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Chapter 12

CHAPTER 12: Further Topics in Multiple Regression

In most applications assumptions 3-4 on the regression model errors
are too restrictive

I then default standard errors for the OLS coe¢ cients are wrong

F so subsequent con�dence intervals and tests are wrong

I instead we should use appropriate robust standard errors
F which ones vary with the particular data application
F this can require experience.

For prediction it is important to distinguish between
I predicting an average outcome
I predicting an individual outcome (more di¢ cult to do precisely).
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12.1 Inference with Robust Standard Errors Leading Examples

12.1 Inference with Robust Standard Errors

Continue with assumptions 1-2 so OLS estimates are still unbiased.

Relax error assumptions 3-4 as then assumptions are more realistic
I this leads to di¤erent standard errors for bj denoted serob(bj ).

Three common complications give di¤erent serob(bj ).

Complication Robust Standard Error Type Data Type
1. Heteroskedasticity: Error Heteroskedasticity robust Cross Section
variance varies over i (if errors independent)
2. Clustered: Errors in same Cluster robust Some Cross section
cluster are correlated Most Short Panel
3. Autocorrelation: Errors Heteroskedasticity and Most Time Series
correlated over time autocorrelation (HAC) robust Some Long Panel
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12.1 Inference with Robust Standard Errors Leading Examples

Inference with Robust Standard Errors (continued)

For implementation, use the appropriate command in a statistical
package

I in Stata use regress command with the vce( ) option
I in R use the sandwich package
I chapter 12.1.9 provides details.

Once the appropriate standard errors serob(bj ) are obtained the rest
follows as usual

I for a single parameter test use t = (bj � βj )/serob(bj ) � Tv
I for a con�dence interval on βj use bj � tv ;α/2 � serob(bj ).

The degrees of freedom are usually v = n� k
I except for cluster-robust use v = G � 1 where G is the number of
clusters.

The key is to know which type of robust standard error to use.
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12.1 Inference with Robust Standard Errors Heteroskedastic-Robust Standard Errors

Heteroskedastic-Robust Standard Errors

In many cross-section data applications
I it may be reasonable to assume error independence across observations
I but errors are heteroskedastic (the error variance varies across
observations).

I OLS is still unbiased under assumptions 1-2
I but default standard errors are invalid.

Make the following change to assumptions 1-4
I change 3 to 3�that Var[ui ] = σ2i (which depends on x

0s) and n! ∞

The formula for se(bj ) changes to, say, sehet (bj ).
Computer output is qualitatively similar

I b1, ..., bk are unchanged
I now get sehet (b1), ..., sehet (bk )
I leading to di¤erent t-statistics and con�dence intervals.
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12.1 Inference with Robust Standard Errors Heteroskedastic-Robust Standard Errors

House Price Example: Heteroskedastic-Robust Standard
Errors

Variable Coe¢ cient Robust se t statistic p value 95% conf. int.
Size 68.37 15.36 4.44 0.000 36.52 100.22
Lot Size 23020 5329 0.43 0.670 -8748 13355
Bedrooms 2685 8286 0.32 0.749 -14498 19868
Bathrooms 6833 19284 0.35 0.726 -33159 46825
Year Built -833 763 -1.09 0.287 -2415 749
Age -2089 3738 -0.56 0.582 -9841 5664
Intercept 137791 65545 2.10 0.047 1856 273723
n 29
F(6,22) 6.41
p-value for F 0.0005
R2 0.651
St. error 24936
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12.1 Inference with Robust Standard Errors Heteroskedastic-Robust Standard Errors

House Price Example (continued)

Same intercept and slope coe¢ cient estimates (as still OLS).

For individual standard errors the biggest change is 30%
I again only Size is statistically signi�cant at 5%.

Again regressors are jointly statistically signi�cant at 5%
I F = 6.41 (compared to 6.83).

For test of joint statistical signi�cance of lotsize .... monthsold
I F = 0.46 � F (5, 22) compared to F = 0.42 with defaults se�s
I reject H0 at level 0.05 as p = .8038 > 0.05.

The heteroskedastic-robust standard errors can be larger or smaller
than default standard errors

I the two are generally within 30% of each other.
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12.1 Inference with Robust Standard Errors Cluster-Robust Standard Errors

Cluster-Robust Standard Errors
In many cross-section data and panel data applications

I errors may be independent across clusters
but correlated within cluster

I and additionally errors are heteroskedastic.

