Analysis of Economics Data
 Chapter 15: Regression with Transformed Variables

(C) A. Colin Cameron
Univ. of Calif. Davis

November 2022

CHAPTER 15: Regression with Transformed Variables

- Regression often involves variables that have been transformed
- e.g. quadratics, natural logarithm, interactions (products of variables)
- e.g. $\widehat{y}_{i}=b_{1}+b_{2} x_{2 i}+b_{3} x_{3 i}+b_{3} x_{2 i} \times x_{3 i}$.
- OLS estimation remains fine if model is still linear in coefficients b_{1}, \ldots, b_{k}.
- But interpreting results is more difficult when the model is nonlinear in the underlying variables
- the marginal effect $\Delta \widehat{y} / \Delta x$ is no longer the slope coefficient
- plus there are different ways to compute $\Delta \hat{y} / \Delta x$
- and if y is transformed then prediction of y becomes more difficult.

Outline

(1) Example: Earnings, Gender, Education and Type of Worker
(2) Marginal effects for Nonlinear Models
(3) Quadratic Model and Polynomial Models
(1) Interacted Regressors
(6) Log-linear and Log-log models
(0) Prediction from Log-linear and Log-log Models
(1) Models with a Mix of Regressor Types

Datasets: EARNINGS_COMPLETE

15.1 Example: Earnings, Gender, Education, Worker Type

- Dataset EARNINGS COMPLETE
- 872 female and male full-time workers aged 25-65 years in 2000.

			Standard Veviation	Min	Max
Variable	Definition	Mean	56369	51516	4000
504000					
Earnings	Annual earnings in $\$$	43.31	10.68	25	65
Age	Age in years	0.433	0.496	0	1
Gender	$=1$ if female	13.85	2.88	0	20
Education	Years of schooling	0.089	0.286	0	1
d1 or dself	$=1$ if self-employed	0.760	0.427	0	1
d2 or dpriv	$=1$ if private sector employee	0.149	0.356	0	1
d3 or dgovt	$=1$ if government sector employee	1989.7	935.7	625	4225
Agesq	Age squared	598.8	193.69	0	1260
Educbyage	Education times Age	44.34	8.50	35	99
Hours	Usual hours worked per week	3.78	0.16	3.56	4.60
Lnhours	Natural logarithm of Hours	10.69	0.68	8.29	13.13
Lnearnings	Natural logarithm of Earnings				
n	872				

15.2 Marginal Effects for Nonlinear Models

- Examples of nonlinear models
- Quadratic: $\hat{y}=b_{1}+b_{2} x+b_{3} x^{2}$
- Interactions: $\hat{y}=b_{1}+b_{2} x+b_{3} z+b_{3}(x \times z)$
- Natural logarithms: $\ln \widehat{y}=b_{1}+b_{2} x+b_{3} z$.
- The marginal effect (ME) on the predicted value of y of a change in a regressor is

$$
\mathrm{ME}_{x}=\frac{\Delta \widehat{y}}{\Delta x} .
$$

- In nonlinear models we get different results depending on method
- calculus method: use the derivative $d \hat{y} / d x$ (for very small Δx)
- finite difference methods: such as $\Delta x=1$.

Calculus method versus Finite Difference Method

- Plotted curve is $y=12-2 \times(x-3)^{2}$
- calculus method at $x=2: \frac{d y}{d x}=12-4 x=4$ at $x=2$.
- finite difference for $x=2$ to $x=3: \Delta y=12-10=2$.

