Analysis of Economics Data
 Chapter 10: Data Summary with Multiple Regression

(C) A. Colin Cameron
Univ. of Calif. Davis

October 2022

CHAPTER 10: Data Summary with Multiple Regression

- Consider the relationship between house price and several variables
- size, number of bedrooms,
- Mostly a straight-forward extension of bivariate regression.
- New is:
- rely less on visual methods
- no easy formulas for estimates (without matrix algebra)
- adjusted R^{2}
- simultaneous tests of several hypotheses (in next chapter).

Outline

(1) Example: House price and characteristics
(2) Two-way Scatter Plots
(3) Correlation
(C) Regression line
(3) Interpretation of Slope Coefficients
(6) Model Fit

- Computer Output Following Multiple Regression
(8) Inestimable Models

10.1 Example: House Price

- HOUSE data: 29 houses sold in central Davis, California, in 1999.
- lot size is 1 for small, 2 for medium and 3 for large
- a half bathroom is a lavatory without bath or shower.

		Standard			
Variable	Definition	Mean	deviation	Min	Max
Price	Sale Price in dollars	253910	37391	204000	375000
Size	House size in square feet	1883	398	1400	3300
Bedrooms	Number of bedrooms	3.79	0.68	3	6
Bathrooms	Number of bathrooms	2.21	0.34	2	3
Lotsize	Size of lot (1, 2 or 3)	2.14	0.69	1	3
Age	House age in years	36.4	7.12	23	51
Month Sold	Month of year house was sold	5.97	1.68	3	8

Example Regression

Variable	Coefficient	St. Error	t statistic	p value	95% conf. int.	
Size	68.37	15.39	4.44	0.000	36.45	101.29
Bedrooms	2685	9193	0.29	0.773	-16379	21749
Bathrooms	6833	15721	0.43	0.668	-25771	39437
Lot Size	2303	7227	0.32	0.753	-12684	17290
Age	-833	719	-1.16	0.259	-2325	659
Month Sold	-2089	3521	-0.59	0.559	-9390	5213
Intercept	137791	61464	2.24	0.036	10321	265261
n	29					
$\mathrm{~F}(6,22)$	6.83					
p-value for F	0.0003					
R^{2}	0.651					
Adjusted R^{2}	0.555					
St. error	24936					

10.2 Two-way Scatterplots

- Can get multiple two-way scatterplots - next slide.
- Some programs provide three-way surface plots
- e.g. price against size and number of bedrooms
- these can be difficult to read.

Two-way Scatterplots

10.3 Correlation

- Pairwise correlations are very useful for exploratory analysis
- Price is most highly correlated with square feet, then bedrooms and bathrooms.
- Asterisk means statistically significant correlation at significance level 0.05 .

Correlation	Price	Size	Bed	Bath	Lot	Age	Mth Sold
Sale Price	1						
Size	$.79^{*}$	1					
Bedrooms	$.43^{*}$	$.52^{*}$	1				
Bathrooms	.33	.32	.04	1			
Lot Size	.15	.11	.29	.10	1		
Age	-.07	.08	-.03	.03	-.02	1	
Month Sold	-.21	-.21	.18	$-.39^{*}$	-.06	-.37	1

- Bedrooms correlated with Price but this could merely be picking up the effect of Size (Bedrooms is correlated with Size).
- Multiple regression measures role of each variable in predicting price, after controlling for the other variables.

10.4 Regression Line

- Regression line from regression of y on several variables x_{2}, \ldots, x_{k} is

$$
\widehat{y}=b_{1}+b_{2} x_{2}+b_{3} x_{3}+\cdots+b_{k} x_{k}
$$

where

- $\hat{y}=$ predicted (or fitted) dependent variable
- x_{2}, \ldots, x_{k} are regressor variables
- $b_{1}, b_{2}, \ldots, b_{k}$ are estimated intercept and estimated slope parameters.

Least Squares Estimation

- The residual is

$$
\begin{aligned}
e_{i} & =y_{i}-\widehat{y}_{i} \\
& =y_{i}-b_{1}-b_{2} x_{2 i}-b_{3} x_{3 i}+\cdots-b_{k} x_{k i} .
\end{aligned}
$$

- Estimate $b_{1}, b_{2}, \ldots, b_{k}$ by least squares (OLS: ordinary least squares) that minimizes sum of squared residuals

$$
\begin{aligned}
\sum_{i=1}^{n} e_{i}^{2} & =\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-b_{1}-b_{2} x_{2 i}-b_{3} x_{3 i}+\cdots-b_{k} x_{k i}\right)^{2}
\end{aligned}
$$

- Estimates b_{1}, \ldots, b_{k} solve the k normal equations
- $\sum_{i=1}^{n} x_{j i}\left(y_{i}-b_{1}-b_{2} x_{2 i}-b_{3} x_{3 i}-\cdots-b_{k} x_{k i}\right)=0, \quad j=1, \ldots, k$,
- or $\sum_{i=1}^{n} x_{j i} e_{i}=0, \quad j=1, \ldots, k$
- each regressor is orthogonal to the regressor
- and the residuals sum to zero if an intercept is included.