Cross-section data example
I independent errors for individuals in di¤erent villages but correlated for
individuals in the same village.

Panel data example
I errors may be independent across individuals but correlated over time
for a given individual.

Then must use cluster-robust standard errors
I these can be several times default or het-robust standard errors!
I with correlation within cluster, adding an observation to a cluster gives
less than a completely new independent piece of information

I cluster-robust correct s for this reduced estimator precision!
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12.1 Inference with Robust Standard Errors Cluster-Robust Standard Errors

Cluster-Robust Standard Errors

OLS is still unbiased but default standard errors are too small.

Make the following changes to assumptions 1-4
I change 3 to 3�: Var[ui jx 0i s ] = σ2i (so heteroskedastic)
I change 4 to 4�: correlated errors for observations in same cluster

F and need G ! ∞ where G is the number of clusters.

The formula for se(bj ) changes to, say, seClu(bj )
I inference uses T (G � 1)

F note the much smaller degrees of freedom.

Implementation requires specifying a variable for the clusters.
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12.1 Inference with Robust Standard Errors Cluster-Robust Standard Errors

Cluster-Robust Standard Errors in Practice

Cluster-robust standard errors can be several times the default or
heteroskedastic-robust standard errors.

The di¤erence with default or heteroskedastic-robust se�s gets greater
I the more observations there are per cluster
I the more highly correlated the regressors are within cluster
I the more highly correlated the errors are within cluster.

It is essential to use cluster-robust standard errors if needed.
It can sometimes be di¢ cult to know how to form the clusters.

I data examples are given in chapters 13.4.4, 13.6.4 and 17.3.1.
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12.1 Inference with Robust Standard Errors HAC-Robust Standard Errors for Time Series

HAC-Robust Standard Errors for Time Series
Time series models often have autocorrelated errors

I an autocorrelated error is one that is correlated with errors in previous
periods (e.g. ut = 0.8ut�1).

If errors are autocorrelated then default standard errors are invalid
I instead use heteroskedastic- and autocorrelation-robust (HAC)
standard errors.

Make the following changes to assumptions 1-4
I change 2 to 2�: error has mean zero conditional on current and past
values of the regressors.

I change 3 to 3�: Var[ut jx 0t s and past x 0t s ] = σ2t
I change 4 to 4�: errors are correlated up to m periods apart and T ! ∞

The formula for se(bj ) changes to, say, seHAC (bj )
The lag length m needs to be speci�ed or be data determined

I
F a rule of thumb is m = 0.75� T 1/3 where T = # of observations.

Data examples are given in chapters 13.2, 13.3 and 17.8.
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12.2 Prediction

12.2 Prediction

Predicting a value is straightforward.
Predict for a given value of regressors, say x2 = x�2 , ..., xk = x

�
k using

by jx�2 , ..., x�k = b1 + b2x�2 + ...+ bkx�k .
Example: regress Price on just Size

I Predict a 2000 square foot 4-bedroom house will sell for $262, 559
I since, using estimates reported in Section 10.4,by = 115017+ 73.771� 2000 = 262559.

But estimating the standard error of the prediction is subtle
I it depends on whether we are predicting an average outcome or an
individual outcome.
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12.2 Prediction

Average Outcome versus Actual Value

Key distinction is between predict an average outcome and predict
an individual outcome.

Average outcome or conditional mean

E[y jx�2 , ..., x�k ] = β1 + β2x
� + � � �+ βkx

�
k

Individual outcome or the actual value

y jx�2 , ..., x�k = β1 + β2x
� + � � �+ βkx

�
k + u

�.

For both we use the same prediction by = b1 + b2x�2 + ...+ bkx�k .
But the precision of the prediction varies with use

I for individual outcome we also need to predict u� leading to noisier
prediction

F with variance necessarily at least Var[u�].

The following slide makes clear this distinction.
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12.2 Prediction

Example: 95% Con�dence Intervals for E[yjx*] and yjx*
Regress house Price on Size

I predict house price at a range of house sizes
I �rst panel: 95% con�dence interval for the conditional mean price.
I second panel: 95% con�dence interval for actual price is much wider.
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12.2 Prediction Prediction of an Average Outcome

Prediction of an Average Outcome

The conditional mean of y is

E [y jx�2 , ..., x�k ] = β1 + β2x
� + � � �+ βkx

�
k .

