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CHAPTER 12: Further Topics in Multiple Regression

@ In most applications assumptions 3-4 on the regression model errors

are too restrictive
> then default standard errors for the OLS coefficients are wrong
* so subsequent confidence intervals and tests are wrong
> instead we should use appropriate robust standard errors

* which ones vary with the particular data application
* this can require experience.

@ For prediction it is important to distinguish between

» predicting an average outcome
> predicting an individual outcome (more difficult to do precisely).
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12.1 Inference with Robust Standard Errors Leading Examples

12.1 Inference with Robust Standard Errors

o Continue with assumptions 1-2 so OLS estimates are still unbiased.

@ Relax error assumptions 3-4 as then assumptions are more realistic

> this leads to different standard errors for b; denoted se,,(b;).

@ Three common complications give different se,op(b;).

Complication Robust Standard Error Type

Data Type

1. Heteroskedasticity: Error ~ Heteroskedasticity robust
variance varies over i

Cross Section
(if errors independent)

2. Clustered: Errors in same  Cluster robust
cluster are correlated

Some Cross section
Most Short Panel

3. Autocorrelation: Errors Heteroskedasticity and
correlated over time autocorrelation (HAC) robust

Most Time Series
Some Long Panel
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12.1 Inference with Robust Standard Errors Leading Examples

Inference with Robust Standard Errors (continued)

@ For implementation, use the appropriate command in a statistical
package

> in Stata use regress command with the vce( ) option
> in R use the sandwich package
» chapter 12.1.9 provides details.

@ Once the appropriate standard errors se,(bj) are obtained the rest
follows as usual

» for a single parameter test use t = (b; — B;)/seron(bj) ~ Ty
» for a confidence interval on B; use bj £ t,,4/2 X serob (bj)-

@ The degrees of freedom are usually v =n— k

» except for cluster-robust use v = G — 1 where G is the number of
clusters.

@ The key is to know which type of robust standard error to use.
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12.1 Inference with Robust Standard Errors Heteroskedastic-Robust Standard Errors

Heteroskedastic-Robust Standard Errors

@ In many cross-section data applications

> it may be reasonable to assume error independence across observations
> but errors are heteroskedastic (the error variance varies across

observations).
» OLS is still unbiased under assumptions 1-2
» but default standard errors are invalid.

@ Make the following change to assumptions 1-4

» change 3 to 3’ that Var[y;] = (712 (which depends on x’s) and n — oo
e The formula for se(b;) changes to, say, sepet(b;).
o Computer output is qualitatively similar

> by, ..., by are unchanged

> now get seper(b1), ..., Sepet (bi)
> leading to different t-statistics and confidence intervals.
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12.1 Inference with Robust Standard Errors

Heteroskedastic-Robust Standard Errors

House Price Example: Heteroskedastic-Robust Standard

Errors
Variable Coefficient  Robust se  t statistic p value 95% conf. int.
Size 68.37 15.36 4.44 0.000 36.52  100.22
Lot Size 23020 5329 0.43 0.670 -8748 13355
Bedrooms 2685 8286 0.32 0.749  -14498 19868
Bathrooms 6833 19284 0.35 0.726  -33159 46825
Year Built -833 763 -1.09 0.287 -2415 749
Age -2089 3738 -0.56 0.582 -9841 5664
Intercept 137791 65545 2.10 0.047 1856 273723
n 29
F(6,22) 6.41
p-value for F 0.0005
R2 0.651
St. error 24936
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12.1 Inference with Robust Standard Errors Heteroskedastic-Robust Standard Errors

House Price Example (continued)

Same intercept and slope coefficient estimates (as still OLS).

For individual standard errors the biggest change is 30%

» again only Size is statistically significant at 5%.
@ Again regressors are jointly statistically significant at 5%
» F =6.41 (compared to 6.83).

For test of joint statistical significance of lotsize .... monthsold

» F =0.46 ~ F(5,22) compared to F = 0.42 with defaults se's
> reject Hp at level 0.05 as p = .8038 > 0.05.

@ The heteroskedastic-robust standard errors can be larger or smaller
than default standard errors

> the two are generally within 30% of each other.