Least Squares Estimates

- Consider the coefficient b_{j} of the $j^{\text {th }}$ regressor x_{j}.
- The OLS coefficient b_{j} can be calculated by
- bivariate regression of y on \widetilde{x}_{j}
- where $\widetilde{x}_{j}=x_{j}-\widehat{x}_{j}$ is the residual from regressing x_{j} on an intercept and all regressors other than x_{j}.
- Algebraically

$$
b_{j}=\frac{\sum_{i=1}^{n} \widetilde{x}_{j i}\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n} \widetilde{x}_{j i}{ }^{2}} .
$$

- So OLS coefficient measures the relationship between y and x_{j} after the explanatory power of x_{j} has been reduced by controlling for how the other regressors in the equation jointly predict x_{j}.
- More generally matrix algebra is used - see Appendix C.4.

10.5 Interpretation of Slope Coefficients

- b_{2} measures the partial effect of changing x_{2} while holding all other regressors at their current values
- Reason: increase x_{2} by Δx_{2}. Then

$$
\begin{aligned}
\hat{y}_{\text {new }} & =b_{1}+b_{2}\left(x_{2}+\Delta x_{2}\right)+b_{3} x_{3}+\cdots+b_{k} x_{k} \\
& =b_{2} \Delta x_{2}+b_{1}+b_{2} x_{2}+b_{3} x_{3}+\cdots+b_{k} x_{k} \\
& =b_{2} \Delta x_{2}+\hat{y}_{\text {old }}
\end{aligned}
$$

- So $\Delta \widehat{y}=b_{2} \Delta x_{2}$ and hence partial effect

$$
\left.\frac{\Delta \widehat{y}}{\Delta x_{2}}\right|_{x_{3}, \ldots, x_{k}}=b_{2} .
$$

Estimated Total Effect

- The total effect on y_{2} lets other features of the house change as we change x_{2}.
- Suppose $\hat{y}=b_{1}+b_{2} x_{2}+b_{3} x_{3}$
- changing x_{2} by Δx_{2} is associated with a change in x_{3} of Δx_{3}
- then the total effect on y of changing x_{2} by Δx_{2} equals

$$
\Delta \widehat{y}=b_{2} \Delta x_{2}+b_{3} \Delta x_{3}
$$

- Dividing by Δx_{2}, the total effect on y_{2} of changing x_{2} equals

$$
\left.\frac{\Delta \widehat{y}}{\Delta x_{2}}\right|_{\text {Total }}=b_{2}+b_{3} \frac{\Delta x_{3}}{\Delta x_{2}}
$$

- Aside: Mechanical result for OLS
- When regression is by OLS, the total effect on the predicted value of y when x_{2} changes by one unit from a multivariate regression simply equals the slope coefficient from bivariate regression of y on x_{2} alone.

Further Details

- Partial effect versus total effect
- Often interest lies in the partial effect of changing one key regressor after controlling for other variables
- e.g. size of change in earnings as education varies after controlling for age, gender, socioeconomic background.
- Calculus
- partial effect of regressor x_{j} is partial derivative $\partial y / \partial x_{j}$.
- total effect of regressor x_{j} is total derivative $d y / d x_{j}$.
- Causation
- OLS measures association but not necessarily causation.
- so say that a one unit change in x_{j} is associated with a b_{j} change in \hat{y} holding all other regressors constant.

10.6 Model Fit: Standard Error of the Regression

- For multiple regression the standard error of the regression is

$$
s_{e}=\sqrt{\frac{1}{n-k} \sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}} .
$$

- Now division is by $n-k$, rather than $n-2$ in the bivariate case, as k degrees of freedom are lost since computation of $\widehat{y}=b_{1}+b_{2} x+\cdots+b_{k} x_{k}$ is based on the k estimates $b_{1}, \ldots ., b_{k}$.
- Another name for s_{e} is the root mean squared error (MSE) of the residual.
- It is also sometimes called the standard error of the residual.