Use bycm = b1 + b2x�2 + ...+ bkx�k .
Var(bycm) depends on the precision of the estimates b1, ...bk .
De�ne se(bycm) to be the standard error of bycm .
A 100(1� α)% con�dence interval for the conditional mean is

E[y jx�2 , ..., x�k ] 2 bycm � tn�k ,α/2 � se(byCM ).
Var[bycm ]! 0 and se(bycm)! 0 as the estimates b1, ..., bk become
more precise.
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12.2 Prediction Prediction of an Actual Value (A Forecast)

Prediction of an Actual Value (A Forecast)

The actual value or forecast value of y for x = x� is

y jx� = β1 + β2x
� + � � �+ βkx

�
k + u

�.

Use byf = b1 + b2x�2 + ...+ bkx�k as best estimate of u� is zero.
Then Var(byf ) depends additionally on Var(u�)

I Var[byf ] = Var[bycm ]+ Var[u�]

De�ne se(byf ) to be the standard error of byf
I then se(byf ) = qse2(byCM ) + s2u� where s2u� is estimate of Var[u�].

A 100(1� α)% con�dence interval for the forecast is

y jx�2 , ..., x�k 2 byf � tn�k ,α/2 � se(byf ).
Var[byf ] > Var[u�] always, even if b1, ..., bk are very precise.
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12.2 Prediction Forecasts can be quite imprecise

Forecasts can be quite imprecise

Recall that in forecasting
I we use byf = b1 + b2x�2 + ...+ bk x�k
I to forecast y jx� = β1 + β2x

� + � � �+ βk x
�
k + u

�

Even if b1, ..., bk are very precisely estimated we still have u�.

So Var(byf ) � Var(u�) and St.dev.(byf ) � St.dev.(u�).

The obvious estimate of St.dev.(u�) is the standard error of the
regression se .

So in large samples a 95% con�dence interval for the forecast is at
least as wide as

y jx�2 , ..., x�k 2 byf � 1.96� se
s2e = 1

n�k ∑n
i=1(yi � byi )2.
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12.2 Prediction Are Poor Forecasts a Problem?

Are Poor Forecasts a Problem?

Econometric models of individual behavior can have low R2

I so the variance of the model error and se are large, so se(byf ) is large.
I leading to very noisy forecasts of individual outcomes
I nonetheless the prediction of average outcomes may be quite precise,
with low se(bycm)

I and policy-makers often base policy on average outcomes.

For example, many studies �nd that on average education has an
economically and statistically signi�cant impact on earnings

I even though for an individual the con�dence interval for forecast
earnings given years of education is very wide.

Knowing that on average greater education is predicted to lead to
higher earnings encourages government to subsidize education

I even though we cannot predict with much certainty that a given person
with a high level of education will have high earnings.
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12.2 Prediction Bivariate Prediction under Assumptions 1-4

Bivariate Prediction under Assumptions 1-4

For bivariate regression under assumptions 1-4 the formula for
se(bycm) is

se(bycm) = se �
s
1
n
+

(x� � x̄)2
∑n
i=1(xi � x̄)2

So the predicted conditional mean is more precise when
I 1. sample yi are closer to the regression line: then se is smaller.
I 2. variation in regressors is greater: then ∑ni=1(xi � x̄)2 is larger.
I 3. x� is closer to the sample mean: then (x� � x̄)2 is smaller.
I 4. sample size is larger: then 1/n and (x� � x̄)2/ ∑ni=1(xi � x̄)2 are
smaller.

Furthermore: se(bycm)! 0 as n! ∞ due to 4.

When robust standard errors are used specialized software is needed
to get con�dence intervals.
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12.2 Prediction Bivariate Prediction under Assumptions 1-4

Bivariate Forecast under Assumptions 1-4

Again consider regression of y on x under assumptions 1-4.

Given homoskedastic errors Var(u�) = σ2u so s
2
u� = s

2
e

I then se(byf ) = pse2(byCM ) + s2e
For prediction of the actual value the formula for se(byf ) is

se(byf ) = se �
s
1+

1
n
+

(x� � x̄)2
∑n
i=1(xi � x̄)2

.

Now se(byf ) � se does not go to zero as n! ∞.
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12.2 Prediction Example: House Price given Multiple House Characteristics

Example: House Price given Multiple Characteristics

Predictions for a 2000 square foot house with medium lot size, four
bedrooms, two bathrooms, forty-years old and sold in June.

