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1. Introduction

1. Introduction

OLS for the linear model is the building block for nonlinear regression.

1 Introduction
2 Sequences of random variables
3 Convergence in probability
4 Laws of large numbers (for averages)
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2. Sequences of random variables

2. Sequences of random variables

Recall a sequence of real numbers
I e.g. aN = 2+

3
N

What happens as N ! ∞?
I mathematical convergence (or divergence)

A sequence of nonstochastic real numbers faNg converges to a if for
any ε > 0, there exists N� = N�(ε) such that for all N > N�,

jaN � aj < ε.

I e.g. aN = 2+ 3/N ! 2 since
jaN � aj = j2+ 3/N � 2j = j3/N j < ε for all N > N� = 3/ε.
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2. Sequences of random variables

We instead consider a sequence of random variables bN .
I e.g. bN =

1
N ∑Ni=1 x

2
i

I e.g. bN =
1
N ∑Ni=1 xiui

I e.g. bN = bβ = � 1N ∑Ni=1 x
2
i

��1
1
N ∑Ni=1 xiui

What happens as N ! ∞?
I jbN � bj may exceed ε due to randomness, so bN 9 b exactly
I instead use convergence in probability and in distribution.
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3. Convergence in probability

3. Convergence in probability and consistency

Informal de�nition: The sequence fbNg converges in probability to b
if for any ε > 0

lim
N!∞

Pr[jbN � bj < ε] = 1.

Formal de�nition: A sequence of random variables fbNg converges in
probability to b if for any ε > 0 and δ > 0, there exists N� = N�(ε, δ)
such that for all N > N�,

Pr[jbN � bj < ε] > 1� δ.

Intuition: Convergence in mean square (i.e. lim
N!∞

E[(bN � b)2] = 0)
implies convergence in probability.

I But convergence in probability can happen even if E[(bN � b)2 ] does
not exist.
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3. Convergence in probability Consistency

Consistency

We write plim bN = b or bN
p! b.

The limit b may be a constant or a random variable.

I Often bβ p! β, a constant.
I Then we say bβ is consistent for β.
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4. Law of large numbers

4. Law of large numbers

Easy way to get probability limit when bN is an average

bN = X̄N =
1
N ∑N

i=1 Xi .

I Xi here is general notation for a random variable. e.g. Xi = xiui .

Weak Law of Large Numbers (WLLN):
Speci�es conditions on the individual terms Xi in X̄N under which

(X̄N � E[X̄N ])
p! 0.

Khinchine�s Theorem (WLLN):
Let fXig be i.i.d. (independent and identically distributed).
If and only if E[Xi ] = µ exists, then (X̄N � µ)

p! 0.
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4. Law of large numbers

Other LLN�s are Kolmogorov and, for i.n.i.d. data, Markov.

If a LLN can be applied then

plim X̄N = limE[X̄N ] in general
= limN�1 ∑N

i=1 E[Xi ] if Xi independent over i
= µ if Xi i.i.d.
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5. Convergence in distribution

5. Convergence in distribution

bN has (unknown) cumulative distribution function (cdf) FN .
Like any other function, FN may have a limit function.

Convergence in Distribution:
A sequence of random variables fbNg converges in distribution to a
random variable b if

lim
N!∞

FN = F , where F is the c.d.f. of b

at every continuity point of F , where convergence is in the usual
mathematical sense.

We write bN
d! b, and call F the limit distribution of fbNg.

Basically FN is very complicated and F is simple like N [0, 1].
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6. Central limit theorems

6. Central limit theorems

Easy way to get limit distribution when bN is an average X̄N .

X̄N has a degenerate limit distribution with all mass at one point
since X̄N

p! limE[X̄N ] by a LLN.

So rescale X̄N to standardized variate

bN = ZN =
X̄N � E[X̄N ]p

V[X̄N ]
� [0, 1].

Central Limit Theorem (CLT):
A CLT speci�es the conditions on the individual terms Xi in X̄N under
which

ZN
d! N [0, 1].