Calculus method

Finite difference method

AME, MEM and MER

- Marginal effect $\mathrm{ME}_{x}=\Delta \widehat{y} / \Delta x$ varies with the level of x.
- So what value of x do we evaluate at?
- 1. Average marginal effect (AME): evaluate for each i and average

$$
\mathrm{AME}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{ME}_{i}=\frac{1}{n} \sum_{i=1}^{n} \frac{\Delta \widehat{y}_{i}}{\Delta x_{i}} .
$$

- 2. Marginal effect at the mean (MEM): evaluate ME at $x=\bar{x}$

$$
\mathrm{MEM}=\left.\mathrm{ME}\right|_{x=\bar{x}}=\left.\frac{\Delta \widehat{y}}{\Delta x}\right|_{x=\bar{x}}
$$

- 3. Marginal effect at a representative value (MER): evaluate ME at a representative value of x, say $x=x^{*}$

$$
\mathrm{MER}=\left.\mathrm{ME}\right|_{x=x^{*}}=\left.\frac{\Delta \widehat{y}}{\Delta x}\right|_{x=x^{*}}
$$

- Most often use AME, with ME_{i} evaluated using calculus methods.

Computation of Marginal Effects

- Suppose $\mathrm{ME}_{x}=2 x^{2}+3 z^{2}$ so also depends on z.
- For AME evaluate for each individual and average
- $\mathrm{AME}_{x}=\frac{1}{n} \sum_{i=1}^{n}\left(2 x_{i}^{2}+3 z_{i}^{2}\right)$.
- For the MEM set all variables at their means
- MEM $_{x}=2 \bar{x}^{2}+3 \bar{z}^{2}$.
- For MER evaluate at a particular value x^{*} of x
- with z taking the values for each individual $\mathrm{MER}_{x}=2\left(x^{*}\right)^{2}+\frac{1}{n} \sum_{i=1}^{n} 3 z_{i}^{2}$
- or additionally specify a particular value z^{*} of z, so MER $_{x}=2\left(x^{*}\right)^{2}+3\left(z^{*}\right)^{2}$.
- Some statistical packages provide post-estimation commands to calculate AME, MEM and MER
- these additionally provide standard errors and confidence intervals for these estimates.

Nonlinear Models in Practice

- Several issues arise when the relationship is nonlinear.
- Estimation by OLS is possible if the coefficients in the model still appear linearly
- e.g. $\mathrm{E}[y \mid x]=\beta_{1}+\beta_{2} \ln x$ is okay as linear in β_{1} and β_{2}
- e.g. $\mathrm{E}[y \mid x]=\exp \left(\beta_{1}+\beta_{2} x\right)$ is not okay as not linear in β_{1} and β_{2}
- Direct interpretation of slope coefficients may not be possible
- use marginal effects.
- Prediction of y problematic when y is transformed before regression
- e.g. if $\mathrm{E}[\ln y \mid x]=\beta_{1}+\beta_{2} x$.
- Difficult to choose the appropriate nonlinear model
- when can't do a scatter plot of several regressors.

15.3 Quadratic Model and Polynomial Models

- A quadratic model is the model $y=\beta_{1}+\beta_{2} x+\beta_{3} x^{2}+u$.
- The figure gives various examples
- top row has $\beta_{2}<0$ and bottom row has $\beta_{2}>0$.

Examples of Quadratic Model

Marginal Effects for Quadratic Model

- Fitted quadratic model $\hat{y}=b_{1}+b_{2} x+b_{3} x^{2}$

$$
\mathrm{ME}_{x}=b_{2}+2 b_{3} x \text { (using calculus methods). }
$$

- The average marginal effect is

$$
\begin{aligned}
\mathrm{AME} & =\frac{1}{n} \sum_{i=1}^{n}\left(b_{2}+2 b_{3} x_{i}\right) \\
& =b_{2}+2 b_{3} \times \frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& =b_{2}+2 b_{3} \bar{x} .
\end{aligned}
$$

