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1. Introduction

1. Introduction

Problem: OLS inconsistent in model y; = x;B + u; if Cov[x;, uj] # 0.

Solution: Assume there are instruments z; satisfying Cov[z;, u;] = 0.

If #instruments = #regressors

> instrumental variables (V) estimator

If #instruments > #regressors then use

> two-stage least squares (2SLS)
> generalized method of moments (GMM).

Complications

> test of assumptions (exogeneity, endogeneity)
» weak instruments

© A. Colin Cameron Univ. of Calif.- Davis | BGPE Course: IV, 2SLS, GMM March 21-25, 2011 2/35



1. Introduction

Overview

Introduction.
IV, 2SLS, GMM: Definitions
Data Example

Instrumental variable methods in practice

IV Estimator Properties

Nonlinear GMM

Endogeneity in nonlinear models

O Stata

© Appendix: Instrumental Variables Intuition

© A. Colin Cameron Univ. of Calif.- Davis | BGPE Course: IV, 2SLS, GMM March 21-25, 2011 3/35



2. IV, 2SLS and GMM Estimators Definitions

2. IV, 25LS and GMM estimators: Definitions

e Model is y; = X/ + u;
» OLS is inconsistent as Cov[x;, u;] # 0.
@ Assume there are instruments z; such that Cov[z;, uj] = 0.

» Then Cov(z;, u;] = 0 = E[z;u;] = 0 given E[u;|z;] = 0.

@ We have the population moment condition

Elzi(yi — xiB)] = 0.

@ Method of moments: solve the corresponding sample moment
condition

j—Y
N 2;21 Zi(yi - X:ﬁ) =0.
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2. IV, 2SLS and GMM Estimators Instrumental Variables Estimator

Instrumental variables (IV) estimator

@ In just-identified case (# instruments = # regressors)

> solve k equations in k unknowns % Yizilyi—xig) =0
> gives the instrumental variables (IV) estimator.

- -1
By = (ZIN:]. Z;'Xi) (ZINII Z;'Yi>
— (le)flz/y
> estimate using Stata 10 command ivregress 2sls

@ Often just one regressor in x; is endogenous (i.e. correlated with u;).

» Then one variable in z; is the instrument for this endogenous regressor.
> the remaining entries in z; are the exogenous variables
> i.e. exogenous variables are instruments for themselves.
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2. IV, 2SLS and GMM Estimators GMM Estimator

Generalized method of moments estimator

@ In over-identified case (# instruments > # regressors)

» Cannot solve ﬁ Yizi(yi— XC,B) -0
> Instead generalized method of moments (GMM) estimator minimizes

the quadratic form in % 25\1:1 zi(y; — x'B)

I
g

1 ! 1
Q(B) [N Vi (vi —xiB) Z,} X Wy x [N (vi —xiB) 2
= (Z'u)yW(Z'u)
» The symmetric full-rank weighting matrix W does not depend on S.

@ Then 0Q(B)/9B = 0 yields the GMM estimator

-1
n A
:BGMM = <Z, X,'Z§ X WN X ZlNzl Z,'Xj-) (Z, X,'Z:- X WN X ZlNzl Z,'y,')

= (X'ZWNZ'X)"1X'ZWy2Zy.
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O] GHIY) e Z5LS
Optimal GMM and 2SLS

@ The variance of B\ is smallest when the optimal weighting matrix

W),y is consistent for (Var[Z'u])~!
> Though in the just-identified (r = K) GMM = IV for any Wy,.

o For homoskedastic errors Var[Z'u] = 02 YN | Z/z;

> Two-stage least squares (2SLS) estimator sets Wy = (Z,N:1 zlz;)!

> Yields Byg s = (X'Z(Z'2)"12'X) "1 x X'Z2(Z'2)"'Z'y
» Estimate using Stata 10 command ivregress 2sls
> but use robust VCE to guard against errors not homoskedastic.

o For heteroskedastic errors Var[Z'u] = 02 YV, 2/z,

» “Optimal” GMM estimator if errors are heteroskedastic errors sets
— N ~2_71_\—1 ~ __ p
Wy = (i1 47Zjzi) Ui = yj — XiPosis

> estimate using Stata 10 command ivregress gmm.
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2. IV, 2SLS and GMM Estimators More on 2SLS

More on 2SLS

@ 2SLS gets it's name because it can be computed in two-stages.