Lindeberg-Levy CLT:
Let fXig be i.i.d. with E[Xi ] = µ and V[Xi ] = σ2.

Then ZN =
p
N(X̄N � µ)/σ

d! N [0, 1].
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6. Central limit theorems

Note that

ZN = (X̄N � E[X̄N ])/
p
V[X̄N ] in general

= ∑N
i=1 (Xi � E[Xi ])/

q
∑N
i=1 V[Xi ] if Xi independent over i

=
p
N(X̄N � µ)/σ if Xi i.i.d.

The last expression can be rewritten as

X̄N � µ

σ/
p
N

d! N [0, 1].

It follows that
p
N(X̄N � µ)

d! N [0, σ2].
More generally we often �nd

p
N(bβ� β)

d! N [0,V ].
I Scale consistent bβ up by pN to get a limit distribution.
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6. Central limit theorems Multivariate central limit theorem

Multivariate central limit theorem

Consider vector XN with mean µN and variance VN

XN � [µN , VN ].

Rescale XN to standardized variate

ZN = V�1/2
N (bN � µN ) � [0, I].

Central Limit Theorem (CLT):
A CLT speci�es the conditions on the individual terms Xi in XN
under which

ZN
d! N [0, I].
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7. Some Key Results

7. Some Key Results

Probability Continuity and Continuous Mapping Theorems
Let bN be a vector of random variables, and g(�) be a continuous
real-valued function. Then

bN
p! b, a constant ) g(bN )

p! g(b) Probability Continuity

bN
d! b ) g(bN )

d! g(b) Continuous Mapping

Transformation Theorem:
If aN

d! a (a random variable) and bN
p! b (a constant), then

(i) aN + bN
d! a+ b

(ii) aNbN
d! ab

(iii) aN/bN
d! a/b, provided Pr[b = 0] = 0.

I We use especially a matrix version of (ii).

c
 A. Colin Cameron Univ. of Calif.- Davis (Frontiers in Econometrics Bavarian Graduate Program in Economics . Based on A. Colin Cameron and Pravin K. Trivedi (2009, 2010), Microeconometrics using Stata (MUS), Stata Press. and A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications (MMA), C.U.P. )BGPE Course: Asymptotic Theory March 21-25, 2011 13 / 25



7. Some Key Results

Product Limit Normal Rule:
For vector aN and matrix HN , if

aN
d! N [µ,A]

HN
p! H, where H is positive de�nite

then
HNaN

d! N [Hµ, HAH0].

Leading example is OLS:

p
N(bβ� β0) = (

1
N
X0X)�1 � 1p

N
(X0u)

d! N [A�1�0, A�1BA�10].
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8. Simulations For LLN and CLT

8. Simulations for LLN and CLT
Uniform on (0, 1) has mean 0 and variance 1/12.
Sample average of N uniforms has mean 0 and variance (1/12)/N.

x .5459987 .0511899 .4413036 .6506939

Mean Std. Err. [95% Conf. Interval]

Mean estimation Number of obs = 30

. mean x

. quietly generate x = runiform()

. set seed 10101

obs was 0, now 30
. set obs 30
. * Small sample: sample mean differs from population mean
.
. * Demonstrate CLT by simulating to obtain many averages
. * Demonstrate LLN by finding average for a very large sample
. * Draw from uniform with population mean 0.5

For N = 30: x̄ = 0.546 di¤ers appreciably from µ = 0.500.
c
 A. Colin Cameron Univ. of Calif.- Davis (Frontiers in Econometrics Bavarian Graduate Program in Economics . Based on A. Colin Cameron and Pravin K. Trivedi (2009, 2010), Microeconometrics using Stata (MUS), Stata Press. and A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications (MMA), C.U.P. )BGPE Course: Asymptotic Theory March 21-25, 2011 15 / 25



8. Simulations For LLN and CLT

x .4988239 .0009133 .4970339 .5006138

Mean Std. Err. [95% Conf. Interval]

