Analysis of Economics Data Appendix B: Some Essentials of Probability

© A. Colin Cameron Univ. of Calif. Davis

November 2022

© A. Colin Cameron Univ. of Calif. Davis

AED Appx.B Probability

November 2022 1 / 13

APPENDIX B: Some Essentials of Probability

- Appendix B considers properties of random variables.
- Probability theory for a single random variable
 - chapter 3 focused on a discrete random variable
 - ★ e.g. coin toss
 - appendix also considers continuous random variables
 - ★ e.g. normal and t distribution.
- Probability theory for the Sample Mean
 - more detail than Chapter 3.
- Probability theory for two related random variables
 - define formally concepts used in Chapter 6
 - \star conditional mean and conditional variance.
 - define the population analogs of sample covariance and sample correlation.

Outline

- Probability Theory for a Single Random Variable
 - Discrete Random Variables, Bernoulli Distribution
 - 2 Linear Transformation of a Random Variable
 - S Continuous Random Variable
 - Standard Normal Distribution, Other Continuous Distributions
- Probability Theory for the Sample Mean
 - Statistical Independence
 - Sums of Independent Random Variables
 - Mean and Variance of the Sample Mean
 - 4 Law of Large Numbers, Central Limit Theorem
- Probability Theory for Two Related Random Variables
 - Joint Probability
 - ② Conditional Distribution, Mean, Variance
 - Ovariance and Correlation

Appendix B.1: Single Random Variable

- We often use linear transformations of a random variable
 - key result: Y = a + bX has mean a + bE[X] and variance $a^2Var[X]$.
- Linear transformations of a random variable X
 - E[a] = a expected value of a constant is a constant
 E[bX] = bE[X] mean of b times X is b times the mean
 E[a + bX] = a + bE[X] combining
 Var[bX] = bVar[X] variance of b times X is b² times the variance
 ★ E[(bX E[bX])²] = E[{b(X E[X])}²] = b²E[(X - E[X])²] = b²Var[X]
 Var[a + bX] = b²Var[X].
- Standardization for $X \sim (\mu, \sigma^2)$
 - ► $\mathsf{E}[X \mu] = \mathsf{E}[X] \mu = \mu \mu = 0.$ ► $\mathsf{Var}[\frac{X - \mu}{\sigma}] = \mathsf{Var}[\frac{X - \mu}{\sigma}] = (\frac{1}{\sigma})^2 \mathsf{Var}[X - \mu] = (\frac{1}{\sigma})^2 \sigma^2 = 1.$
 - so $\frac{X-\mu}{\sigma} \sim (0,1)$
 - standardize by subtract mean and divide by standard deviation.

Continuous random variables use integration

- Discrete random variables take a limited number of values
 - $\Pr[X = x] > 0$ for all values that x may take
 - $\Pr[X \le x] = \sum_{y \le x} \Pr[X = y] =$ Sum of probabilities up to x
 - $E[X] = \sum_{x} x \cdot Pr[X = x]$ weight x by probabilities.
- **Continuous** random variables take uncountably infinite number of values, so individual probabilities do not exist.
 - Pr[X = x] = 0 for all values that x may take
- Continuous random variables replace summation with integration
 - $\Pr[X \leq x] = \int_{-\infty}^{x} f(y) dy$ = Area under the density $f(\cdot)$ up to x
 - $E[X] = \int_{-\infty}^{\infty} xf(x) dx$. This weights x by the density.
 - Leading examples are normal, t distribution, F distribution.

Standard Normal Distribution Probabilities

- Compute $\Pr[a < X < b]$ as the area under the probability density function between *a* and *b* (this is an integral)
 - we cannot compute Pr[X = a] as it equals 0 for a continuous random variable.
- Standard normal example
 - $\Pr[X < 1.5] = \int_{-\infty}^{1.5} f(x) dx = \int_{-\infty}^{1.5} \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx.$
 - $\Pr[X < 1.5] \simeq 0.9332$ by numerical methods

★ as the integral has no closed form solution.

• $\Pr[0.5 < X < 1.5] \simeq 0.2317$ similarly.

Appendix B.2: Probability Theory for the Sample Mean

- To get the properties of \overline{X} we need results on sums of random variables.
- Statistical Independence
 - ► The random variables X and Y are **statistically independent** if the value taken by X is unaffected by the value taken by Y
 - ► Formally the joint probability of observing X = x and Y = y equals the product of the individual probabilities Pr[X = x] × Pr[Y = y].
- **Sums** of Random Variables: X + Y and more generally aX + bY.
- Mean: E[aX + bY] = E[aX] + E[bY] = aE[X] + bE[Y].
- Variance: if X and Y are statistically independent then $Var[aX + bY] = Var[aX] + Var[bY] = a^2Var[X] + b^2Var[Y].$

イロト イポト イヨト イヨト

Appendix B.2: Probability Theory for the Sample Mean

• Sample mean is the random variable $\bar{X} = \frac{1}{n}X_1 + \frac{1}{n}X_2 + \cdots + \frac{1}{n}X_n$.