Quadratic Example: Earnings and Age

- Regress Earnings (y) on Age (x), Agesq (x^{2}), and Education (z), with heteroskedastic-robust t-statistics in parentheses
$\widehat{y}=\underset{(-4.02)}{-98620}+\underset{(2.86)}{3105 x}-\underset{(-2.38)}{29.66} x^{2}+\underset{(8.94)}{5740 z}, \quad R^{2}=.1196, \quad n=872$,
- Quadratic term is warranted as for x^{2} we have $|t|=2.38>t_{868 ; .025}=-1.963$.
- The turning point for the quadratic is at $x=-b_{2} / 2 b_{3}$
- here at Age $=3105 /(2 \times(-29.66))=52.3$ years.
- earnings on average increase to 52.3 years and then decline.
- $\mathrm{ME}=3105-29.66 x-29.66 \Delta x$ by finite difference method
- $\mathrm{ME}=3105-59.32 x$ using calculus method
- $\mathrm{AME}=\frac{1}{n} \sum_{i=1}^{n}\left(3105-59.32 x_{i}\right)=3105-59.32 \bar{x}=$ $3105-59.32 \times 43.31=536$

Polynomial Model

- A polynomial model of degree p includes powers of x up to x^{p}.
- The fitted model is

$$
\widehat{y}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots+b_{p+1} x^{p} .
$$

- This model has up to $p-1$ turning points.
- Determine polynomial order by progressively adding terms x^{2}, x^{3}, \ldots
- until additional terms are no longer statistically significant.
- By calculus methods the marginal effect is

$$
\mathrm{ME}=b_{2}+2 b_{3} x+3 b_{4} x^{2}+\cdots+p b_{p+1} x^{p-1}
$$

which again will vary with the point of evaluation x.

15.4 Interacted Regressors

- Example with $x \times z$ an interacted regressor is

$$
y=\beta_{1}+\beta_{2} x+\beta_{3} z+\beta_{4} x \times z+u
$$

- Estimation is straightforward
- create a variable $x z$, say, that equals $x \times z$
- run OLS regression of y on an intercept, x, z and $x z$.
- the fitted model (with $x z=x \times z$) is

$$
\widehat{y}=b_{1}+b_{2} x+b_{3} z+b_{4} x z
$$

- Interpretation of regressors is more difficult.
- The marginal effect (ME) on \widehat{y} of a change in x, holding z constant, depends on coefficients of both x and $x z$

$$
\mathrm{ME}_{x}=\frac{\Delta \widehat{y}}{\Delta x}=b_{2}+b_{4} z
$$

- To test statistical significance of x do joint F-test on variables x and $x z: H_{0}: \beta_{2}=0, \beta_{4}=0$.

Interactions Example: Earnings, Education and Age

- OLS regression of Earnings on Age (x) and Education (z)
- both variables are statistically significant at 5\% (t stats in parentheses)

$$
\widehat{y}=\underset{(-4.15)}{-46875}+\underset{(3.47)}{525} x+\underset{(9.06)}{5811 z} \quad \quad R^{2}=.115, \quad n=872
$$

- Add AgebyEduc $(x \times z)$ as a regressor
- now no regressors are statistically significant at 5\%

$$
\widehat{y}=\underset{(-0.94)}{-29089}+\underset{(0.18)}{127} x+\underset{(1.88)}{4515 z}+\underset{(0.52)}{29.0} x \times z, \quad R^{2}=.115, \quad n=872
$$

- The marginal effect of one more year of schooling is

$$
\mathrm{ME}_{E d}=4515+29 \times \text { Age. }
$$

- So the returns to education increase as one ages.

Joint Hypothesis tests

- Individual coefficients are statistically insignificant at 5\%
- But a joint test on Age (x) and AgebyEduc $(x \times z)$
- a test of $H_{0}: \beta_{x}=0, \beta_{x z}=0$ yields $F=6.49$ with $p=0.002$
- so age remains highly statistically significant
- similarly F-test for the two education regressors is $F=43.00$ with $p=0.000$.
- Why the difference between individual and joint tests?
- The interaction variable AgebyEduc is
- quite highly correlated with Age ($\widehat{\rho}=0.72$)
- quite highly correlated with Education ($\widehat{\rho}=0.64$).
- When regressors are highly correlated with each other
- individual contributions are measured much less precisely
- here standard errors of Age and Education more than triple from 151 and 641 to 719 with inclusion of variable AgebyEduc.