Mean estimation Number of obs = 100000

. mean x

. quietly generate x = runiform()

. set seed 10101

obs was 0, now 100000
. set obs 100000

. clear all

. * Consistency: Large sample: sample mean is very close to population mean

For N = 100, 000: x̄ = 0.499 is very close to µ = 0.500.
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8. Simulations For LLN and CLT

(bin=40, start=.30087364, width=.00995456)
. histogram xbar, normal xtitle("xbar from many samples")

xbar 10000 .4995835 .0533809 .3008736 .6990562

Variable Obs Mean Std. Dev. Min Max

. summarize xbar

. * Summarize the 10,000 sample means and draw histogram

> onesample 30
. quietly simulate xbar = r(meanforonesample), seed(10101) reps(10000) nodots: ///
. * Run this program 10,000 times to get 10,000 sample means

7. end
6. return scalar meanforonesample = r(mean)
5. summarize x
4. generate x = runiform()
3. quietly set obs `numobs'
2. drop _all
1. args numobs

. program onesample, rclass

. * Write program to obtain sample mean for one sample of size numobs (= 30)

. * Central limit theorem

For S = 10, 000 simulations each with sample size N = 30
x̄1, x̄2, .... , x̄10000 has distribution with mean 0.4996 close to µ = 0.500
and standard deviation 0.0534, close to σ/

p
N =

p
1/12/

p
30 = 0.0527.
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8. Simulations For LLN and CLT

z = (x̄ � µ)/(σ/
p
N) = (x̄ � 0.5)/(

p
1/12/

p
30) = (x̄ � 0.5)/0.0527.

Histogram and kernel density estimate for z1, z2, .... , z10000.
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This is standard normal, as predicted by the CLT.
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9. Appendix Some Further Asymptotic Results

9. Appendix: Some Further Asymptotic Results

Alternative modes of convergence of bN to b
I Mean square: lim

N!∞
E[(bN � b)2 ] = 0.

I Chebychev�s inequality: Pr[(Z � µ)2 > k ] � σ2/k, for any k > 0.
I Almost sure: Prfωj lim bN (ω) = b(ω)g = 1.
I These imply convergence in probability.

Consequences:

I bN
p! b implies bN

d! b.
I The reverse is generally not true, unless b is a constant.
I For vector r.v.�s de�ne FN and F to be cdf�s of vectors bN and b.

Strong Law of Large Numbers (LLN):

I The convergence is instead almost surely (
as!).
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9. Appendix Some Further Asymptotic Results

Markov SLLN:
Let fXig be i.n.i.d. with E[Xi ] = µi .
If ∑∞

i=1 (E[jXi � µi j
1+δ]/i1+δ) < ∞, for some δ > 0, then

(X̄N�E[X̄N ])
as! 0.

I Relaxes i.i.d. assumption at expense of requiring existence of (1+ δ)th

absolute moment.
I Easiest to set δ = 1, so need variance.

Liapounov CLT:
Let fXig be independent with E[Xi ] = µi and V[Xi ] = σ2i .

If lim
�

∑N
i=1 E[jXi � µi j2+δ]

�
/
�

∑N
i=1 σ2i

�(2+δ)/2
= 0, for some

choice of δ > 0, then ZN
d! N [0, 1].

I The Liapounov CLT relaxes i.i.d. assumption but needs existence of
(2+ δ)th absolute moment.

Cramer-Wold Device:
If λ0bN

d! N [ , ] for all λ 6= 0 then bN
d! N [ , ].

I So prove a multivariate CLT by proving a scalar CLT for λ0bN .
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9. Appendix Sampling schemes

9. Appendix: Sampling schemes

Simple Random Sampling (SRS)
I Randomly draw (yi , xi ) from the population with equal probabilities.
I Then xi i.i.d. So xiui i.i.d. (if errors ui are i.i.d.), and x2i i.i.d.
I Can use Khinchine�s LLN and Lindeberg-Levy CLT.

