Analysis of Economics Data Chapter 12: Further Topics in Multiple Regression

> © A. Colin Cameron Univ. of Calif. Davis

> > November 2022

© A. Colin Cameron Univ. of Calif. Davis AED Ch.12: Further Topics in Multiple Regre

CHAPTER 12: Further Topics in Multiple Regression

- In most applications assumptions 3-4 on the regression model errors are too restrictive
 - then default standard errors for the OLS coefficients are wrong
 - ★ so subsequent confidence intervals and tests are wrong
 - instead we should use appropriate robust standard errors
 - * which ones vary with the particular data application
 - * this can require experience.
- For **prediction** it is important to distinguish between
 - predicting an average outcome
 - predicting an individual outcome (more difficult to do precisely).

Outline

- Inference with Robust Standard Errors
- Prediction
- In Nonrepresentative Samples
- In Best Estimation
- Best Confidence Intervals
- Best Hypothesis Tests
- Ø Data Science and Big Data: An Overview
- Bayesian Methods: An Overview
- A Brief History of Statistics and Regression

Datasets: HOUSE, REALGDPPC

12.1 Inference with Robust Standard Errors

- Continue with assumptions 1-2 so OLS estimates are still unbiased.
- Relax error assumptions 3-4 as then assumptions are more realistic
 - this leads to **different standard errors** for b_i denoted $se_{rob}(b_i)$.
- Three common complications give different $se_{rob}(b_j)$.

Complication	Robust Standard Error Type	Data Type	
1. Heteroskedasticity: Error	Heteroskedasticity robust	Cross Section	
variance varies over i		(if errors independent)	
2. Clustered: Errors in same	Cluster robust	Some Cross section	
cluster are correlated		Most Short Panel	
3. Autocorrelation: Errors	Heteroskedasticity and	Most Time Series	
correlated over time	autocorrelation (HAC) robust	Some Long Panel	

Inference with Robust Standard Errors (continued)

- For **implementation**, use the appropriate command in a statistical package
 - ▶ in Stata use regress command with the vce() option
 - in R use the sandwich package
 - chapter 12.1.9 provides details.
- Once the appropriate standard errors $se_{rob}(b_j)$ are obtained the rest follows as usual
 - ▶ for a single parameter test use $t = (b_j \beta_j) / se_{rob}(b_j) \sim T_v$
 - for a confidence interval on β_j use $b_j \pm t_{\nu;\alpha/2} \times se_{rob}(b_j)$.
- The degrees of freedom are usually v = n k
 - except for cluster-robust use v = G 1 where G is the number of clusters.
- The key is to know which type of robust standard error to use.

Heteroskedastic-Robust Standard Errors

- In many cross-section data applications
 - it may be reasonable to assume error independence across observations
 - but errors are heteroskedastic (the error variance varies across observations).
 - OLS is still unbiased under assumptions 1-2
 - but default standard errors are invalid.
- Make the following change to assumptions 1-4
 - ▶ change 3 to 3' that $Var[u_i] = \sigma_i^2$ (which depends on x's) and $n \to \infty$
- The formula for $se(b_j)$ changes to, say, $se_{het}(b_j)$.
- Computer output is qualitatively similar
 - $b_1, ..., b_k$ are unchanged
 - now get $se_{het}(b_1), ..., se_{het}(b_k)$
 - leading to different *t*-statistics and confidence intervals.

< 回 > < 三 > < 三 >

House Price Example: Heteroskedastic-Robust Standard Errors

Variable	Coefficient	Robust se	t statistic	p value	95% co	onf. int.
Size	68.37	15.36	4.44	0.000	36.52	100.22
Lot Size	23020	5329	0.43	0.670	-8748	13355
Bedrooms	2685	8286	0.32	0.749	-14498	19868
Bathrooms	6833	19284	0.35	0.726	-33159	46825
Year Built	-833	763	-1.09	0.287	-2415	749
Age	-2089	3738	-0.56	0.582	-9841	5664
Intercept	137791	65545	2.10	0.047	1856	273723
n	29					
F(6,22)	6.41					
p-value for F	0.0005					
R ²	0.651					
St. error	24936					

