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Chapter 10

CHAPTER 10: Data Summary with Multiple Regression

Consider the relationship between house price and several variables
I size, number of bedrooms, ....

Mostly a straight-forward extension of bivariate regression.

New is:
I rely less on visual methods
I no easy formulas for estimates (without matrix algebra)
I adjusted R2
I simultaneous tests of several hypotheses (in next chapter).
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10.1 Example: House Price

10.1 Example: House Price

HOUSE data: 29 houses sold in central Davis, California, in 1999.
I lot size is 1 for small, 2 for medium and 3 for large
I a half bathroom is a lavatory without bath or shower.

Standard
Variable De�nition Mean deviation Min Max
Price Sale Price in dollars 253910 37391 204000 375000
Size House size in square feet 1883 398 1400 3300
Bedrooms Number of bedrooms 3.79 0.68 3 6
Bathrooms Number of bathrooms 2.21 0.34 2 3
Lotsize Size of lot (1, 2 or 3) 2.14 0.69 1 3
Age House age in years 36.4 7.12 23 51
Month Sold Month of year house was sold 5.97 1.68 3 8
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10.1 Example: House Price Example Regression

Example Regression

Variable Coe¢ cient St. Error t statistic p value 95% conf. int.
Size 68.37 15.39 4.44 0.000 36.45 101.29
Bedrooms 2685 9193 0.29 0.773 -16379 21749
Bathrooms 6833 15721 0.43 0.668 -25771 39437
Lot Size 2303 7227 0.32 0.753 -12684 17290
Age -833 719 -1.16 0.259 -2325 659
Month Sold -2089 3521 -0.59 0.559 -9390 5213
Intercept 137791 61464 2.24 0.036 10321 265261
n 29
F(6,22) 6.83
p-value for F 0.0003
R2 0.651
Adjusted R2 0.555
St. error 24936
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10.2 Two-Way Scatter Plots

10.2 Two-way Scatterplots

Can get multiple two-way scatterplots - next slide.

Some programs provide three-way surface plots
I e.g. price against size and number of bedrooms
I these can be di¢ cult to read.
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10.2 Two-Way Scatter Plots

Two-way Scatterplots
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10.3 Correlation

10.3 Correlation
Pairwise correlations are very useful for exploratory analysis

I Price is most highly correlated with square feet, then bedrooms and
bathrooms.

I Asterisk means statistically signi�cant correlation at signi�cance level
0.05.

Correlation Price Size Bed Bath Lot Age Mth Sold
Sale Price 1
Size .79� 1
Bedrooms .43� .52� 1
Bathrooms .33 .32 .04 1
Lot Size .15 .11 .29 .10 1
Age �.07 .08 �.03 .03 �.02 1
Month Sold �.21 �.21 .18 �.39� �.06 �.37 1

Bedrooms correlated with Price but this could merely be picking up
the e¤ect of Size (Bedrooms is correlated with Size).
Multiple regression measures role of each variable in predicting price,
after controlling for the other variables.
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10.4 Regression Line Regression Line

10.4 Regression Line

Regression line from regression of y on several variables x2, ..., xk is

by = b1 + b2x2 + b3x3 + � � �+ bkxk ,
where

I by = predicted (or �tted) dependent variable
I x2, .., xk are regressor variables
I b1, b2, ..., bk are estimated intercept and estimated slope parameters.
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10.4 Regression Line Least Squares Estimation

Least Squares Estimation

The residual is

ei = yi � byi
= yi � b1 � b2x2i � b3x3i + � � � � bkxki .

Estimate b1, b2, ..., bk by least squares (OLS: ordinary least squares)
that minimizes sum of squared residuals

∑n
i=1 e

2
i = ∑n

i=1(yi � byi )2
= ∑n

i=1(yi � b1 � b2x2i � b3x3i + � � � � bkxki )
2.

