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Chapter 17

CHAPTER 17: Special Topics

Consider special issues that arise with
I cross-section data
I panel data
I time series data.

Consider the most commonly used nonlinear regression models.

Provide a brief discussion of various methods to allow causal inference
given observational data.

Time series presentation is very dense - just provide a list of topics
here.
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Chapter 17

Outline

1 Cross-section Data
2 Panel Data
3 Panel Data Example: NBA Team Revenue
4 Instrumental Variables
5 Causal Inference: An Overview
6 Nonlinear Regression Models
7 Time-Series Data
8 Time Series Example: U.S. Treasury Interest Rates
9 Further Reading

Datasets: EARNINGS_COMPLETE, NBA, INTERESTRATES
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17.1 Cross-section Data

17.1 Cross-section Data

If independent errors use heteroskedastic-robust standard errors.
If clustered errors with individual i in cluster g we have

I yig = β1 + β2x2ig + � � �+ βk xkig + uig , g = 1, ..,G .

For OLS use cluster-robust standard errors where cluster on g
I or use the following alternative estimation methods.

Cluster-speci�c random e¤ects estimator models the error as
I uig = αg + εig where αg � (0, σ2α) and εig � (0, σ2ε )
I advantage: FGLS in this model could be more e¢ cient than OLS.

Cluster-speci�c �xed e¤ects estimator again models the error as
I uig = αg + uig but treat αg as an individuals-speci�c �xed e¤ect
I can eliminate αg and consistently estimate β�s by OLS in model
yig � ȳg = β2(x2ig � x̄2g ) + � � �+ βk (xkig � x̄kg ) + (εig � ε̄g )

I advantage: allows regressors to be correlated with αg so inconsistency
only arises if regressors correlated with the εig component of the error.
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17.2 Panel Data

17.2 Panel Data
Now have data for individual i in years t = 1, ...T

I yit = β1 + β2x2it + � � �+ βk xkit + uit , i = 1, ..., n

Use OLS with cluster-robust standard errors where cluster on i
I or use the following alternative estimators.

Random e¤ects and related models
I estimate by FGLS after specifying a model for the correlation over time
for a given individual in the error uit .

Individual-speci�c �xed e¤ects for individual i in cluster g
I now specify yit = αi + β1 + β2x2it + � � �+ βk xkit + uit
I can eliminate αi and consistently estimate β�s by OLS in model
yit � ȳi = β2(x2it � x̄2i ) + � � �+ βk (xkit � x̄ki ) + (εit � ε̄t )

I advantage: allows regressors to be correlated with αt so inconsistency
only arises if regressors correlated with εit .

Dynamic models allow lagged yit�s as regressors
I more complicated.
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17.2 Panel Data

Panel Data (continued)
With panel data, variables potentially vary over both time and
individuals.
This variation for a variable zit can be decomposed as follows.
Total variation is the variation of zit around the overall mean
z̄ = 1

nT ∑n
i=1 ∑T

t=1 zit .
Within variation is variation over time for a given individual, the
variation of zit around the individual mean z̄i = 1

T ∑T
t=1 zit .

Between variation is variation across individuals, the variation of the
individual mean z̄i around the overall mean z̄ .
The corresponding decomposition for the overall variance is

Within variance: s2W =
1

nT�1 ∑i ∑t (zit � z̄i )2
Between variance: s2B =

1
n�1 ∑i (z̄i � z̄)2

Overall variance: s2O =
1

nT�1 ∑i ∑t (zit � z̄)2.
OLS (and random e¤ects) use both within and between variation.
The �xed e¤ects estimator uses only within variation.
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17.3 Panel Data Example: NBA Team Revenue

17.3 Panel Data Example: NBA Team Revenue

Dataset NBA has data on 29 teams for the 10 seasons 2001-02 to
2010-11

I view as short panel dataset (T �xed and n large).