The predicted value is

by = b1 + 2000b2 + 2b3 + 4b4 + 2b5 + 40b6 + 6b7 = 257691.
Predict conditional mean assuming assumptions 1-4 hold

I use statistical software with commands for prediction after OLS
I se(bycm) = 6488 using default standard errors
I 95% con�dence interval for the conditional mean house price

F 257691� t22,.025 � 6488 = ($244,235, $271,146).

Forecast the actual value assuming assumptions 1-4 hold
I se = 24936, se(bycm) = 6488, so se(byf ) = p64882 + 249362 = 25766.
I 95% con�dence interval for the actual house price

F 257691� t22,.025 � 25766 = ($204,255, $311,126).
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12.2 Prediction Example: House Price given Multiple House Characteristics

Example: House Price with Robust Standard Errors

Now suppose instead that model errors are heteroskedastic.

Predict conditional mean
I use statistical software with commands for prediction after OLS
I se(bycm) = 6631 using heteroskedastic-robust standard errors
I 95% con�dence interval for the conditional mean house price

F 257691� t22,.025 � 6631 = ($243,939, $271,442).

Forecast the actual value
I we additionally need an estimate of Var[ujx�, ..., x�k ]
I it is simplest to again use s2e = 24936

2

I se = 24936, se(bycm) = 6631, so se(byf ) = p64882 + 249362 = 25803.
I 95% con�dence interval for the actual house price

F 257691� t22,.025 � 25803 = ($204,178, $311,203).
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12.3 Nonrepresentative Samples

12.3 Nonrepresentative Samples

Many studies use survey data that may be nonrepresentative of the
population.

If there is nonrandom sampling on variables other than the dependent
variable y then OLS can estimate population parameters if we include
these variables as control variables in the regression

I e.g. include gender and race as controls.

If there is nonrandom sampling on the dependent variable OLS does
not lead to consistent estimates of population parameters

I e.g. if high earners are omitted from survey and we want to model
earnings in the population.

Many surveys include sample weights that adjust for
nonrepresentativeness

I then population weighted least squares can be used.
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12.4 Best Estimation

12.4 Best Estimation

An estimator bj is unbiased for βj if E [bj ] = βj .

An estimator bj is consistent if as n! ∞ any bias in bj ! 0 and
Var[bj ]! 0.

A best estimator has smallest variance among unbiased estimators or
among consistent estimators.

When assumptions 3-4 do not hold OLS is no longer best.

Feasible generalized least squares (FGLS) is instead the best estimator
I FGLS requires additionally specifying a model for the error variances
and covariances and estimating this model

F this model varies with the model for the errors

In practice for linear regression models
I most studies just use OLS with appropriate robust standard errors
I this loses some precision but the loss is often not great.
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12.5 Best Con�dence Intervals

12.5 Best Con�dence Intervals

Best con�dence intervals are those with the shortest width at a given
level of con�dence.

For standard estimators the 95% con�dence interval is of form

bβj � tn�k ,α/2 � se(bβj )
So the shortest interval is that with smallest se(bβj ) and hence most
e¢ cient estimator.

In practice even if assumptions 3-4 do not hold
I most studies base con�dence intervals on OLS with appropriate robust
standard errors

I this increases con�dence interval width but the increase is often not
great.
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12.6 Best Hypothesis Tests Type I and II errors

12.6 Best Tests: Type I and II errors
Consider H0 : no disease versus Ha : disease is present.
Two errors can be made in hypothesis testing.
A type I error (or false positive)

I H0 is rejected when H0 is true
F so �nd disease even though no disease is present

I to date we have only considered type 1 error (see Chapter 4.4).

A type II error (or false negative)
I H0 is not rejected when H0 is false
I so �nd no disease when disease is present.

Decision Truth
H0 really true: No disease H0 really false: Disease

Do not reject H0 : Correct decision Type II error
Find no disease (false negative)
Reject H0 : Type I error Correct decision
Find disease (false positive)
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12.6 Best Hypothesis Tests Test Size and Power

Test Size and Power

Test size is the probability of a type I error.
I Test size is set at α, the signi�cance level of the test.

Test power is one minus the probability of a type II error
I High power is preferred as then low Pr[type II error]

Problem: there is a trade-o¤
I Pr[type I error] decreases ) Pr[type II error] increases
I e.g. Can set Pr[type I error] = 0 if never reject H0.