Image: A match a ma

House Price Example (continued)

- Same intercept and slope coefficient estimates (as still OLS).
- For individual standard errors the biggest change is 30%
 - again only Size is statistically significant at 5%.
- Again regressors are jointly statistically significant at 5%
 - F = 6.41 (compared to 6.83).
- For test of joint statistical significance of lotsize monthsold
 - $F = 0.46 \sim F(5, 22)$ compared to F = 0.42 with defaults se's
 - reject H_0 at level 0.05 as p = .8038 > 0.05.
- The heteroskedastic-robust standard errors can be larger or smaller than default standard errors
 - the two are generally within 30% of each other.

一日、

Cluster-Robust Standard Errors

- In many cross-section data and panel data applications
 - errors may be independent across clusters but correlated within cluster
 - and additionally errors are heteroskedastic.

• Cross-section data example

independent errors for individuals in different villages but correlated for individuals in the same village.

• Panel data example

 errors may be independent across individuals but correlated over time for a given individual.

• Then must use cluster-robust standard errors

- these can be several times default or het-robust standard errors!
- with correlation within cluster, adding an observation to a cluster gives less than a completely new independent piece of information
- cluster-robust correct s for this reduced estimator precision!

Cluster-Robust Standard Errors

- OLS is still unbiased but default standard errors are too small.
- Make the following changes to assumptions 1-4
 - change 3 to 3': $Var[u_i|x'_is] = \sigma_i^2$ (so heteroskedastic)
 - change 4 to 4': correlated errors for observations in same cluster

 \star and need $G \rightarrow \infty$ where G is the number of clusters.

- \bullet The formula for $\mathit{se}(\mathit{b}_j)$ changes to, say, $\mathit{se}_{\mathit{Clu}}(\mathit{b}_j)$
 - inference uses T(G-1)

★ note the much smaller degrees of freedom.

• Implementation requires specifying a variable for the clusters.

Cluster-Robust Standard Errors in Practice

- Cluster-robust standard errors can be several times the default or heteroskedastic-robust standard errors.
- The difference with default or heteroskedastic-robust se's gets greater
 - the more observations there are per cluster
 - the more highly correlated the regressors are within cluster
 - the more highly correlated the errors are within cluster.
- It is essential to use cluster-robust standard errors if needed.
- It can sometimes be difficult to know how to form the clusters.
 - data examples are given in chapters 13.4.4, 13.6.4 and 17.3.1.

HAC-Robust Standard Errors for Time Series

- Time series models often have autocorrelated errors
 - ▶ an autocorrelated error is one that is correlated with errors in previous periods (e.g. $u_t = 0.8u_{t-1}$).
- If errors are autocorrelated then default standard errors are invalid
 - instead use heteroskedastic- and autocorrelation-robust (HAC) standard errors.
- Make the following changes to assumptions 1-4
 - change 2 to 2': error has mean zero conditional on current and past values of the regressors.
 - change 3 to 3': Var $[u_t | x_t' s$ and past $x_t' s] = \sigma_t^2$
 - change 4 to 4': errors are correlated up to m periods apart and $\mathcal{T}
 ightarrow \infty$
- The formula for $se(b_j)$ changes to, say, $se_{HAC}(b_j)$
- The lag length *m* needs to be specified or be data determined

 \star a rule of thumb is $m = 0.75 \times T^{1/3}$ where T = # of observations.

• Data examples are given in chapters 13.2, 13.3 and 17.8.

12.2 Prediction

12.2 Prediction

- Predicting a value is straightforward.
- Predict for a given value of regressors, say $x_2 = x_2^*, ..., x_k = x_k^*$ using

$$\widehat{y}|x_2^*,...,x_k^* = b_1 + b_2 x_2^* + ... + b_k x_k^*.$$

- Example: regress Price on just Size
 - Predict a 2000 square foot 4-bedroom house will sell for \$262, 559
 - ▶ since, using estimates reported in Section 10.4, $\hat{y} = 115017 + 73.771 \times 2000 = 262559.$

• But estimating the standard error of the prediction is subtle

 it depends on whether we are predicting an average outcome or an individual outcome.