@ Suppose y; depends in part on scalar y» which is endogenous

Structural equation for y1  y1; = Byyoi + x|, + Ui
First-stage equation for y» yo; = x|, 701 + X}, 772 + v;

> where x5 is one or more instruments for y»
> in earlier notation x; = (yo; x};)" and z; = (x}; x5,)".

@ OLS of y; on y» and x1 is inconsistent.
@ 2SLS can be computed as follows

> 1. First-stage: y» as prediction from OLS of y» on x; and x;.
» 2. Structural: Do OLS of y» on ¥ and x».

@ But this method does not generalize to nonlinear models.
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Drug expenditures
3. Data Example: Drug expenditures

@ Example from MUS chapter 6.
@ Drug expenditures for U.S. elderly (1drugexp) regressed on

> endogenous private health insurance dummy (hi_empunion) and
» exogenous regressors defined by global x21ist.

Read data, define global x21ist (exogenous regressors), and summarize
. use musO6data.dta

. global x21ist totchr age female blhisp Tinc

keep if linc !'= .
(302 observations deleted)

. describe 1drugexp hi_empunion $x21ist

storage display value
variable name type format Tlabel variable Tabel
ldrugexp float %9.0g Tog(drugexp)
hi_empunion byte %8 .0g Insured thro emp/union
totchr byte  %8.0g Total chronic cond
age byte  %8.0g Age
female byte  %8.0g Female
blhisp float %9.0g Black or Hispanic
Tlinc float %9.0g Tog(income)
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3. Data Example Drug expenditures

@ Summary statistics

. summarize ldrugexp hi_empunion $x21ist

variable Obs Mean Std. Dev. Min Max
Tdrugexp 10089 6.481361 1.362052 0 10.18017
hi_empunion 10089 .3821984 .4859488 0 1
totchr 10089 1.860938 1.292858 0 9

age 10089 75.05174 6.682109 65 91

female 10089 .5770641 .4940499 0 1
bThisp 10089 .1635445 .36988 0 1

Tinc 10089 2.743275 .9131433 -6.907755 5.744476

@ Sample is 65+.
38% have employer or union-sponsored health insurance.
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3. Data Example

OLS estimates

OLS Estimates

@ OLS is inconsistent if hi_empunion endogenous

* 0LS

regress ldrugexp hi_empunion $x21ist, vce(robust)
Linear regression Number of obs = 10089
FC 6, 10082) = 376.85
Prob > F = 0.0000
R-squared = 0.1770
Root MSE = 1.236

Robust

Tdrugexp coef. std. Err. t P>|t] [95% conf. Intervall
hi_empunion .0738788 .0259848 2.84 0.004 .0229435 .1248141
totchr .4403807 .0093633 47.03  0.000 .4220268 .4587346
age -.0035295 .001937 -1.82 0.068 -.0073264 .0002675
female .0578055 .0253651 2.28 0.023 .0080848 .1075262
bT1hisp -.1513068 .0341264 -4.43  0.000 -.2182013  -.0844122
Tinc .0104815 .0137126 0.76  0.445 -.0163979 .037361
_cons 5.861131 .1571037 37.31 0.000 5.553176 6.169085

@ Drug expenditure increases by 7.4% if have private insurance.
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3. Data Example Instruments

Instruments

@ A valid instrument for private health insurance (hi_empunion) must

> not be directly a cause of 1drugexp (so uncorrelated with u;)
> i.e. must not belong in the model for 1drugexp
> and to be relevant should be correlated with hi_empunion

@ Possible instrument 1

» ssiratio = social security income < income from all other sources
> need to assume that the direct role of income is adequately captured
by the regressor 1linc

@ Possible instrument 2

» multlc = 1 if firm has multiple locations
> need to assume that firm size does not effect 1drugexp
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3. Data Example Instruments
@ Two possible instruments ssiratio and multlc

Two available instruments for hi_empunion
. describe ssiratio multic

storage display value
variable name type format Tabel variable Tlabel
ssiratio float %9.0g SSI/Income ratio
multilc byte  %8.0g Multiple Tocations

. summarize ssiratio multic

variable Obs Mean Std. Dev. Min Max
ssiratio 10089 .5365438 .3678175 0 9.25062
multlc 10089 .0620478 .2412543 0 1