Estimates b1, ..., bk solve the k normal equations
I ∑ni=1 xji (yi � b1 � b2x2i � b3x3i � � � � � bk xki ) = 0, j = 1, ..., k,
I or ∑ni=1 xji ei = 0, j = 1, ..., k
I each regressor is orthogonal to the regressor
I and the residuals sum to zero if an intercept is included.
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10.4 Regression Line Least Squares Estimates

Least Squares Estimates

Consider the coe¢ cient bj of the j th regressor xj .

The OLS coe¢ cient bj can be calculated by
I bivariate regression of y on exj
I where exj = xj � bxj is the residual from regressing xj on an intercept
and all regressors other than xj .

Algebraically

bj =
∑n
i=1 exji (yi � ȳ)

∑n
i=1 exji 2 .

So OLS coe¢ cient measures the relationship between y and xj after
the explanatory power of xj has been reduced by controlling for how
the other regressors in the equation jointly predict xj .

More generally matrix algebra is used - see Appendix C.4.
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10.5 Interpretation of Slope Coe¢ cients Estimated Partial E¤ect

10.5 Interpretation of Slope Coe¢ cients

b2 measures the partial e¤ect of changing x2 while holding all
other regressors at their current values
Reason: increase x2 by ∆x2. Then

bynew = b1 + b2(x2 + ∆x2) + b3x3 + � � �+ bkxk
= b2∆x2 + b1 + b2x2 + b3x3 + � � �+ bkxk
= b2∆x2 + byold

So ∆by = b2∆x2 and hence partial e¤ect
∆by
∆x2

����
x3,...,xk

= b2.
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10.5 Interpretation of Slope Coe¢ cients Estimated Total E¤ect

Estimated Total E¤ect

The total e¤ect on y2 lets other features of the house change as we
change x2.

Suppose by = b1 + b2x2 + b3x3
I changing x2 by ∆x2 is associated with a change in x3 of ∆x3
I then the total e¤ect on y of changing x2 by ∆x2 equals

∆by = b2∆x2 + b3∆x3
I Dividing by ∆x2, the total e¤ect on y2 of changing x2 equals

∆by
∆x2

����
Total

= b2 + b3
∆x3
∆x2

Aside: Mechanical result for OLS
I When regression is by OLS, the total e¤ect on the predicted value of y
when x2 changes by one unit from a multivariate regression simply
equals the slope coe¢ cient from bivariate regression of y on x2 alone.
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10.5 Interpretation of Slope Coe¢ cients Further Details

Further Details

Partial e¤ect versus total e¤ect
I Often interest lies in the partial e¤ect of changing one key regressor
after controlling for other variables

I e.g. size of change in earnings as education varies after controlling for
age, gender, socioeconomic background.

Calculus
I partial e¤ect of regressor xj is partial derivative ∂y/∂xj .
I total e¤ect of regressor xj is total derivative dy/dxj .

Causation
I OLS measures association but not necessarily causation.
I so say that a one unit change in xj is associated with a bj change in by
holding all other regressors constant.
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10.6 Model Fit Standard Error of the Regression

10.6 Model Fit: Standard Error of the Regression

For multiple regression the standard error of the regression is

se =

r
1

n� k ∑n
i=1(yi � byi )2.

Now division is by n� k, rather than n� 2 in the bivariate case, as k
degrees of freedom are lost since computation ofby = b1 + b2x + � � �+ bkxk is based on the k estimates b1, ...., bk .
Another name for se is the root mean squared error (MSE) of the
residual.
It is also sometimes called the standard error of the residual.

c A. Colin Cameron Univ. of Calif. Davis () AED Ch.10: Multiple Regression October 2022 15 / 22



10.6 Model Fit R-Squared

R-Squared

Again Total SS = Explained SS + Residual SS.

R-squared is same underlying formula as in bivariate case

R2 =
Explained SS
Total SS

=
∑n
i=1(byi � ȳ)2

∑n
i=1(yi � ȳ)2

.

R2 = 1� Residual SS
Total SS

= 1� ∑n
i=1(yi � byi )2

∑n
i=1(yi � ȳ)2

.

I assuming the model includes an intercept term
I 0 � R2 � 1.

R2 equals the fraction of the variation in y (about ȳ) explained by
the regressors x1, ..., xk .