Standard deviation
Variable De�nition Mean Overall Between Within
Revenue Team revenue in 1999 $millions 95.714 24.442 22.467 10.319
Lnrevenue Natural logarithm of team revenue 4.532 0.236 0.213 0.108
Wins Number of wins including playo¤ 41.04 12.438 7.044 10.356
Playo¤ =1 if made playo¤s in prev.season 0.545 0.499 0.243 0.439
Champ =1 if champion in previous season 0.035 0.184 0.094 0.159
Allstars Number of players voted Allstars 0.860 0.871 0.524 0.704
Lncitypop Log of city population in millions 1.301 0.801 0.807 0.097
Teamid Team identi�er 14.86 8.355 8.517 0.000
Season Season identi�er 5.54 2.872 0.371 2.858
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17.3 Panel Data Example: NBA Team Revenue

Panel Data Example: NBA Team Revenue (cont.)
Log-linear model: dependent variable is natural logarithm of team
revenue.

Variable Estimator, coe¢ cients and standard errors
Pooled OLS Random E¤ects Fixed E¤ects

Het-robust Robust Default Robust Default Robust
Wins .0049*** .0049*** .0024*** .0024*** .0027*** .0027***

(.0014) (.0015) (.0008) (.0008) (.0007) (.0007)
Season .0180*** .0180*** .0188*** .0188*** .0200*** .0200***

(.0035) (.0033) (.0017) (.0033) (.0017) (.0029)
Playo¤ .0306 .0306 .0385** .0385* .0362** .0362*

(.0359) (.0447) (.0176) (.0200) (.0167) (.0209)
Champion .1089*** .1089*** .0118 .0118 .0052 .0052

(.0331) (.0473) (.0316) (.0163) (.0300) (.0167)
Allstars .0353*** .0353* .0372*** .0372*** .0356*** .0356***

(.0127) (.0178) (.0075) (.0066) (.0071) (.0068)
Lncitypop .1440*** .1440*** .0196 .0196 -.2021*** -.2021***

(.0196) (.0598) (.0315) (.0872) (.0491) (.0632)
Intercept 3.9945 3.9945 4.2477 4.2477 4.5222 4.5222

(.0491) (.0596) (.0560) (.1076) (.0649) (.0957)
Observations 286 286 286 286 286 286
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17.3 Panel Data Example: NBA Team Revenue

Panel Data Example: NBA Team Revenue (cont.)

Pooled OLS, random e¤ects and �xed e¤ects estimators
I use cluster-robust standard errors, not the default
I asterisks: single for 10%, double for 5%, triple for 1%.

The �xed e¤ects slope estimate of 0.0027 means that one more win
per season is associated with a 0.27% increase in team revenue, after
controlling for city characteristics, some immediate past performance
measures, and unobserved team characteristics (αim) that are time
invariant.
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17.4 Instrumental Variables

17.4 Instrumental Variables

Problem: in model y = β1 + β2x + u we have E[ujx ] = 0
I then x is endogenous and OLS is inconsistent.

Solution: assume there exists an instrument z that
I does not belong in the model for y (exclusion restriction)
I is correlated with x .

Note: This is only possible if one can �nd a valid instrument.
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17.4 Instrumental Variables

Instrumental Variables (continued)
The instrumental variables (IV) estimator of β2 is

bIV =
∑i (zi � z̄)(yi � ȳ)
∑i (zi � z̄)(xi � x̄)

Intuitively it estimates ∆y
∆x as the ratio

∆y
∆z / ∆z

∆x
I if one-unit change in z is associated with a one unit increase in x of 2
and increase of y of 3 then bIV = 3/2 = 1.5.

I and this can be given a causal interpretation of ∆y
∆x = 1.5.

Can extend to multiple regression
I exogenous regressors (uncorrelated with u) are instruments for
themselves

I if more instruments (z) than endogenous regressors (x) then use
two-stage least squares.

Example: in log-wage model treat schooling as endogenous
I use distance to closest college as an instrument.
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17.5 Causal Inference: An Overview

17.5 Causal Inference: An Overview

Causal inference
I goal is to get causal estimate of e¤ect of x on z using observational
data.