. correlate hi_empunion ssiratio multic
(obs=10089)

hi_emp~n ssiratio multlc

hi_empunion 1.0000
ssiratio -0.2124 1.0000
multlc 0.1198 -0.1904 1.0000

@ Correlation between z and x is low

» e.g. Cor[z,x] = —0.21 for ssiratio
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3. Data Example IV estimates

[V estimates

@ |V estimates using the single instrument ssiratio for hi_empunion

. IV estimator with ssiratio as single instrument for hi_empunion
. ivregress 2sls T1drugexp (hi_empunion = ssiratio) $x21ist, vce(robust)

Instrumental variables (2SLS) regression Number of obs = 10089
wald chi2(6) = 2000.86
Prob > chi2 = 0.0000
R-squared = 0.0640
Root MSE = 1.3177
Robust
ldrugexp coef. std. Err. z P>|z]| [95% conf. Interval]
hi_empunion -.8975913 .2211268 -4.06 0.000 -1.330992 -.4641908
totchr .4502655 .0101969 44.16  0.000 .43028 .470251
age -.0132176 .0029977 -4.41 0.000 -.0190931 -.0073421
female -.020406 .0326114 -0.63 0.531 -.0843232 .0435113
bThisp -.2174244 .0394944 -5.51 0.000 -.294832 -.1400167
Tinc .0870018 .0226356 3.84 0.000 .0426368 .1313668
_cons 6.78717 .2688453 25.25 0.000 6.260243 7.314097
Instrumented: hi_empunion
Instruments: totchr age female blhisp linc ssiratio

o Coefficient even changes sign, from 0.074 (OLS) to —0.898 (IV).

Standard error increases from 0.026 (OLS) to 0.221 (V).
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2L esittmeies
2SLS Estimates

@ Overidentified as two instruments ssiratio and multlc

. * 2SLS estimator with ssiratio and multlic as instruments for hi_empunion
. ivregress 2sls T1drugexp (hi_empunion = ssiratio multlc) $x21ist, vce(robust)

Instrumental variables (2SLS) regression Number of obs = 10089
wald chi2(6) = 1955.36
Prob > chi2 = 0.0000
R-squared = 0.0414
Root MSE = 1.3335
Robust
ldrugexp coef. std. Err. z P>|z]| [95% conf. Interval]
hi_empunion -.9899269 .2045907 -4.84 0.000 -1.390917  -.5889365
totchr .4512051  .0103088 43.77  0.000 .4310001 .47141
age -.0141384 .0029 -4.88 0.000 -.0198223  -.0084546
female -.0278398 .0321743 -0.87 0.387 -.0909002 .0352207
bThisp -.2237087 .0395848 -5.65 0.000 -.3012934  -.1461239
Tinc .0942748 .0218841 4.31 0.000 .0513828 .1371668
_cons 6.875188 .2578855 26.66  0.000 6.369741 7.380634
Instrumented: hi_empunion
Instruments: totchr age female blhisp linc ssiratio multlc
o Coefficient changes from —0.898 (IV) to —0.990 (2SLS).
Standard error decreases from 0.221 (1V) to 0.205 (2SLS).
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Opritmel) G Esimizicce
Optimal GMM

@ Two instruments ssiratio and multlc
> optimal GMM if errors are heteroskedastic and start with E[zu] = 0.

. * GMM estimator with ssiratio and multlc as instruments for hi_empunion
. ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x21ist, vce(robust)

Instrumental variables (GMM) regression Number of obs = 10089

wald chi2(6) = 1952.65

Prob > chi2 = 0.0000

R-squared = 0.0406

GMM weight matrix: Robust Root MSE = 1.3341

Robust

Tldrugexp coef. Sstd. Err. z P>|z| [95% conf. Interval]

hi_empunion -.9932795 .2046731 -4.85 0.000 -1.394431  -.5921275

totchr .4509508 .0103104 43.74  0.000 .4307428 .4711588

age -.0141509 .0029014 -4.88 0.000 -.0198375 -.0084644

female -.0281716 .0321881 -0.88 0.381 -.0912592 .034916

bThisp -.2231048 .0395972 -5.63  0.000 -.3007139  -.1454957

Tinc .0944632 .0218959 4.31 0.000 .0515481 .1373783

_cons 6.877821 .2579974 26.66  0.000 6.372155 7.383486

Instrumented: hi_empunion

Instruments: totchr age female blhisp linc ssiratio multic

e Estimate and standard error for hi_empunion are very similar to 2SLS
» Little efficiency gain compared to 2SLS.
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SDETENSET LI  Estimator comparison