Average Outcome versus Actual Value

- Key distinction is between predict an average outcome and predict an individual outcome.
- Average outcome or conditional mean

$$\mathsf{E}[y|x_2^*,...,x_k^*] = \beta_1 + \beta_2 x^* + \cdots + \beta_k x_k^*$$

• Individual outcome or the actual value

$$y|x_{2}^{*},...,x_{k}^{*} = \beta_{1} + \beta_{2}x^{*} + \cdots + \beta_{k}x_{k}^{*} + u^{*}$$

- For both we use the same prediction $\hat{y} = b_1 + b_2 x_2^* + ... + b_k x_k^*$.
- But the precision of the prediction varies with use
 - \blacktriangleright for individual outcome we also need to predict u^{\ast} leading to noisier prediction
 - ★ with variance necessarily at least $Var[u^*]$.
- The following slide makes clear this distinction.

Example: 95% Confidence Intervals for $E[y|x^*]$ and $y|x^*$

- Regress house Price on Size
 - predict house price at a range of house sizes
 - ▶ first panel: 95% confidence interval for the conditional mean price.
 - second panel: 95% confidence interval for actual price is much wider.

Prediction of an Average Outcome

• The conditional mean of y is

$$E[y|x_2^*,...,x_k^*] = \beta_1 + \beta_2 x^* + \cdots + \beta_k x_k^*.$$

• Use
$$\hat{y}_{cm} = b_1 + b_2 x_2^* + ... + b_k x_k^*$$
.

- $Var(\hat{y}_{cm})$ depends on the precision of the estimates $b_1, ..., b_k$.
- Define $se(\hat{y}_{cm})$ to be the standard error of \hat{y}_{cm} .
- A $100(1-\alpha)\%$ confidence interval for the conditional mean is

$$\mathsf{E}[y|x_2^*,...,x_k^*] \in \widehat{y}_{cm} \pm t_{n-k,\alpha/2} \times se(\widehat{y}_{CM}).$$

• $Var[\hat{y}_{cm}] \rightarrow 0$ and $se(\hat{y}_{cm}) \rightarrow 0$ as the estimates $b_1, ..., b_k$ become more precise.

Prediction of an Actual Value (A Forecast)

• The actual value or forecast value of y for $x = x^*$ is

$$y|x^* = \beta_1 + \beta_2 x^* + \dots + \beta_k x_k^* + u^*.$$

• Use $\widehat{y}_f = b_1 + b_2 x_2^* + ... + b_k x_k^*$ as best estimate of u^* is zero.

• Then $\operatorname{Var}(\widehat{y}_f)$ depends additionally on $\operatorname{Var}(u^*)$

•
$$\operatorname{Var}[\widehat{y}_f] = \operatorname{Var}[\widehat{y}_{cm}] + \operatorname{Var}[u^*]$$

- Define $se(\widehat{y}_f)$ to be the standard error of \widehat{y}_f
 - ▶ then $se(\hat{y}_f) = \sqrt{se^2(\hat{y}_{CM}) + s_{u^*}^2}$ where $s_{u^*}^2$ is estimate of $Var[u^*]$.
- \bullet A $100(1-\alpha)\%$ confidence interval for the forecast is

$$y|x_2^*,...,x_k^* \in \widehat{y}_f \pm t_{n-k,\alpha/2} \times se(\widehat{y}_f).$$

• $Var[\widehat{y}_f] > Var[u^*]$ always, even if $b_1, ..., b_k$ are very precise.

Forecasts can be quite imprecise

• Recall that in forecasting

• we use
$$\hat{y}_f = b_1 + b_2 x_2^* + ... + b_k x_k^*$$

• to forecast $y|x^* = \beta_1 + \beta_2 x^* + \cdots + \beta_k x_k^* + u^*$

- Even if $b_1, ..., b_k$ are very precisely estimated we still have u^* .
- So $Var(\widehat{y}_f) \ge Var(u^*)$ and $St.dev.(\widehat{y}_f) \ge St.dev.(u^*)$.
- The obvious estimate of St.dev. (u^*) is the standard error of the regression s_e .
- So in large samples a 95% confidence interval for the forecast is at least as wide as

$$\begin{array}{rcl} y | x_2^*, ..., x_k^* & \in & \widehat{y}_f \pm 1.96 \times s_e \\ s_e^2 & = & \frac{1}{n-k} \sum_{i=1}^n (y_i - \widehat{y}_i)^2. \end{array}$$

Are Poor Forecasts a Problem?