© A. Colin Cameron Univ. of Calif. Davis AED Ch.12: Further Topics in Multiple Regre November 2022 8 /35



PR R VNSRS S ENCEIC N (Il Cluster-Robust Standard Errors

Cluster-Robust Standard Errors

@ In many cross-section data and panel data applications

> errors may be independent across clusters
but correlated within cluster
» and additionally errors are heteroskedastic.

o Cross-section data example

» independent errors for individuals in different villages but correlated for
individuals in the same village.

o Panel data example

> errors may be independent across individuals but correlated over time
for a given individual.

@ Then must use cluster-robust standard errors

> these can be several times default or het-robust standard errors!

» with correlation within cluster, adding an observation to a cluster gives
less than a completely new independent piece of information

» cluster-robust correct s for this reduced estimator precision!
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PR R VNSRS S ENCEIC N (Il Cluster-Robust Standard Errors

Cluster-Robust Standard Errors

OLS is still unbiased but default standard errors are too small.

Make the following changes to assumptions 1-4
» change 3 to 3": Var[u;|xs] = 2 (so heteroskedastic)

> change 4 to 4': correlated errors for observations in same cluster

* and need G — oo where G is the number of clusters.

The formula for se(b;) changes to, say, secy,(bj)
> inference uses T(G — 1)

* note the much smaller degrees of freedom.

@ Implementation requires specifying a variable for the clusters.
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PR R VNSRS S ENCEIC N (Il Cluster-Robust Standard Errors

Cluster-Robust Standard Errors in Practice

@ Cluster-robust standard errors can be several times the default or
heteroskedastic-robust standard errors.

@ The difference with default or heteroskedastic-robust se's gets greater

v

the more observations there are per cluster
the more highly correlated the regressors are within cluster
the more highly correlated the errors are within cluster.

v

v

@ It is essential to use cluster-robust standard errors if needed.
@ It can sometimes be difficult to know how to form the clusters.

» data examples are given in chapters 13.4.4, 13.6.4 and 17.3.1.
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12.1 Inference with Robust Standard Errors HAC-Robust Standard Errors for Time Series

HAC-Robust Standard Errors for Time Series

@ Time series models often have autocorrelated errors
> an autocorrelated error is one that is correlated with errors in previous
periods (e.g. ur = 0.8u;_1).
If errors are autocorrelated then default standard errors are invalid

> instead use heteroskedastic- and autocorrelation-robust (HAC)
standard errors.

Make the following changes to assumptions 1-4

> change 2 to 2': error has mean zero conditional on current and past
values of the regressors.

» change 3 to 3" Var[ut|x/s and past x/s] = 07

» change 4 to 4': errors are correlated up to m periods apart and T — oo

The formula for se(bj) changes to, say, seyac (b))
The lag length m needs to be specified or be data determined

>

* a rule of thumb is m = 0.75 X T1/3 where T = # of observations.

@ Data examples are given in chapters 13.2, 13.3 and 17.8.
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12.2 Prediction

@ Predicting a value is straightforward.

@ Predict for a given value of regressors, say xo = x5, ..., xx = X, using
VIx5, .o xg = b1+ boxy + ... + bexg.

@ Example: regress Price on just Size

» Predict a 2000 square foot 4-bedroom house will sell for $262, 559
> since, using estimates reported in Section 10.4,
y = 115017 4+ 73.771 x 2000 = 262559.

o But estimating the standard error of the prediction is subtle

> it depends on whether we are predicting an average outcome or an
individual outcome.
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Average Outcome versus Actual Value

o Key distinction is between predict an average outcome and predict
an individual outcome.

o Average outcome or conditional mean
Ely|>x3, ... x] = B, +,32X* T+t :BkXZ
@ Individual outcome or the actual value

Y‘Xz*v---vxlf:,31+52X*+"'+ﬁkxlf+“*-

For both we use the same prediction y = by + boxy + ... + byx;.

But the precision of the prediction varies with use

» for individual outcome we also need to predict u* leading to noisier
prediction

* with variance necessarily at least Var[u*].

@ The following slide makes clear this distinction.
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12.2 Prediction

Example: 95% Confidence Intervals for E[y|x*] and y|x*

@ Regress house Price on Size

» predict house price at a range of house sizes
> first panel: 95% confidence interval for the conditional mean price.
» second panel: 95% confidence interval for actual price is much wider.

House price (in dollars)
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12.2 Prediction Prediction of an Average Outcome

Prediction of an Average Outcome

@ The conditional mean of y is
Ely|xs,..xq] = By + Box" 4+ -+ Bxi.

