Review Mechanics of OLS and Matrices: Solutions

1.(a) Use

i	x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
1	1	1	$-1^{2}=1$	$-2^{2}=4$	$-1 \times-2=2$
2	2	3	$0^{2}=0$	$0^{2}=0$	$0 \times 0=0$
3	2	4	$0^{2}=0$	$1^{2}=1$	$0 \times 1=0$
4	3	4	$1^{2}=1$	$1^{2}=1$	$1 \times 1=1$
Sum	8	12	2	6	3
Average	$\bar{x}=2$	$\bar{y}=3$			

So $\bar{x}=2, \bar{y}=3, \sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}=2, \sum_{i=1}^{4}\left(y_{i}-\bar{y}\right)^{2}=6$, and $\sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=3$.
(b) $\widehat{\beta}_{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{3}{2}=1.5$;
and $\widehat{\beta}_{1}=\bar{y}-\widehat{\beta}_{2} \bar{x}=3-1.5 \times 2=0$.
(c) $\widehat{y}_{i}=0+1.5 x_{i}$ equals $1.5,3,3$ and 4.5 at $x=1,2,2$, and 3 .

This yields $\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}=(-0.5)^{2}+0^{2}+1^{2}+(-0.5)^{2}=1.5$ and hence $R^{2}=1-1.5 / 6=0.75$.
(d) $r_{x y}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} \times \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}}=\frac{3}{\sqrt{2 \times 6}}=\frac{3}{\sqrt{12}}=0.866$.

Here $r_{x y}^{2}=(3 / \sqrt{12})^{2}=9 / 12=0.75=R^{2}$ as expected.
(e) Compute $s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}=\frac{1}{2} \times 1.5=0.75$ and hence $\widehat{\mathrm{V}}\left[\widehat{\beta}_{2}\right]=0.75 / 2=0.375$.
(f) Here $t=\left(\widehat{\beta}_{2}-0\right) / s_{\widehat{\beta}_{2}}=1.5 / \sqrt{0.375}=2.449$.

Since $|t|<t .025 ; 2=4.303$ we do not reject H_{0} at significance level 0.05 .
Alternative $p=\operatorname{Pr}\left[|t|>2.449 \mid t \sim T_{2}\right]=2 \times \operatorname{ttail}(2,2.449)=2 \times 0.067=0.134$.
2.(a)-(b) Straightforward.
(c) summarize yields

Variable \|	Obs	Mean	Std. Dev.	Min	Max
y \|	4	3	1.414214	1	4
x \|	4	2	.8164966	1	3

so $\bar{x}=2, \bar{y}=3, \sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}=3 \times s_{x}^{2}=3 \times .8164966^{2}=2$ and $\sum_{i=1}^{4}\left(y_{i}-\bar{y}\right)^{2}=3 \times s_{y}^{2}=$ $3 \times 1.414214^{2}=6$.
(d) regress yields R-squared $=0.7500$ and

y	Coef.	Std. Err.	t	$p>\|t\|$	[95\% Conf	Interval]
x	1.5	. 6123724	2.45	0.134	-1.134826	4.134826
_cons	-8.88e-16	1.299038	-0.00	1.000	-5.58931	5.58931

(e) These are same as before. Also note same standard error and p-value for slope coefficient. (f) correlate yields correlation between y and x of 0.8660 .
3.(a)

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 3
\end{array}\right] \times\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{rr}
4 & 8 \\
8 & 18
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
3 \\
4 \\
4
\end{array}\right]
$$

(b)

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{rr}
4 & 8 \\
8 & 18
\end{array}\right]^{-1}=\frac{1}{72-64}\left[\begin{array}{rr}
18 & -8 \\
-8 & 4
\end{array}\right]=\frac{1}{8}\left[\begin{array}{rr}
18 & -8 \\
-8 & 4
\end{array}\right]=\frac{1}{4}\left[\begin{array}{rr}
9 & -4 \\
-4 & 2
\end{array}\right]
$$

(c)

$$
\mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 3
\end{array}\right] \times\left[\begin{array}{l}
1 \\
3 \\
4 \\
4
\end{array}\right]=\left[\begin{array}{l}
12 \\
27
\end{array}\right]
$$

(d)

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\frac{1}{4}\left[\begin{array}{rr}
9 & -4 \\
-4 & 2
\end{array}\right]\left[\begin{array}{l}
12 \\
27
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
108-108 \\
-48+54
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
0 \\
6
\end{array}\right]=\left[\begin{array}{r}
0 \\
1.5
\end{array}\right] .
$$

(e) $\widehat{\mathbf{y}}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{c}0 \\ 1.5\end{array}\right]=\left[\begin{array}{c}1.5 \\ 3 \\ 3 \\ 4.5\end{array}\right]$. So $(\mathbf{y}-\widehat{\mathbf{y}})=\left[\begin{array}{l}1 \\ 3 \\ 4 \\ 4\end{array}\right]-\left[\begin{array}{c}1.5 \\ 3 \\ 3 \\ 4.5\end{array}\right]=\left[\begin{array}{c}-0.5 \\ 0 \\ 1 \\ -0.5\end{array}\right]$.