- Econometric models of individual behavior can have low R^2
 - ▶ so the variance of the model error and s_e are large, so $se(\hat{y}_f)$ is large.
 - leading to very noisy forecasts of individual outcomes
 - ▶ nonetheless the prediction of average outcomes may be quite precise, with low $se(\hat{y}_{cm})$
 - and policy-makers often base policy on average outcomes.
- For example, many studies find that on average education has an economically and statistically significant impact on earnings
 - even though for an individual the confidence interval for forecast earnings given years of education is very wide.
- Knowing that on average greater education is predicted to lead to higher earnings encourages government to subsidize education
 - even though we cannot predict with much certainty that a given person with a high level of education will have high earnings.

- 4 同 6 4 日 6 4 日 6

Bivariate Prediction under Assumptions 1-4

• For bivariate regression under assumptions 1-4 the formula for $se(\widehat{y}_{cm})$ is

$$se(\widehat{y}_{cm}) = s_e imes \sqrt{rac{1}{n} + rac{(x^* - ar{x})^2}{\sum_{i=1}^n (x_i - ar{x})^2}}$$

• So the predicted conditional mean is more precise when

- ▶ 1. sample y_i are closer to the regression line: then s_e is smaller.
- ▶ 2. variation in regressors is greater: then $\sum_{i=1}^{n} (x_i \bar{x})^2$ is larger.
- ▶ 3. x^* is closer to the sample mean: then $(x^* \bar{x})^2$ is smaller.
- ▶ 4. sample size is larger: then 1/n and $(x^* \bar{x})^2 / \sum_{i=1}^n (x_i \bar{x})^2$ are smaller.
- Furthermore: $se(\hat{y}_{cm}) \rightarrow 0$ as $n \rightarrow \infty$ due to 4.
- When robust standard errors are used specialized software is needed to get confidence intervals.

Bivariate Forecast under Assumptions 1-4

- Again consider regression of y on x under assumptions 1-4.
- Given homoskedastic errors ${
 m Var}(u^*)=\sigma_u^2$ so $s_{u^*}^2=s_e^2$

• then
$$se(\widehat{y}_f) = \sqrt{se^2(\widehat{y}_{CM}) + s_e^2}$$

• For prediction of the actual value the formula for $se(\widehat{y}_f)$ is

$$se(\hat{y}_f) = s_e \times \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

• Now $se(\widehat{y}_f) \ge s_e$ does not go to zero as $n \to \infty$.

Example: House Price given Multiple Characteristics

- Predictions for a 2000 square foot house with medium lot size, four bedrooms, two bathrooms, forty-years old and sold in June.
- The predicted value is

 $\widehat{y} = b_1 + 2000b_2 + 2b_3 + 4b_4 + 2b_5 + 40b_6 + 6b_7 = 257691.$

- Predict conditional mean assuming assumptions 1-4 hold
 - use statistical software with commands for prediction after OLS
 - $se(\hat{y}_{cm}) = 6488$ using default standard errors
 - \blacktriangleright 95% confidence interval for the conditional mean house price

★ 257691 ± $t_{22,.025}$ × 6488 = (\$244,235, \$271,146).

- Forecast the actual value assuming assumptions 1-4 hold
 - ▶ $s_e = 24936$, $se(\hat{y}_{cm}) = 6488$, so $se(\hat{y}_f) = \sqrt{6488^2 + 24936^2} = 25766$.
 - ▶ 95% confidence interval for the actual house price

★ 257691 ± $t_{22,.025}$ × 25766 = (\$204,255, \$311,126).