Solution: use most powerful test
I this has highest power for given test size
I this is a test based on most precise estimator.

In practice while test size is set low (e.g. 5%)
I the Pr[type II error] can be high and test power may be low.
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12.7 Data Science and Big Data: An Overview

12.7 Data Science and Big Data: An Overview

Data science or data analytics is the science of discerning patterns
in data.

Machine learning is a branch of arti�cial intelligence
I algorithmically learn from data (the machine learns)
I rather than specify a model based on expert knowledge of the
particular application

I methods include lasso, regression trees, random forests, neural
networks, deep learning.

Big data refers to datasets that are enormously large
I though big data methods may also be applied to smaller datasets.

c A. Colin Cameron Univ. of Calif. Davis ()AED Ch.12: Further Topics in Multiple Regression November 2022 29 / 35



12.7 Data Science and Big Data: An Overview

Prediction using Big Data

Often the goal of big data is prediction
I machine learning methods can predict better than earlier methods such
as OLS.

In some cases the predictions at the individual level are very precise
I e.g. recognizing the numbers and letters on a digital image of a vehicle
license plate.

In other cases the predictions may at the individual level can be
imprecise

I but money may still be made if predict well on average
I e.g. a better search engine than competitors
I e.g. a better model for predicting stock prices than competitors
I e.g. a better model for digital ad clicks than competitors.
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12.7 Data Science and Big Data: An Overview

Econometrics using Big Data

Economists want to estimate models that are only partially speci�ed
I use the machine learner in part of the analysis
I but do valid inference controlling for the machine learning.

For example, suppose we are interested in estimating the e¤ect of
changing x on y after controlling for everything else

I e.g. y = β1 + β2x + (many control variables) + u

If we included all the control variables, the estimates get very noisy
(over�tting).

Instead use a machine learner to select a subset of the control
variables.
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12.8 Bayesian Methods: An Overview

12.8 Bayesian Methods: An Overview

An alternative to the �classical� inference approach of this book.

Base inference on the parameter(s) of interest θ using the posterior
distribution which combines the distribution of y given θ with a prior
distribution for θ

I the prior can be informative or uninformative.

One advantage is that a resulting 95% Bayesian credible region can
be directly interpreted as a being an interval that θ lies in with
probability 0.95.

Rarely used until recently due to intractability.

Recent Markov chain Monte Carlo methods (MCMC) make Bayesian
methods now much easier to implement.

In very large samples or with uninformative prior get similar results to
using �classical�methods.
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12.8 A Brief History of Statistics and Regression

12.8 A Brief History of Statistics and Regression

1733 Central limit theorem

1805 Least squares (without statistical inference)

1885 Regression

1888 Correlation

1894 The term �standard deviation�

1895 Histograms

1908 The t distribution

1924 The F distribution

1945 ENIAC (the �rst electronic general purpose digital computer)

1964 Kernel regression (a nonparametric regression method)

1980�s Robust standard errors

1984 Apple Macintosh computer (an early personal computer).
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Key Stata Commands

Key Stata Commands

* Heteroskedastic robust standard error
use AED_HOUSE.DTA, clear
regress price size bedrooms bathroom lotsize age monthsold,
vce(robust)
* HAC standard error (for the mean)
use AED_REALGDPPC, clear
pwcorr growth l.growth l2.growth l3.growth l4.growth
l5.growth
newey growth, lag(5)
* Predict conditional mean
use AED_HOUSE.DTA, clear
regress price size
display _b[_cons] + 2000*_b[size]
* 95% conf. interval for prediction of conditional mean
lincom _cons + 2000*size
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Some in-class Exercises

Some in-class Exercises

1 Suppose yi = β1 + β2xi + ui and ui are independent. What standard
errors would you use?

2 Suppose we have yij = β1 + β2xij + uij , with uij correlated for
individuals i in the same village j but uncorrelated for individuals in
di¤erent villages. What standard errors would you use?

3 Suppose yt = β1 + β2xt + ut and the error ut is correlated with ut�1.
What standard errors would you use?

4 We obtain �tted model by = 3.0
(0.001)

+ 5.0
(0.002)

� x , n = 200, se = 2.0,
with standard errors given in parentheses. Predict y when x = 10.

5 For the preceding data give an approximate 95% con�dence interval
for E]y jx = 10]. Hint: how precise are the OLS estimates?

6 For the preceding data give an approximate 95% con�dence interval
for y jx = 10.
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