Fixed regressors
I Experiment where xi are �xed and we observe the resulting random yi .
I Then xi �xed, ui i.i.d. implies xiui i.n.i.d. and x2i nonstochastic.
I Need to use Markov LLN and Liapounov CLT.

Exogenous Strati�ed Sampling
I Oversample some values of x and undersample others.
I Then xi i.n.i.d., so xiui i.n.i.d. and x2i i.n.i.d.
I Need to use Markov LLN and Liapounov CLT.

c
 A. Colin Cameron Univ. of Calif.- Davis (Frontiers in Econometrics Bavarian Graduate Program in Economics . Based on A. Colin Cameron and Pravin K. Trivedi (2009, 2010), Microeconometrics using Stata (MUS), Stata Press. and A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications (MMA), C.U.P. )BGPE Course: Asymptotic Theory March 21-25, 2011 21 / 25



9. Appendix Sampling schemes

These three di¤erent sampling schemes ultimately lead to similar
asymptotic results.

Microeconometrics often use survey data obtained by strati�ed
sampling.

The simplest results assume simple random sampling.

Big problems arise if the strati�ed sampling is Instead
Endogenous Strati�ed Sampling

I Oversample some values of y and undersample others.
I Estimators can be inconsistent.
I Leading examples are Tobit and selection models.
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9. Appendix OLS under simple random sampling

9. Appendix: OLS under simple random sampling

Scalar regressor: yi = βxi + ui .

SRS: (xi , yi ) i.i.d. with xi i.i.d. with mean µx & ui i.i.d. with mean 0.
I 1. As xiui are i.i.d. apply Khinchine�s Theorem.
Then N�1 ∑i xiui

p! E[xu] = E[x ]�E[u] = 0.
I 2. As x2i are i.i.d. apply Khinchine�s Theorem.
Then N�1 ∑i x2i

p! E[x2 ] which we assume exists.
I 3. The probability limit is obtained by combining

plim bβ = β+ plim
�

1
N ∑Ni=1 xiui
1
N ∑Ni=1 x

2
i

�

= β+
plim 1

N ∑Ni=1 xiui
plim 1

N ∑Ni=1 x
2
i

= β+ 0
E[x 2 ] = β,

using probability limit continuity (plim[aN/bN ] = a/b if b 6= 0).
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9. Appendix OLS under simple random sampling

SRS: assume xi i.i.d. with mean µx and second moment E[x
2]

and assume ui i.i.d. with mean 0 and variance σ2.
Then xiui are i.i.d. with mean E[xu] = E[x ]�E[u] = 0, and
V[xu] = E[(xu � 0)2] = E[x2u2] = E[x2]E[u2] = σ2E[x2].

I 1. Lindeberg-Levy CLT for N�1 ∑Ni=1 xiui yields

p
N
�
N�1 ∑Ni=1 xiui�0p

σ2E[x 2 ]

�
=

1p
N

∑Ni=1 xiuip
σ2E[x 2 ]

d! N [0, 1].

I 2. Convert to 1p
N

∑Ni=1 xiui

1p
N

∑Ni=1 xiui =
p

σ2E[x2 ]�
1p
N

∑Ni=1 xiuip
σ2E[x 2 ]

d!
p

σ2E[x2 ]�N [0, 1]

d! N [0, σ2E[x2 ]]

using product limit normal rule.
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9. Appendix OLS under simple random sampling

I 3. The limit distribution is obtained by combining

p
N(bβ� β) =

1p
N

∑Ni=1 xiui
1
N ∑Ni=1 x

2
i

d! N [0,σ2E[x 2 ]]
plim 1

N ∑Ni=1 x
2
i

d! N [0,σ2E[x 2 ]]
E[x 2 ]

d! N
h
0, σ2

�
E[x2 ]

��1i
using plimN�1 ∑Ni=1 x

2
i =E[x

2 ] from consistency proof
and the product normal limit rule

(or aN � bN
d! a� b if aN

d! a and bN
p! b).
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