15.5 Natural Logarithm Transformations

- Consider models with $\ln y$ and/or $\ln x$.
- Chapter 9 gave interpretation of coefficients
- semi-elasticity in log-linear model
- elasticity in log-log model.
- Now additionally consider marginal effects $\mathrm{ME}_{x}=\Delta y / \Delta x$.
- For log-linear model $\ln y=b_{1}+b_{2} x$ use $\mathrm{ME}_{x}=b_{2} \widehat{y}$
- reason: $\Delta \ln y / \Delta x=b_{2}$ but $\Delta \ln y \simeq \Delta y / y$ so $(\Delta y / y) / \Delta x=b_{2}$ and on solving $\Delta y / \Delta x=b_{2} y$
- Similarly for log-log model $\ln y=b_{1}+b_{2} \ln x$ use $\mathrm{ME}_{x}=b_{2} \hat{y} / x$.

Log-linear Model

- OLS regression of $\ln ($ Earnings) on Age (x) and Education (z)
- both variables are statistically significant at 5% (t stats in parentheses)

$$
\widehat{\ln y}=\underset{(59.63)}{8.96}+\underset{(3.83)}{0.0078 x}+\underset{(11.68)}{0.101 z}, \quad R^{2}=.190,
$$

- One year of aging, controlling for education, is associated with a 0.78 percent $(=100 \times 0.0078)$ increase in earnings.
- The marginal effect of aging is $0.0078 \widehat{y}$
- always positive and increases with age since $\widehat{y} \uparrow$ with age.
- simplest to evaluate at \bar{y}, then MEM of a year of aging is a $\$ 440$ increase in earnings $(=0.0078 \times 56369)$.

Log-log Models

- OLS regression of $\ln ($ Earnings $)$ on $\ln ($ Age $)(x)$ and Education (z)
- both variables are statistically significant at 5% (t stats in parentheses)

$$
\widehat{\ln y}=\underset{(24.23)}{8.01}+\underset{(4.21)}{0.346} \ln x+\underset{(11.67)}{0.100} z, \quad R^{2}=.193
$$

- A one percent increase in age, controlling for education, is associated with a 0.346 percent increase in earnings.
- The marginal effect of aging is $0.346 \hat{y} / x$
- always positive and increases with age since $\widehat{y} \uparrow$ with age.
- simplest to evaluate at \bar{y} and \bar{x}, then MEM of a year of aging is a $\$ 450$ increase in earnings $(=0.346 \times 56369 / 43.41)$.

15.6 Prediction from Log-linear and Log-log Models

- Consider log-linear model: $\widehat{\ln y}=b_{1}+b_{2} x+b_{3} z$.
- A naive prediction in level is $\hat{y}=\exp (\widehat{\ln y})=\exp \left(b_{1}+b_{2} x+b_{3} z\right)$.
- But this underpredicts due to retransformation bias (next page).
- Instead if errors were normal and homoskedastic predict y using

$$
\widetilde{y}=\exp \left(s_{e}^{2} / 2\right) \times \exp (\widehat{\ln y}) .
$$

- Here s_{e} is standard error of the regression for the $\ln y$ regression.
- Example: $s_{e}=0.4$ (which is large for data on a log scale)
- need to rescale by $\exp \left(s_{e}^{2} / 2\right)=1.215$

Retransformation Bias Correction

- Log-linear population model assumes $\mathrm{E}[u \mid x]=0$ in

$$
\ln y=\beta_{1}+\beta_{2} x+u
$$

- Taking the exponential on both sides: $y=\exp \left(\beta_{1}+\beta_{2} x+u\right)$.
- So the conditional mean of y given x is

$$
\begin{aligned}
\mathrm{E}[y \mid x] & =\mathrm{E}\left[\exp \left(\beta_{1}+\beta_{2} x+u\right) \mid x\right] \\
& =\exp \left(\beta_{1}+\beta_{2} x\right) \times \mathrm{E}[\exp (u) \mid x] .
\end{aligned}
$$

- Problem: We need to know $\mathrm{E}[\exp (u) \mid x]$.
- in general $\mathrm{E}[\exp (u) \mid x]>1$
- $\mathrm{E}[\exp (u) \mid x]=\exp \left(\sigma_{u}^{2} / 2\right)$ if $u \mid x \sim N\left(0, \sigma_{u}^{2}\right)$
\star i.e. normal homoskedastic errors.
- then $\mathrm{E}[y \mid x]=\exp \left(\sigma_{u}^{2} / 2\right) \exp \left(\beta_{1}+\beta_{2} x\right)$.