Stereotypical problem is returns to training where self-select into
training

I yi = β1 + γdi + ui where di is a binary indicator for training
I people choose to get training and we expect that those with higher
(unobserved) expected bene�ts to training will select training

I then E[ui jdi = 1] > E[ui jdi = 0] so E[ui jdi ] 6= 0.

There are many di¤erent methods to nonetheless obtain a causal
estimate

I each method has its own distinct assumptions and data requirements.
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17.5 Causal Inference: An Overview

Causal Inference: Potential Outcomes Model
Potential outcomes model or Rubin causal model

I standard framework that is used.

Consider a binary treatment D
I Di = 1 for individual i if treated
I Di = 0 if individual i is not treated (a control).

There are two potential outcomes for Yi
I Y1i if Di = 1 and Y0i if Di = 0.

Interest lies in estimating the treatment a¤ect γi � Y1i� Y0i
I we cannot estimate γi as we only observe one of Y1i and Y0i
I so restrict attention to more aggregated measures.

The average treatment e¤ect (ATE) in the population is

ATE = E [γi ] = E [Y1i � Y0i ].
The average treatment e¤ect on the treated (ATET) is

ATET = E [γi jDi = 1] = E [(Y1i � Y0i )jDi = 1].
c
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17.5 Causal Inference: An Overview

Causal Inference: Di¤erences-in-Di¤erences

A random controlled trial (RCT) is an experiment where randomly
assign people to treatment and control.

I then estimate ATE by the di¤erence in means ȳ1i � ȳ0i
I done more often in economics but still not a lot.

A di¤erence-in-di¤erence estimate uses the following
I simplest case two periods of time
I no individuals are treated in the �rst period
I some are treated in the second period and some are not
I \ATET = average change in y over time for those treated in second
period
minus average change in y over time for those not treated in second
period.

I example of a natural experiment.
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17.5 Causal Inference: An Overview

Causal Inference: Regression Adjustment

Control function approach adds controls
I dATE = bγ from OLS of yi = β1 + γdi + β2x2i + � � �+ βk xki + ui
I need to ensure di and ui uncorrelated once the controls are added.

Richer regression adjustment estimator runs separate regressions
I regress yi on intercept and x2i , ..., xki for di = 1 only
compute 1n ∑ni=1 by1i where by1i is resulting prediction for di = 0 and
di = 1.

I regress yi on intercept and x2i , ..., xki for di = 0 only
compute 1n ∑ni=1 by0i where by1i is resulting prediction for di = 0 and
di = 1.

I dATE = 1
N ∑Ni=1 by1i � 1

N ∑Ni=1 by0i .
Fixed e¤ects estimators

I yit = β1 + γdit + β2x2it + � � �+ βk xkit + αi + εit
I need to assume dit and εit uncorrelated once the controls and αi are
added.
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17.5 Causal Inference: An Overview

Causal Inference: Regression Discontinuity Design

Regression discontinuity design (RDD)
I a threshold variable determines treatment status
I e.g. admission into treatment is based on a score denoted s, with
scores above 100, say, leading to treatment (d = 1).

A simple RDD estimate compares the average value of y for
individuals on either side of the threshold.

Complication: usually the outcome variable y itself varies with s
I suppose that y = β1 + β2s + u without treatment
I then a simple RDD estimate of ATET is bγ from OLS of

F yi = β1 + γdi + β2si + ui .

In practice more �exible models are used
I e.g. di¤erent linear or quadratic trends on either side of the threshold
I estimates are focused on observations close to the threshold
I or nonparametric methods are used either side of the threshold.
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17.5 Causal Inference: An Overview

Causal Inference: Local Average Treatment E¤ects
Instrumental variables (IV) estimator from chapter 17.4

I IV estimator in model yi = β1 + γdi where zi is instrument for xi .

This restricts constant treatment e¤ect γ for all individuals.
Instead allow di¤erent (heterogeneous) treatment e¤ects γi .
Specialize to a binary treatment D and suppose for simplicity that
higher value of Z makes selection into treatment (D = 1) more likely.
Distinguish between four types of people:

I (1) Always-takers chose treatment (D = 1) regardless of the value of
Z

I (2) Never-takers never chose treatment (D = 0) regardless of the
value of Z ;

I (3) Compliers are induced into treatment so D = 1 when Z = 1 and
D = 0 when Z = 0

I (4) De�ers are induced away from treatment so D = 0 when Z = 1
and D = 1 when Z = 0.