Use Yem = b1 + b2X2* + ...+ kai(k.
Var(Yem) depends on the precision of the estimates by, ...by.

Define se(ycm) to be the standard error of yep,.

A 100(1 — «)% confidence interval for the conditional mean is

Ely|%, .. Xk ] € Yem £ th—kas2 X se(Yem)-

Var[yem] — 0 and se(Yem) — 0 as the estimates by, ..., b become
more precise.

© A. Colin Cameron Univ. of Calif. Davis AED Ch.12: Further Topics in Multiple Regre November 2022 16 / 35



SN LIS  Prediction of an Actual Value (A Forecast)

Prediction of an Actual Value (A Forecast)
@ The actual value or forecast value of y for x = x* is

)"X*:ﬁ1+ﬁ2X*+”'+ﬁkXZ+U*-

Use yr = b1 + boxz + ... + bix; as best estimate of u* is zero.
Then Var(yr) depends additionally on Var(u*)
> Var[ys] = Var[yem|+ Var[u*]

@ Define se(yr) to be the standard error of yr
> then se(yr) = \/se?(Vcm) + 2. where s2, is estimate of Var[u*].
e A 100(1 — «)% confidence interval for the forecast is

y|X2*, ...,X;(k € j/\f + th—ka/2 X Se(S/\f).

e Var[yr| > Var[u*] always, even if by, ..., b are very precise.
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12.2 Prediction Forecasts can be quite imprecise

Forecasts can be quite imprecise

@ Recall that in forecasting

> we use Yy = by + box3 + ... + bex;
> to forecast y|x* = By + Box™ + -+ + By xi + u

@ Even if by, ..., b, are very precisely estimated we still have u*.
@ So Var(yf) > Var(u*) and St.dev.(yr) > St.dev.(u").

@ The obvious estimate of St.dev.(u*) is the standard error of the
regression Se.

@ So in large samples a 95% confidence interval for the forecast is at
least as wide as

y|x3,..oxg € Yr£1.96 X s,
53 = ,,i_k27:1()’i—}7i)2-
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12.2 Prediction Are Poor Forecasts a Problem?

Are Poor Forecasts a Problem?

@ Econometric models of individual behavior can have low R?

> so the variance of the model error and s, are large, so se(yr) is large.

> leading to very noisy forecasts of individual outcomes

» nonetheless the prediction of average outcomes may be quite precise,
with low se(Yem)

» and policy-makers often base policy on average outcomes.

@ For example, many studies find that on average education has an
economically and statistically significant impact on earnings
» even though for an individual the confidence interval for forecast
earnings given years of education is very wide.

@ Knowing that on average greater education is predicted to lead to
higher earnings encourages government to subsidize education

» even though we cannot predict with much certainty that a given person
with a high level of education will have high earnings.
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12.2 Prediction Bivariate Prediction under Assumptions 1-4

Bivariate Prediction under Assumptions 1-4

o For bivariate regression under assumptions 1-4 the formula for
s€(Yem) is

1 (x—x)?
n T (= x)?

1

s€(Vem) = Se X

@ So the predicted conditional mean is more precise when

1. sample y; are closer to the regression line: then s, is smaller.

. variation in regressors is greater: then Y7 ; (x; — >’<)2 is larger.

. x* is closer to the sample mean: then (x* — %)? is smaller.

. sample size is larger: then 1/n and (x* —%)2/ ¥, (x; — X)? are
smaller.

v VY VY

S~ 0N

o Furthermore: se(ycm) — 0 as n — oo due to 4.

@ When robust standard errors are used specialized software is needed
to get confidence intervals.
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12.2 Prediction Bivariate Prediction under Assumptions 1-4

Bivariate Forecast under Assumptions 1-4

@ Again consider regression of y on x under assumptions 1-4.

o Given homoskedastic errors Var(u*) = 02 so s2. = s2

> then se(yr) = /se?(Ycm) + s2

e For prediction of the actual value the formula for se(yr) is

R 1 * _ )2
sl =514

e Now se(yr) > s. does not go to zero as n — oo.
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Example: House Price given Multiple House Characteristics
Example: House Price given Multiple Characteristics
@ Predictions for a 2000 square foot house with medium lot size, four

bedrooms, two bathrooms, forty-years old and sold in June.

