity-robust standard error for b2 is

sehet (b2) =

q
∑n
i=1 e

2
i (xi � x̄)2

∑n
i=1(xi � x̄)2

6= sep
∑n
i=1(xi � x̄)2

.

Then t = (b2 � β2)/sehet (b2) is viewed as T (n� 2) distributed.
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7.7 Robust Standard Errors Example: House Price and Size

Example: House Price and Size

For the house price and size example
I default standard errors

F 11.17 and 21,489 for the slope and intercept

I heteroskedastic-robust standard errors

F 11.33 and 20,928 for the slope and intercept

Con�dence interval using heteroskedastic-robust standard errors
I 73.77� t27,.025 � 11.333 = (50.33, 97.02) compared t0 (50.84, 96.70)

Test H0 : β2 = 0 against Ha : β2 6= 0

t =
b2

se(b2)
=
73.77� 0
11.33

= 6.51 compared to 6.60.
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7.7 Robust Standard Errors Simulation example

Simulation Example of Heteroskedastic Errors
Generate 100 observations as follows

I size varies from 1700 to 3700 plus some random noise
I price = 11500 + 74*size + zero-mean error
I (1) error is homoskedastic ui � N(0, 235002)
I (2) error is heteroskedastic ui � (sizei�1700)

1400 �N(0, 235002)

F this error has variance
n
(sizei�1700)

1400

o2
� 235002 that di¤ers across i

Stata code

set obs 100
generate size = 1700 + 20*_n + runiform(0,50)
generate uhomosked = rnormal(0,23500)
generate price = 11500 + 74*size + uhomosked
scatter price size jj lfit price size
generate uheterosked = ((size-1500)/1400)*rnormal(0,23500)
generate price2 = 11500 + 74*size + uheterosked
scatter price2 size jj lfit price size
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7.7 Robust Standard Errors Simulation example

Simulation Example (continued)
First panel: homoskedastic errors are evenly distributed around the
regression line.
Second panel: heteroskedastic errors scattering around the regression
line varies with the level of the regressor

I in this case increasing with regressor size.
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7.7 Robust Standard Errors Other Robust Standard Errors

Other Robust Standard Errors

For time series data where model errors may be correlated over
time

I use HAC robust.

For data in clusters (or groups) where errors are correlated within
cluster but are uncorrelated across clusters

I people in villages, students in schools, individuals in families, ...
I panel data on many individuals over time
I use cluster robust.

These robust standard errors are presented in chapter 12.1.

An essential part of any regression analysis is knowing which
particular robust standard error method should be used.
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Key Stata Commands

Key Stata Commands

clear
use AED_HOUSE.DTA
regress price size
regress price size, level(99)
* Following gives F = t-squared and correct p-value
test size = 90
regress price size, vce(robust)
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Some in-class Exercises

Some in-class Exercises

1 We obtain �tted model by = 3.0
(1.5)

+ 5.0
(2.0)

� x , R2 = 0.32, se = 4.0,

n = 200. Provide an approximate 95% con�dence interval for the
population slope parameter.

2 Test the claim that the population slope equals 2 at the 5%
signi�cance level.

3 Which of assumptions 1-4 need changing if model errors are
heteroskedastic?
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