Estimator comparison
e Compare OLS, IV, 2SLS (over-identified), GMM (over-identified)

* Compare estimators
. quietly regress ldrugexp hi_empunion $x21ist, vce(robust)

. estimates store OLS

. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio multlc) $x2Tist, vce(robust)
. estimates store IV

. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x21ist, vce(robust)

. estimates store TWOSLS

. quietly ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x21ist, vce(robust)
. estimates store GMM

. estimates table OLS IV TWOSLS GMM, b(%9.4f) se(%9.3f) stats(N r2 F)

variable oLs v TWOSLS GMM
hi_empunion 0.0739 -0.9899 -0.8976 -0.9933
0.026 0.205 0.221 0.205
totchr 0.4404 0.4512 0.4503 0.4510
0.009 0.010 0.010 0.010
age -0.0035 -0.0141 -0.0132 -0.0142
0.002 0.003 0.003 0.003
female 0.0578 -0.0278 -0.0204 -0.0282
0.025 0.032 0.03 0.032
blhisp -0.1513 -0.2237 -0.2174 -0.2231
0.034 0.040 0.039 0.040
Tinc 0.0105 0.0943 0.0870 0.0945
0.014 0.022 0.023 0.022
—cons 5.8611 6.8752 6.7872 6.8778
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4. Instrumental variables in practice

4. Instrumental variables methods in practice

@ Do we need to use instruments?
» Hausman test of endogeneity.
@ Is the instrument valid (uncorrelated with the error)?
> If model is over-identified can do over-identifying restrictions test.

@ What if the instrument is weakly correlated with regressor
instrumented

> Lose efficiency
> If really weak can have finite-sample bias and wrong test size.

@ How many instruments?

> Need # instruments > # endogenous regressors.
> In theory more is better but too many can have finite-sample bias.
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4. Instrumental variables in practice Hausman test of endogeneity

Hausman test

@ In general a Hausman test considers two different estimators 9 and@
that have the same plim under Hy and different plim’s under H,.

» Hg : plim(6 — 6) = 0 versus H, : plim(8 — 6) # 0.

@ We reject Hy if the difference is large, using

H=(6-0)(V[0—8])'(6—6) < x*(q).
o Tricky bit is estimating V[0 — 8] = V[68]+ V[6] — 2x Cov[8, 6]

> usual Hausman test implementation assumes one of\a and~§ is fully
efficient under the null. Say 6: then V[0 — 6] = V[0]—V|[6]
» such efficiency is not usually the case in practice

* e.g. if errors are heteroskedastic then OLS is inefficient

> instead need to use a robust form of the Hausman test.

March 21-25, 2011 19 / 35
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4. Instrumental variables in practice Hausman test of endogeneity

e Hausman test of endogeneity: 2SLS (8) versus OLS (8)

> Hy: phm(925|_5 — BOLS) = 0 if exogeneity
vs. H : plim (85,5 — BoLs) # 0 if endogeneity

@ Use heteroskedasticity-robust version of Hausman test

> this is command estat endogenous and not hausman

* Robust version of Hausman test using augmented regression
. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x21ist, vce(robust)

. estat endogenous

Tests of endogeneity
Ho: variables are exogenous

0.0000)
0.0000)

Robust score chi2(1)
Robust regression F(1,10081)

@ Reject Hy as p = 0.000.
Conclude that hi_empunion is endogenous. Need to do IV.

24.935 (p
26.4333 (p
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4. Instrumental variables in practice Test of instrument validity

Test of instrument validity

@ Cannot test validity in a just identified model
Intuition: Test based on Cov|z;, U;] ~ 0 requires u; based on a
consistent estimator of B which requires at least just-identified model.
o Test of overidentifying restrictions (for over-identified model)
» Test Hp : E[z/u;] = 0 by testing if N~1 ¥ 2/T; ~ 0.
» Limited test as assumes instruments in just-identified model are valid.
@ In Stata command estat overid after command ivregress gmm.
> Here one over-identifying restriction (2 instruments for 1 endogenous)

* Test of overidentifying restrictions Fo‘l'lowmg ivregress gmm
. quietly ivregress gmm Tdrugexp (hi_empunion = ssiratio multlc) $x21ist, wmatrix(robust)
. estat overid