@ The predicted value is
y = b1 +2000by + 2b3 + 4by + 2bs + 40bg + 6b7 = 257691.

@ Predict conditional mean assuming assumptions 1-4 hold

> use statistical software with commands for prediction after OLS
> se(Yecm) = 6488 using default standard errors
> 95% confidence interval for the conditional mean house price

* 257601 + ty g5 X 6488 = ($244,235, $271,146).

@ Forecast the actual value assuming assumptions 1-4 hold
> se = 24936, se(Ycm) = 6488, so se(yr) = /64882 4 249362 = 25766.
» 95% confidence interval for the actual house price
* 257691 =+ try 025 X 25766 = ($204,255, $311,126).

© A. Colin Cameron Univ. of Calif. Davis AED Ch.12: Further Topics in Multiple Regre November 2022 22 /35



12.2 Prediction Example: House Price given Multiple House Characteristics

Example: House Price with Robust Standard Errors

@ Now suppose instead that model errors are heteroskedastic.
@ Predict conditional mean

> use statistical software with commands for prediction after OLS
> se(Yem) = 6631 using heteroskedastic-robust standard errors
» 05% confidence interval for the conditional mean house price

* 257691 & trp, g25 X 6631 = ($243,939, $271,442).
@ Forecast the actual value

> we additionally need an estimate of Var[u|x*, ..., x/]

> it is simplest to again use 53 = 249362

> 5o = 24936, se(Yem) = 6631, so se(yr) = V64882 + 249362 = 25803.
» 95% confidence interval for the actual house price

* 257691 =+ tro 025 X 25803 = ($204,178, $311,203).
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12.3 Nonrepresentative Samples

12.3 Nonrepresentative Samples

@ Many studies use survey data that may be nonrepresentative of the
population.

@ If there is nonrandom sampling on variables other than the dependent
variable y then OLS can estimate population parameters if we include
these variables as control variables in the regression

> e.g. include gender and race as controls.

@ If there is nonrandom sampling on the dependent variable OLS does
not lead to consistent estimates of population parameters

» e.g. if high earners are omitted from survey and we want to model
earnings in the population.

@ Many surveys include sample weights that adjust for
nonrepresentativeness

» then population weighted least squares can be used.
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12.4 Best Estimation

® An estimator b; is unbiased for B; if E[b;] = B;.
@ An estimator b; is consistent if as n — oo any bias in b; — 0 and
Var[bj] — 0.
@ A best estimator has smallest variance among unbiased estimators or
among consistent estimators.
@ When assumptions 3-4 do not hold OLS is no longer best.
@ Feasible generalized least squares (FGLS) is instead the best estimator
» FGLS requires additionally specifying a model for the error variances
and covariances and estimating this model
* this model varies with the model for the errors
@ In practice for linear regression models

» most studies just use OLS with appropriate robust standard errors
> this loses some precision but the loss is often not great.
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12.5 Best Confidence Intervals

@ Best confidence intervals are those with the shortest width at a given
level of confidence.

@ For standard estimators the 95% confidence interval is of form

Bj + th—ka/2 X se(Bj)

~

@ So the shortest interval is that with smallest se(ﬁj) and hence most
efficient estimator.

@ In practice even if assumptions 3-4 do not hold

» most studies base confidence intervals on OLS with appropriate robust
standard errors

> this increases confidence interval width but the increase is often not
great.
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Uy ) e ) eress
12.6 Best Tests: Type | and Il errors

o Consider Hp : no disease versus H, : disease is present.
@ Two errors can be made in hypothesis testing.
e A type | error (or false positive)
> Hp is rejected when Hp is true
* so find disease even though no disease is present

> to date we have only considered type 1 error (see Chapter 4.4).

e A type Il error (or false negative)

» Hp is not rejected when Hy is false
» so find no disease when disease is present.

Decision Truth
Hp really true: No disease  Hy really false: Disease
Do not reject Hp : Correct decision Type Il error
Find no disease (false negative)
Reject Hp : Type | error Correct decision
Find disease (false positive)
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Test Size and Power

o Test size is the probability of a type | error.
» Test size is set at &, the significance level of the test.

o Test power is one minus the probability of a type Il error
> High power is preferred as then low Pr[type Il error]

Problem: there is a trade-off

> Prtype | error] decreases = Pr|type Il error| increases
> e.g. Can set Prltype | error] = 0 if never reject Hp.