R-Squared

- Again Total SS = Explained SS + Residual SS.
- R-squared is same underlying formula as in bivariate case

$$
\begin{aligned}
& R^{2}=\frac{\text { Explained SS }}{\text { Total SS }}=\frac{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
& R^{2}=1-\frac{\text { Residual SS }}{\text { Total SS }}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} .
\end{aligned}
$$

- assuming the model includes an intercept term
- $0 \leq R^{2} \leq 1$.
- R^{2} equals the fraction of the variation in y (about \bar{y}) explained by the regressors x_{1}, \ldots, x_{k}.
- R^{2} equals the squared correlation between y_{i} and \widehat{y}_{i}
- i.e. between fitted and actual value of y.

Adjusted R-Squared

- R^{2} necessarily increases as add regressors, since residual sum of squares decreases.
- So also use adjusted R-squared, denoted \bar{R}^{2}

$$
\begin{aligned}
\bar{R}^{2} & =1-\frac{\text { Residual SS } /(n-k)}{\text { Total SS } /(n-1)} \\
& =1-\frac{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2} /(n-k)}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} /(n-1)} .
\end{aligned}
$$

- Motivation is to divide residual and total sum of squares by their degrees of freedom
- this gives penalty to larger models $(k \uparrow)$
- Compare smaller and larger model for house price
- with just square feet as regressor: $R^{2}=0.618$ and $\bar{R}^{2}=0.603$.
- with all regressors: $R^{2}=0.651$ and $\bar{R}^{2}=0.555$.
- only a modest increase in R^{2} and \bar{R}^{2} falls.

Information Criteria

- Information criteria are a more advanced method that penalizes larger models.
- Specifically, information criteria penalize $\widehat{\sigma}_{e}^{2}$ for larger model size
- $\widehat{\sigma}_{e}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}$ is the sample average of the squared residuals
- similar to s_{e}^{2} except there is no degrees of freedom correction, so division is by n rather than $n-k$.

Criteria
Akaike IC
Bayesian IC
Hannan-Quinn IC HQIC $=n \times \ln \widehat{\sigma}_{e}^{2}+n(1+\ln 2 \pi)+2 k \times \ln (\ln (n))$

- k is the number of regressors
- smaller values of each criterion are preferred
- BIC is preferred (AIC has too small a penalty for model size)
- some statistical packages divide the above formulas by n.

10.7 Computer Output Following Multiple Regression

- Computer output usually has three components
- 1. ANOVA table
- Gives explained, residual and total sum of squares
- Use to compute R-squared (and overall F-statistic given in next chapter).
- 2. Regression coefficient estimates
- and associated standard errors, t-statistics, p-values, CI's
- 3. Regression summary statistics
- number of observations, R-squared, adjusted R-squared, Standard error of regression, overall F-statistic.

10.8 Inestimable Models

- It is not always possible to estimate all k regression coefficients in the regression of y on an intercept and regressors x_{2}, \ldots, x_{k}.
- e.g. bivariate regression cannot estimate b_{2} if $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=0$.
- Then computer regression output will have no entries for one or more regressors, and may include the word omitted.
- When not all coefficients can be estimated
- the coefficients are said to be not identified
- the regressors are said to be perfectly collinear
- the regressor data matrix is said to of less than full rank.
- This situation may arise due to
- inadequate variation in the data in a well-specified model
- or due to a poorly specified model.

Key Stata Commands

clear
use AED_HOUSE.DTA
correlate price size bedrooms bathroom lotsize age monthsold
regress price size bedrooms bathroom lotsize age monthsold

Some in-class Exercises

(1) Regression leads to fitted line $\widehat{y}=2+3 x_{2}+4 x_{3}$. What is the residual for observation $\left(x_{2}, x_{3}, y\right)=(2,1,9)$?
(2) Suppose we know that $y=8+5 x_{2}+5 x_{3}+u$ where $E[u \mid x]=0$. Give the conditional mean of y given x and the error term for the observation $(x, y)=(2,3,30)$.
(3) OLS regression on the same dataset leads to fitted models $\widehat{y}=6+5 x_{2}$ and $\widehat{y}=2+3 x_{2}+4 x_{3}$. Are you surprised by the different coefficients for x_{2} ? Explain.
(1) OLS regression of y on x for a sample of size 53 leads to residual sum of squares 20 and total sum of squares 50 . Compute the standard error of the regression.
(3) For the data of the previous example, compute R^{2} and the correlation between y.and \widehat{y}.