Compute $s^{2}=\frac{1}{2}(\mathbf{y}-\widehat{\mathbf{y}})^{\prime}(\mathbf{y}-\widehat{\mathbf{y}})=\frac{1}{2}\left[\begin{array}{llll}-0.5 & 0 & 1 & -0.5\end{array}\right]\left[\begin{array}{c}-0.5 \\ 0 \\ 1 \\ -0.5\end{array}\right]=\frac{1}{2} \times 1.5=0.75$.
(f) Compute $\mathrm{V}[\widehat{\boldsymbol{\beta}}]=s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=0.75 \times \frac{1}{4}\left[\begin{array}{rr}9 & -4 \\ -4 & 2\end{array}\right]=\left[\begin{array}{rr}1.6875 & -0.75 \\ -0.75 & 0.375\end{array}\right]$.
(g) $\bar{y}=3$ so $(\mathbf{y}-\bar{y} \mathbf{e})=\left[\begin{array}{l}1 \\ 3 \\ 4 \\ 4\end{array}\right]-\left[\begin{array}{l}3 \\ 3 \\ 3 \\ 3\end{array}\right]=\left[\begin{array}{r}-2 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $(\mathbf{y}-\bar{y} \mathbf{e})^{\prime}(\mathbf{y}-\bar{y} \mathbf{e})=6$.

Compute $R^{2}=1-(\mathbf{y}-\widehat{\mathbf{y}})^{\prime}(\mathbf{y}-\widehat{\mathbf{y}}) /(\mathbf{y}-\bar{y} \mathbf{e})^{\prime}(\mathbf{y}-\bar{y} \mathbf{e})=1-1.5 / 6=0.75$.
(h) Results are the same. Note that the square root of the diagonal entries of $s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ are $\sqrt{1.6875}=1.299038$ and $\sqrt{0.375}=1.7875$, which are the standard errors given in the Stata output.
4.(a) (i) \mathbf{A} is upper triangular as only $0^{\prime} s$ below the diagonal.
(ii) \mathbf{A} is not symmetric as $\mathbf{A}^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right] \neq \mathbf{A}$.
(iii) \mathbf{A} is not orthogonal $\mathbf{A}^{\prime} \mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \neq \mathbf{I}_{2}$.
(iv) \mathbf{A} is not idempotent as $\mathbf{A} \mathbf{A}=\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right] \neq \mathbf{A}$.
(b) $|\mathbf{A}|=1 \times 1-2 \times 0=1$
$\mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|}\left[\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right]$. Check: $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(c) $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{c}x_{1}+2 x_{2} \\ x_{2}\end{array}\right]=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}$.

Positive semidefinite as $\left(x_{1}+x_{2}\right)^{2} \geq 0$ for all x_{1} and x_{2}.
Not positive definite, however, as e.g. $x_{1}=1$ and $x_{2}=-1$ gives $\left(x_{1}+x_{2}\right)^{2}=0$.
(d) Check column rank by considering linear combinations of columns:

$$
\begin{align*}
& a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow \quad \begin{array}{r}
a+b=0
\end{array} \quad \ldots(1) \tag{1}\\
& b=0
\end{align*} \quad \ldots(2) .
$$

By (2) we must have $b=0$.
But then by (1) we must have $a=0$.
So $\operatorname{Rank}[\mathbf{A}]=2$, since 2 columns are linearly independent.
5. (a) $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u})=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \mathbf{X} \boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \mathbf{u}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \mathbf{u}$.
(b) $\mathrm{E}[\widehat{\boldsymbol{\beta}}]=\mathrm{E}\left[\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W u}\right]=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W E}[\mathbf{u}]=\boldsymbol{\beta}$ as $\mathrm{E}[\mathbf{u}]=\mathbf{0}$.
(c) $\mathrm{V}[\widehat{\boldsymbol{\beta}}]=\mathrm{E}\left[\left(\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W u}\right)\left(\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W u}\right)^{\prime}\right]$
$=\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W u} \mathbf{u}^{\prime} \mathbf{W} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1}\right]=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W E}\left[\mathbf{u} \mathbf{u}^{\prime}\right] \mathbf{W} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1}$
$=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \boldsymbol{\Omega} \mathbf{W} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1}$.
(d) Yes as $\widehat{\boldsymbol{\beta}}$ is a linear transformation of the normally distributed \mathbf{u}, and linear transformations of the normal are also normally distributed.