Solution: use most powerful test

» this has highest power for given test size
> this is a test based on most precise estimator.

In practice while test size is set low (e.g. 5%)

> the Pr[type Il error] can be high and test power may be low.
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12.7 Data Science and Big Data: An Overview

o Data science or data analytics is the science of discerning patterns
in data.

@ Machine learning is a branch of artificial intelligence

> algorithmically learn from data (the machine learns)

> rather than specify a model based on expert knowledge of the
particular application

» methods include lasso, regression trees, random forests, neural
networks, deep learning.

o Big data refers to datasets that are enormously large

> though big data methods may also be applied to smaller datasets.
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12.7 Data Science and Big Data: An Overview

Prediction using Big Data

@ Often the goal of big data is prediction

» machine learning methods can predict better than earlier methods such
as OLS.

@ In some cases the predictions at the individual level are very precise

> e.g. recognizing the numbers and letters on a digital image of a vehicle
license plate.

@ In other cases the predictions may at the individual level can be
imprecise

» but money may still be made if predict well on average

> e.g. a better search engine than competitors

> e.g. a better model for predicting stock prices than competitors
> e.g. a better model for digital ad clicks than competitors.
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12.7 Data Science and Big Data: An Overview

Econometrics using Big Data

@ Economists want to estimate models that are only partially specified

> use the machine learner in part of the analysis
> but do valid inference controlling for the machine learning.

@ For example, suppose we are interested in estimating the effect of
changing x on y after controlling for everything else

> eg. y = B; + Box + (many control variables) + u

@ If we included all the control variables, the estimates get very noisy
(overfitting).

@ Instead use a machine learner to select a subset of the control
variables.
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12.8 Bayesian Methods: An Overview

@ An alternative to the “classical” inference approach of this book.

@ Base inference on the parameter(s) of interest 6 using the posterior
distribution which combines the distribution of y given 8 with a prior
distribution for 6

> the prior can be informative or uninformative.
@ One advantage is that a resulting 95% Bayesian credible region can

be directly interpreted as a being an interval that 6 lies in with
probability 0.95.

o Rarely used until recently due to intractability.

@ Recent Markov chain Monte Carlo methods (MCMC) make Bayesian
methods now much easier to implement.

@ In very large samples or with uninformative prior get similar results to
using “classical” methods.
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12.8 A Brief History of Statistics and Regression

1733 Central limit theorem

1805 Least squares (without statistical inference)

1885 Regression

1888 Correlation

1894 The term “standard deviation”

1895 Histograms

1908 The t distribution

1924 The F distribution

1945 ENIAC (the first electronic general purpose digital computer)
1964 Kernel regression (a nonparametric regression method)
1980's Robust standard errors

1984 Apple Macintosh computer (an early personal computer).
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Key Stata Commands

* Heteroskedastic robust standard error

use AED_HOUSE.DTA, clear

regress price size bedrooms bathroom lotsize age monthsold,
vce (robust)

* HAC standard error (for the mean)

use AED_REALGDPPC, clear

pwcorr growth l.growth 12.growth 13.growth 14.growth
15.growth

newey growth, lag(b)

* Predict conditional mean

use AED_HOUSE.DTA, clear

regress price size

display _b[_cons] + 2000*_b[size]

* 95% conf. interval for prediction of conditional mean
lincom _cons + 2000*size
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Some in-class Exercises

Some in-class Exercises

@ Suppose y; = By + B,x; + u; and u; are independent. What standard
errors would you use?

@ Suppose we have y; = B, + B,x; + ujj, with uj; correlated for
individuals i in the same village j but uncorrelated for individuals in
different villages. What standard errors would you use?

© Suppose y; = B; + ByXx;: + uy and the error u; is correlated with u; ;.
What standard errors would you use?

@ We obtain fitted model y = 3.0 4+ 5.0 X x, n= 200, s, = 2.0,
(0.001)  (0.002)

with standard errors given in parentheses. Predict y when x = 10.

@ For the preceding data give an approximate 95% confidence interval
for E]y|x = 10]. Hint: how precise are the OLS estimates?

@ For the preceding data give an approximate 95% confidence interval
for y|x = 10.
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