Mean of the sample mean

•
$$E[\bar{X}] = \frac{1}{n}\mu + \frac{1}{n}\mu + \dots + \frac{1}{n}\mu = \mu$$
 if the X_i have common mean μ .

• Variance of the sample mean for statistically independent data

$$\begin{aligned} \mathsf{Var}[\bar{X}] &= \mathsf{Var}\left[\frac{1}{n}X_1 + \frac{1}{n}X_2 + \ldots + \frac{1}{n}X_n\right] \\ &= \mathsf{Var}\left[\frac{1}{n}X_1\right] + \mathsf{Var}\left[\frac{1}{n}X_2\right] + \cdots + \mathsf{Var}\left[\frac{1}{n}X_n\right] \\ &= \left(\frac{1}{n}\right)^2 \mathsf{Var}\left[X_1\right] + \cdots + \left(\frac{1}{n}\right)^2 \mathsf{Var}\left[X_n\right] \\ &= \left(\frac{1}{n}\right)^2 \sigma^2 + \cdots + \left(\frac{1}{n}\right)^2 \sigma^2 \text{ if } X_i \text{ have common variance } \sigma^2 \\ &= \left(\frac{1}{n}\right) \sigma. \end{aligned}$$

Behavior as sample size gets large

- Results can be obtained under weaker assumptions if the sample size is very large.
- Law of Large Numbers: $ar{X}
 ightarrow \mu$ as $n
 ightarrow \infty$
 - this just requires just that X_i have common mean μ .
- Central Limit Theorem: $Z = (\bar{X} \mu) / \sigma \sim N(0, 1)$ as $n \to \infty$
 - this requires that X_i have common mean μ and common variance σ^2 .
 - it can be generalized to $Z = (\bar{X} E[\bar{X}]) / Var[\bar{X}].$

Appendix B.3: Probability Theory for two Related Variables

- Here we formally define conditional mean, conditional variance and correlation that are used in the main text.
- The **conditional probability** that event A happens given that B happens is the joint probability that both A and B happen divided by the probability that event B happens

•
$$\Pr[A|B] = \frac{\Pr[A \text{ and } B]}{\Pr[B]}$$

• Now translate to random variables X and Y.

Conditional probability

- Pr[X = x, Y = y] is the **joint probability** of Y and X.
- Pr[X = x] is the marginal probability of X
 - it is $\Pr[X = x] = \sum_{y} \Pr[X = x, Y = y]$ (sum over all y.values).
- Then the conditional probability of Y given X: $\Pr[Y = y | X = x] = \frac{\Pr[Y = y, X = x]}{\Pr[X = x]} = \frac{\text{Joint probability}}{\text{Marginal probability of } X}.$
- Conditional mean and conditional variance (of Y given X)
 - mean and variance with respect to conditional distribution
 - e.g. $E[Y|X = x] = \sum_{y} y \times Pr[Y = y|X = x]$
 - the probability weighted average of y where the probability used is the conditional probability if Y given X = x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Covariance and Correlation

• Covariance of X and Y

► Cov[X, Y] = E[(X -
$$\mu_x$$
)(Y - μ_y)]
► calculate as = $\sum_x \sum_y (x - \mu_x)(y - \mu_y) \times Pr[X = x, Y = y]$.

• Correlation of X and Y is the population analog of r_{xy}

$$\operatorname{Cor}[X, Y] = \frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X]}\sqrt{\operatorname{Var}[Y]}}.$$

- X and Y are independent if $Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y].$
- X and Y are uncorrelated if Cor[X, Y] = 0.
- Statistical independence implies uncorrelated.

Variance of sum of correlated variables

• We consider variance of a sum when random variables are correlated.

$$\begin{aligned} \mathsf{Var}[Y_1 + Y_2] &= \mathsf{E}[\{(Y_1 + Y_2) - \mathsf{E}[(Y_1 + Y_2)]\}^2] \\ &= \mathsf{E}[\{(Y_1 + Y_2) - (\mu_1 + \mu_2)\}^2] \\ &= \mathsf{E}[\{(Y_1 - \mu_1) + (Y_2 - \mu_2)\}^2] \\ &= \mathsf{E}[(Y_1 - \mu_1)^2 + (Y_2 - \mu_2)^2 + 2(Y_1 - \mu_1)(Y_2 - \mu_2)] \\ &= \mathsf{E}[(Y_1 - \mu_1)^2] + \mathsf{E}[(Y_2 - \mu_2)^2] \\ &\quad + 2\mathsf{E}[(Y_1 - \mu_1)(Y_2 - \mu_2)] \\ &= \mathsf{Var}[Y_1] + \mathsf{Var}[Y_2] + 2\mathsf{Cov}[Y_1, Y_2]. \end{aligned}$$

• More generally (using $Cov[Y_i, Y_i] = Var[Y_i]$)

$$\operatorname{Var}[\sum_{i=1}^{n} Y_i] = \sum_{i} \sum_{j} \operatorname{Cov}[Y_i, Y_j].$$