Example: House Price with Robust Standard Errors

- Now suppose instead that model errors are heteroskedastic.
- Predict conditional mean
 - use statistical software with commands for prediction after OLS
 - $se(\hat{y}_{cm}) = 6631$ using heteroskedastic-robust standard errors
 - 95% confidence interval for the conditional mean house price

★ 257691 ± $t_{22,.025}$ × 6631 = (\$243,939, \$271,442).

- Forecast the actual value
 - we additionally need an estimate of $Var[u|x^*, ..., x_k^*]$
 - it is simplest to again use $s_e^2 = 24936^2$
 - ▶ $s_e = 24936$, $se(\hat{y}_{cm}) = 6631$, so $se(\hat{y}_f) = \sqrt{6488^2 + 24936^2} = 25803$.
 - ▶ 95% confidence interval for the actual house price

★ $257691 \pm t_{22,.025} \times 25803 = ($204,178, $311,203).$

12.3 Nonrepresentative Samples

- Many studies use survey data that may be nonrepresentative of the population.
- If there is nonrandom sampling on variables other than the dependent variable *y* then OLS can estimate population parameters if we include these variables as control variables in the regression
 - e.g. include gender and race as controls.
- If there is nonrandom sampling on the dependent variable OLS does not lead to consistent estimates of population parameters
 - e.g. if high earners are omitted from survey and we want to model earnings in the population.
- Many surveys include sample weights that adjust for nonrepresentativeness
 - then population weighted least squares can be used.

12.4 Best Estimation

- An estimator b_j is **unbiased** for β_j if $E[b_j] = \beta_j$.
- An estimator b_j is **consistent** if as $n \to \infty$ any bias in $b_j \to 0$ and $Var[b_j] \to 0$.
- A best estimator has smallest variance among unbiased estimators or among consistent estimators.
- When assumptions 3-4 do not hold OLS is no longer best.
- Feasible generalized least squares (FGLS) is instead the best estimator
 - FGLS requires additionally specifying a model for the error variances and covariances and estimating this model
 - \star this model varies with the model for the errors
- In practice for linear regression models
 - most studies just use OLS with appropriate robust standard errors
 - this loses some precision but the loss is often not great.

12.5 Best Confidence Intervals

- Best confidence intervals are those with the shortest width at a given level of confidence.
- For standard estimators the 95% confidence interval is of form

$$\widehat{\beta}_j \pm t_{n-k,\alpha/2} imes se(\widehat{\beta}_j)$$

- So the shortest interval is that with smallest $se(\widehat{\beta}_j)$ and hence most efficient estimator.
- In practice even if assumptions 3-4 do not hold
 - most studies base confidence intervals on OLS with appropriate robust standard errors
 - this increases confidence interval width but the increase is often not great.

12.6 Best Tests: Type I and II errors

- Consider H_0 : no disease versus H_a : disease is present.
- Two errors can be made in hypothesis testing.
- A type I error (or false positive)
 - H_0 is rejected when H_0 is true
 - \star so find disease even though no disease is present
 - ▶ to date we have only considered type 1 error (see Chapter 4.4).
- A type II error (or false negative)
 - H_0 is not rejected when H_0 is false
 - so find no disease when disease is present.

Decision	Truth			
	H_0 really true: No disease	H_0 really false: Disease		
Do not reject H_0 :	Correct decision	Type II error		
Find no disease		(false negative)		
Reject H_0 :	Type I error	Correct decision		
Find disease	(false positive)			

Test Size and Power

- Test size is the probability of a type I error.
 - Test size is set at α , the significance level of the test.
- Test power is one minus the probability of a type II error
 - High power is preferred as then low Pr[type II error]
- Problem: there is a trade-off
 - ▶ Pr[type I error] decreases ⇒ Pr[type II error] increases
 - e.g. Can set Pr[type | error] = 0 if never reject H_0 .
- Solution: use most powerful test
 - this has highest power for given test size
 - this is a test based on most precise estimator.
- In practice while test size is set low (e.g. 5%)
 - ▶ the Pr[type II error] can be high and test power may be low.