Test of overidentifying restriction:

Hansen's J chi2(1) = 1.04754 (p = 0.3061)

@ Do not reject Hy as p = 0.31 < 0.05.
Conclude that, assuming the just-identifying restriction is valid, then
the over-identifying restriction is also valid.
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4. Instrumental variables in practice FAWEELSIETGIENES

Weak instruments

@ Weak instrument means that instrument(s) are weakly correlated with
endogenous regressor(s), after controlling for exogenous regressors.
@ Then
> 1. standard errors T greatly as 2SLS much less efficient than OLS.
» 2. even slight correlation between error and the instrument can lead to
2SLS more inconsistent than OLS.
> 3. even if instrument(s) are valid so 2SLS is inconsistent, in typical
sample sizes usual asymptotic theory can provide a poor approximation
e.g. bias.

o Consequences

> 1. key coefficient estimate(s) can become statistically insignificant.
» 2. even more important to ensure that the instrument is valid.
» 3. focus of the weak instrument literature.

@ In Stata for 3. use

» command estat firststage after command ivregress
» add-on commands condivreg and ivreg2
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5. IV Estimator Properties NENEHE 1S

5. IV estimator properties: consistency

@ Stacking all observations
By = (Z,X)_l Zy.
@ Substitute y = X + u for y yields
By = (Z%) " Z'[XB+ul
= B+ (ZX) ' Zu
= B+ (54Z'X) " 4Z'u

@ So B,V 2 B and BN is consistent for B if

> plim %Z’u = 0 (instruments are valid) and
> plim %Z’X # 0 (instruments are relevant).
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AN YA ST BTG ETHES Asymptotic distribution

IV estimator: asymptotic distribution

@ Informal derivation:

Boum —B = (ZX) 7" x Z'u
2 (Z’X)"F x N0, V[Z'u]]
2 (ZX)"' x N0, Z'V[u|Z]Z]
2 (ZX) x N0, ZQZ]

@ Thus
By ~ N[B. (ZX)7'Z0Z(X'2)7); Q= V[u[z].
e With independent heteroskedastic errors (Stata option vce(robust))

V[By] = (ZX)"'Z’0z(X'2)"!; QO = Diag[?].

o Note: Cor[Z,X] = Z'X small = (Z'X)~! large = B, is imprecise.
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CINYA ST BTG ES Asymptotic distribution for GMM

Asymptotic Distribution of GMM

@ Informal derivation:

.BGMM

X'ZWZ'X)~1X'ZWZ'(XB + u)
Bomm — B

= (X X)~
(X'ZWZ'X)"1X'ZWZ'u
(X'ZWZ'X)~1X'ZW x N[0, V[Z'u]]
( )"

( )™

Qo Qn Qv ]

X'ZWZ'X)"1X'ZW x N[0, Z'V[u|Z]Z]
X'ZWZ'X)1X'ZW x N[0, Z'QZ]
@ Thus

Boum 2 NIB, (X'ZWZ'X)"1X'ZWZ'QZWZ'X(X'ZWZ'X) "]
Q = VulzZ].

@ Optimal W is a consistent estimate of Q1. Then

BOptGMM L N[B (XZQ1Z'X) 7Y
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6. Nonlinear GMM

6. Nonlinear GMM estimator: Definition
@ Nests LS, MLE, IV, GMM, .... The way to view estimation.
@ Population unconditional moment condition
Elh(w,0p)] =0; w = (y,x,2z) is all observables.
o 0 solves the corresponding sample moment condition
LYN . h(w;,8) =0.
> just-identified case (r = q) can solve for B
> over-identified case (r > q) cannot as r equations in k unknowns.
@ The generalized method of moments (GMM) estimator (for r > q)
minimizes the quadratic form in N~ Y, h(w;, 6)
1 N ! 1 v
00) = =¥, nw, 9)] Wy [N Y™ h(w;,6)
= g(6)'Wng(6)

> where g(8) = = 1 h;(0) and § =N, Wy is a symmetric full-rank
weighting matrix that does not depend on 6.
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el
Nonlinear GMM estimator: Properties

° §GMM is asymptotically normally distributed with

V[0cum] = N(G'WG) 'G'WSWG(G'WG) .

where
G = limE [aglgj‘(’")/} — imE [% N ahé(ee)/}
S = Var[V/Ngy(8)] = Var [ﬁ YN h(w;, 9)} _

@ Optimal GMM: Wy = S—! where S 2 S.