R-squared with Transformed Dependent Variable

- R^{2} in regress y on x measures the fraction of the variation in y around \bar{y} that is explained by the regressors.
- R^{2} in regress $g(y)$ on x instead measures the fraction of the variation in $g(y)$ around $\overline{g(y)}$ that is explained by the regressors.
- So meaningless to compare R^{2} across models with different transformations of the dependent variable.
- For right-skewed data R^{2} is usually higher in models for $\ln y$ rather than y.
- For persistent time series right-skewed data R^{2} is usually higher in models for y than for Δy.

15.7 Models with a Mix of Regressor Types

- Levels example with $R^{2}=.206, n=872$ is

$$
\begin{aligned}
& \widehat{\text { Earnings }} \\
= & -\underset{(-5.38)}{356631}-\underset{(-5.31)}{14330} \times \text { Gender }+\underset{(3.08)}{3283} \times \text { Age }-\underset{(-2.59)}{31.58} \times \text { Agesq } \\
& +\underset{(8.85)}{5399} \times \text { Education }+\underset{(1.07)}{9360} \times \text { Dself }-\underset{(-0.10)}{291} \times \text { Dgovt } \\
& +\underset{(4.34)}{69964} \times \text { Lnhours },
\end{aligned}
$$

- Interpretation controlling for other regressors
- ME of aging is $3283-63.16 \times$ Age
- Self-employed workers on average earn \$9,360 more than private sector workers (the omitted category)
* though this comparison is statistically insignificant at 5\%
- A 1% change in hours worked is associated with a $\$ 699$ increase in earnings.

Dependent Variable in Natural Logarithms

- Natural logarithms example with $R^{2}=.206, n=872$ is

$$
\begin{aligned}
& \text { Ln } \widehat{\text { Earnings }} \\
= & \underset{(6.89)}{4.459}-\underset{(-4.88)}{0.193} \times \text { Gender }+\underset{(3.55)}{0.0560} \times \text { Age }-\underset{(-2.99)}{0.000549} \times \text { Agesq } \\
& +\underset{(11.17)}{0.0934} \times \text { Education }-\underset{(-1.17)}{0.118} \times \text { Dself }+\underset{(1.53)}{0.070} \times \text { Dgovt } \\
& +\underset{(6.88)}{0.975} \times \text { Lnhours }
\end{aligned}
$$

- Interpretation controlling for other regressors
- women on average earn 19.3\% less than men
- earnings increase with age to 51.0 years $(=-.560 /(2 \times(-.000549))$ and then decrease
- Self-employed workers on average earn 11.8% less than private sector workers (the omitted category)
* though this comparison is statistically insignificant at 5\%
- A 1% change in hours worked is associated with a 0.975% increase in earnings.

Some in-class Exercises

(1) For $\widehat{y}=2+3 x+4 x^{2}$ for a dataset with $\bar{y}=30$ and $\bar{x}=2$ give the marginal effect of a one unit change in x. Hence give the AME.
(2) For $\widehat{y}=1+2 x+4 d+7 d \times x$ for a dataset with $\bar{y}=22, \bar{x}=3$ and $\bar{d}=0.5$ give the marginal effect of a one unit change in x. Hence give the AME.
(3) For model $\ln y=\beta_{1}+\beta_{2}+u$ we obtain $\widehat{\ln y}=1+2 x, n=100$, $s_{e}=0.3$. Give an estimate of $\mathrm{E}[y \mid x]$.