12.7 Data Science and Big Data: An Overview

- **Data science** or **data analytics** is the science of discerning patterns in data.
- Machine learning is a branch of artificial intelligence
 - algorithmically learn from data (the machine learns)
 - rather than specify a model based on expert knowledge of the particular application
 - methods include lasso, regression trees, random forests, neural networks, deep learning.
- **Big data** refers to datasets that are enormously large
 - though big data methods may also be applied to smaller datasets.

Prediction using Big Data

- Often the goal of big data is **prediction**
 - machine learning methods can predict better than earlier methods such as OLS.
- In some cases the predictions at the individual level are very precise
 - e.g. recognizing the numbers and letters on a digital image of a vehicle license plate.
- In other cases the predictions may at the individual level can be imprecise
 - but money may still be made if predict well on average
 - e.g. a better search engine than competitors
 - e.g. a better model for predicting stock prices than competitors
 - e.g. a better model for digital ad clicks than competitors.

Econometrics using Big Data

• Economists want to estimate models that are only partially specified

- use the machine learner in part of the analysis
- but do valid inference controlling for the machine learning.
- For example, suppose we are interested in estimating the effect of changing x on y after controlling for everything else

• e.g.
$$y = \beta_1 + \beta_2 x + (\text{many control variables}) + u$$

- If we included all the control variables, the estimates get very noisy (overfitting).
- Instead use a machine learner to select a subset of the control variables.

12.8 Bayesian Methods: An Overview

- An alternative to the "classical" inference approach of this book.
- Base inference on the parameter(s) of interest θ using the **posterior** distribution which combines the distribution of y given θ with a prior distribution for θ
 - the prior can be informative or uninformative.
- One advantage is that a resulting 95% Bayesian credible region can be directly interpreted as a being an interval that θ lies in with probability 0.95.
- Rarely used until recently due to intractability.
- Recent Markov chain Monte Carlo methods (MCMC) make Bayesian methods now much easier to implement.
- In very large samples or with uninformative prior get similar results to using "classical" methods.

3

- 4 @ > - 4 @ > - 4 @ >

12.8 A Brief History of Statistics and Regression

- 1733 Central limit theorem
- 1805 Least squares (without statistical inference)
- 1885 Regression
- 1888 Correlation
- 1894 The term "standard deviation"
- 1895 Histograms
- 1908 The t distribution
- 1924 The F distribution
- 1945 ENIAC (the first electronic general purpose digital computer)
- 1964 Kernel regression (a nonparametric regression method)
- 1980's Robust standard errors
- 1984 Apple Macintosh computer (an early personal computer).

Key Stata Commands

```
* Heteroskedastic robust standard error
use AED HOUSE.DTA. clear
regress price size bedrooms bathroom lotsize age monthsold,
vce(robust)
* HAC standard error (for the mean)
use AED REALGDPPC, clear
pwcorr growth l.growth l2.growth l3.growth l4.growth
15.growth
newey growth, lag(5)
* Predict conditional mean
use AED_HOUSE.DTA, clear
regress price size
display _b[_cons] + 2000*_b[size]
* 95% conf. interval for prediction of conditional mean
lincom _cons + 2000*size
```

Some in-class Exercises

- Suppose $y_i = \beta_1 + \beta_2 x_i + u_i$ and u_i are independent. What standard errors would you use?
- Suppose we have y_{ij} = β₁ + β₂x_{ij} + u_{ij}, with u_{ij} correlated for individuals i in the same village j but uncorrelated for individuals in different villages. What standard errors would you use?
- Suppose $y_t = \beta_1 + \beta_2 x_t + u_t$ and the error u_t is correlated with u_{t-1} . What standard errors would you use?
- We obtain fitted model $\hat{y} = \frac{3.0}{(0.001)} + \frac{5.0}{(0.002)} \times x$, n = 200, $s_e = 2.0$, with standard errors given in parentheses. Predict y when x = 10.
- For the preceding data give an approximate 95% confidence interval for E]y|x = 10]. Hint: how precise are the OLS estimates?
- For the preceding data give an approximate 95% confidence interval for y|x = 10.

- 本間 ト イヨ ト イヨ ト 三 ヨ