Then under the crucial and nontestable assumption that there are no
de�ers, also called the monotonicity assumption, the IV estimator
estimates the ATE for compliers.c
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17.5 Causal Inference: An Overview

Causal Inference: IPW and Matching

Inverse probability weighting uses weighted averages of the
outcome

I binary treatment di = 1 or di = 0.
I we observe di yi if the individual is treated and (1� di )yi if untreated
I ATE is the weighted average 1

N ∑ni=1 wifdi yi � (1� di )yig
F where the weights wi = 1/bpi if treated and wi = 1/(1� bpi ) if
untreated

F and bpi = bPr(di = 1j(x2i , ..., xki ) is the propensity score, the predicted
probability of treatment.

I key: assume that the weights control for selection into treatment.

Matching compares treated person to a similar (on x�s) untreated
I nearest neighbor matching compare outcome for each treated
observation to the average outcome of the k observations whose values
of x2, ..., xk are closest to those for the treated observation.

I propensity score matching instead compares outcomes with similar
probability of treatment..
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17.6 Nonlinear Regression Models

17.6 Nonlinear Regression Models

Binary outcome yi = 0 or 1
I model Pr[yi = 1jregressors] using a logit model or probit model
I maximum likelihood estimation by computer is straightforward,
interpretation of estimates is more di¢ cult.

The logit model speci�es that

Pr[y = 1jx2, ..., xk ] =
exp(β1 + β2x2 + � � �+ βkxk )

1+ exp(β1 + β2x2 + � � �+ βkxk )

Pr[y = 0jx2, ..., xk ] = 1� Pr[y = 1jx2, ..., xk ].

For the j th regressor MEj =
∆bp
∆xj
= bp(1� bp)bj

I where bp is the predicted probability
I MEj j � 0.25� jbj j and sign of bj gives sign of ME.
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17.6 Nonlinear Regression Models

Nonlinear Regression Models (continued)

The probit model speci�es that

Pr[y = 1jx2, ..., xk ] = Φ(β1 + β2x2 + � � �+ βkxk )

Pr[y = 0jx2, ..., xk ] = 1� Pr[y = 1jx2, ..., xk ],

where Φ(�) is the cumulative distribution function of the standard
normal distribution.

For the probit model MEj = φ(bp)bj
I where φ(�) is the standard normal density function
I MEj j � 0.4� jbj j and sign of bj gives sign of ME.
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17.6 Nonlinear Regression Models

Nonlinear Regression Models (continued)

Suppose the conditional mean is exponential, so that

E[y jx2, ..., xk ] = exp(β1 + β2x2 + � � �+ βkxk ).

This model is applicable to nonnegative data as E[y jx2, ..., xk ] > 0.
Estimation is by a method called quasi-maximum likelihood

I rather than by least squares regression
I b1, b2,...,bk maximize ∑ni=1fyi ln µi � µig where

µi = exp(b1 + b2x2i + � � �+ bk xki ).

Now MEj =
∆by
∆xj
= bybj

I where by is the predicted value of y
I and AME= ȳbj .

Coe¢ cients bj can be directly interpreted as semi-elasticities.
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17.7 Time Series Data

17.7 Time Series Data

Topics covered in the text
I HAC Standard errors
I stationary process and data transformation
I sample autocorrelations
I tests for autocorrelation
I autoregressive models
I �nite distributed lag models
I autoregressive distributed lag models
I autoregressive error models
I nonstationary time series and unit roots
I spurious regression
I regression with nonstationary data
I forecasting.
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17.8 Time Series Data: U.S. Treasury Security Interest Rates

17.8 Time Series Data: U.S. Treasury Security Interest
Rates

Dataset INTERESTRATES has monthly data from January 1982 to
January 2015 on 1-year and 10-year treasury note constant maturity
rates.

Application regresses 10-year rate on 1-year rate.
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