@ Similar issues as for weighted LS in the linear model.

Model choice: specify moment conditions for estimation.
Estimator choice: specify a weighting function.

Statistical inference: use robust standard errors.

Most efficient estimator: a particular choice of weighting function.
> In Stata 11 use the new command gmm.

Yy VvV VY
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7. Endogeneity in nonlinear models

e Example is y; = exp(x/B) + u; and Cov|x;, uj] # 0.

Several very different methods (and associated models) exist.

1. Nonlinear IV (often called nonlinear 2SLS) is nonlinear GMM
based on E[z;u;] =0 and W = (Z'Z) L.

2. Control function: add estimated first-stage error V; as regressor.

» differs from 1. in nonlinear models

3. Fully structural approach adds an equation for endogenous
regressors and estimates the model

» Differs from 1. and 2. in most nonlinear models and is computationally
difficult.

@ 4. The following is inconsistent in nonlinear models: get X; from first
stage regressions and estimate y; = exp(X}B) + error.

» The two-stage LS interpretation of 2SLS does not carry over to
nonlinear models.
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8. Stata commands

8. Stata commands

IV (just-identified) ivregress 2sls

2SLS (over-identified) ivregress 2sls

GMM (over-identified) ivregress gmm
Overidentifying restrictions test xtoverid

Hausman test (if i.i.d. error) hausman

Hausman test (if heteroskedastic error) estat endogenous
Weak instruments estat firststage
(plus user written commands) condivreg; ivreg2
Static panel IV xtivreg; xthaustaylor
Dynamic panel IV xtabond; xtdpdsys; xtdpd
Nonlinear GMM (new in Stata 11) gmm
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9. Appendix IV Intuition

9. Appendix: Instrumental variables Intuition

Linear regression model

> y = Bx+ u where u is an error term.

In general

> Ely|x] = Bx+ Elu|x].

Standard regression:

» assume E[u|x] = 0 i.e. regressors uncorrelated with error
> implies the following path analysis diagram

/

u

where there is no association between x and wv.
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Simplify to scalar regression of y on single regressor x (no intercept).
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9. Appendix IV Intuition

But there may be an association between regressors and errors.

Example: regression of earnings (y) on years of schooling (x).

@ The error u embodies all factors other than schooling that determine
earnings, such as ability.

@ Suppose a person has high u, due to high (unobserved) ability.

> This increases earnings, since y = Bx + u.
» But it may also increase x, since schooling is likely to be higher for
those with high ability.

So high u

> (1) directly increases y and
> (2) indirectly increases y via higher x.
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9. Appendix IV Intuition

@ The path analysis diagram becomes

where now there is an association between x and u.

@ Then y = Bx + u(x) implies
dy du
o Prac

@ OLS is inconsistent for B as it measures dy/dx, not just f3.
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9. Appendix IV Intuition

@ Assume there exists an instrument z that has the properties

» changes in z do not directly lead to changes in y
» changes in z are associated with changes in x

The path analysis diagram becomes

@ Note: z does not directly cause y, though z and y are correlated via
indirect path of z being correlated with x which in turn determines y.

Formally, z is an instrument for regressor x if

> (1) z is uncorrelated with the error u; and
> (2) z is correlated with the regressor x.
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9. Appendix IV Intuition

@ Example: a one unit change in the instrument z is associated with

» 0.2 more years of schooling (x) and
> $500 increase in annual earnings (y) (duetoz T =xT=y1.)

@ Then 0.2 years extra schooling is associated with $500 extra earnings.

» So a one year increase in schooling is associated with a
$500/0.2 = $2, 500 increase in earnings.

@ The causal estimate of B is therefore 2500.
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9. Appendix IV Intuition

@ Mathematically we estimated changes dx/dz and dy/dz and
calculated the causal estimator as

_dy/dz
v = dx/dz’

» dy/dz estimated by OLS of y on z with slope estimate (z'z)~!zy
> dx/dz estimated by OLS of x on z with slope estimate (z'z)flz’x.

@ The IV estimator is

2 (Zz)"'zy
Pv = ) ax
— (Z/x)flzly

-1
= (Z,’-V:lz;x,-) Y ziy;.
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