1. saleprice $=115017+73.77 \times$ sqfeet.
2. OLS minimizes $\sum_{i=1}^{N} u_{i}{ }^{2}=\sum_{i=1}^{N}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}$ gives $\widehat{\beta}_{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{y}\right) / \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}$ and $\widehat{\beta}_{1}=\bar{y}-\widehat{\beta}_{2} \bar{x}$.
3. By $\$ 73.77$.
4. $R^{2}=0.6175$. This is quite high for cross-section data.

This is fraction of variation explained by model: $R^{2}=\sum_{i=1}^{N}\left(\widehat{y}_{i}-\bar{y}\right)^{2} / \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}$.
5. Yes as $p=0.00<0.05$ or $t=6.60>t_{.025 ; 27}=\operatorname{invttail}(27, .025)=2.05$.
6. That $y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}$ where u_{i} are iid $\mathcal{N}\left[0, \sigma^{2}\right]$.
7. $t=\left(\widehat{\beta}_{2}-50\right) / s_{\widehat{\beta}_{2}}=(73.77-50) / 11.175=2.13$.
$p=\operatorname{ttail}(27,2.13) \times 2=.021 \times 2=.042$.
Reject $H_{0}: \beta_{\text {sqfeet }}=50$ against $H_{a}: \beta_{\text {sqfeet }} \neq 50$ as $p<.05$.
8. By $\$ 68.37$.
9. Yes as $p=0.00<0.05$ or $t=4.40>t_{.025 ; 27}=\operatorname{invttail}(22, .025)=2.07$.
10. No. All have $p>0.05$ using two-sided tests.
11. $R^{2}=0.6506$. This is not a big improvement on 0.6175 with just sqfeet as regressor.
12. Yes. $F=6.83$ has $p=0.000<0.05$.
13. Yes using R^{2}. No using \bar{R}^{2} which falls from 0.6033 to 0.5552 .

We could also do F-test on the five extra regressors (but this will lead to non-rejection of H_{0} since \bar{R}^{2} did not increase).