R2 equals the squared correlation between yi and byi
I i.e. between �tted and actual value of y .
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10.6 Model Fit Adjusted R-Squared

Adjusted R-Squared
R2 necessarily increases as add regressors, since residual sum of
squares decreases.
So also use adjusted R-squared, denoted R̄2

R̄2 = 1� Residual SS/(n� k)
Total SS/(n� 1)

= 1� ∑n
i=1(yi � byi )2/(n� k)

∑n
i=1(yi � ȳ)2/(n� 1)

.

Motivation is to divide residual and total sum of squares by their
degrees of freedom

I this gives penalty to larger models (k " )
Compare smaller and larger model for house price

I with just square feet as regressor: R2 = 0.618 and R̄2 = 0.603.
I with all regressors: R2 = 0.651 and R̄2 = 0.555.
I only a modest increase in R2 and R̄2 falls.
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10.6 Model Fit Information Criteria

Information Criteria

Information criteria are a more advanced method that penalizes
larger models.
Speci�cally, information criteria penalize bσ2e for larger model size

I bσ2e = 1
n ∑ni=1(yi � byi )2 is the sample average of the squared residuals

I similar to s2e except there is no degrees of freedom correction, so
division is by n rather than n� k.

Criteria General formula
Akaike IC AIC = n� ln bσ2e + n(1+ ln 2π) + 2k
Bayesian IC BIC = n� ln bσ2e + n(1+ ln 2π) + k � ln(n)
Hannan-Quinn IC HQIC = n� ln bσ2e + n(1+ ln 2π) + 2k � ln(ln(n)).

I k is the number of regressors
I smaller values of each criterion are preferred
I BIC is preferred (AIC has too small a penalty for model size)
I some statistical packages divide the above formulas by n.
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10.7 Computer Output Following Multiple Regression

10.7 Computer Output Following Multiple Regression

Computer output usually has three components
1. ANOVA table

I Gives explained, residual and total sum of squares
I Use to compute R-squared (and overall F-statistic given in next
chapter).

2. Regression coe¢ cient estimates
I and associated standard errors, t-statistics, p-values, CI�s

3. Regression summary statistics
I number of observations, R-squared, adjusted R-squared, Standard error
of regression, overall F-statistic.
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10.8 Inestimable Models

10.8 Inestimable Models

It is not always possible to estimate all k regression coe¢ cients in the
regression of y on an intercept and regressors x2, ..., xk .

I e.g. bivariate regression cannot estimate b2 if ∑ni=1(xi � x̄)2 = 0.

Then computer regression output will have no entries for one or more
regressors, and may include the word omitted.

When not all coe¢ cients can be estimated
I the coe¢ cients are said to be not identi�ed
I the regressors are said to be perfectly collinear
I the regressor data matrix is said to of less than full rank.

This situation may arise due to
I inadequate variation in the data in a well-speci�ed model
I or due to a poorly speci�ed model.

c A. Colin Cameron Univ. of Calif. Davis () AED Ch.10: Multiple Regression October 2022 20 / 22



Key Stata Commands

Key Stata Commands

clear
use AED_HOUSE.DTA
correlate price size bedrooms bathroom lotsize age

monthsold
regress price size bedrooms bathroom lotsize age

monthsold
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Some in-class Exercises

Some in-class Exercises

1 Regression leads to �tted line by = 2+ 3x2 + 4x3. What is the
residual for observation (x2, x3, y) = (2, 1, 9)?

2 Suppose we know that y = 8+ 5x2 + 5x3 + u where E [ujx ] = 0.
Give the conditional mean of y given x and the error term for the
observation (x , y) = (2, 3, 30).

3 OLS regression on the same dataset leads to �tted modelsby = 6+ 5x2 and by = 2+ 3x2 + 4x3. Are you surprised by the
di¤erent coe¢ cients for x2? Explain.

4 OLS regression of y on x for a sample of size 53 leads to residual sum
of squares 20 and total sum of squares 50. Compute the standard
error of the regression.

5 For the data of the previous example, compute R2 and the correlation
between y .and by .
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