Review OLS Example: Solutions

1. saleprice = $115017 + 73.77 \times$ sqfeet.

2. OLS minimizes $\sum_{i=1}^{N} u_i^2 = \sum_{i=1}^{N} (y_i - \beta_1 - \beta_2 x_i)^2$ gives $\hat{\beta}_2 = \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{y}) / \sum_{i=1}^{N} (x_i - \bar{x})^2$ and $\hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x}$.

3. By \$73.77.

4. $R^2 = 0.6175$. This is quite high for cross-section data. This is fraction of variation explained by model: $R^2 = \sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2 / \sum_{i=1}^{N} (y_i - \bar{y})^2$.

5. Yes as p = 0.00 < 0.05 or $t = 6.60 > t_{.025;27} = \text{invttail}(27, .025) = 2.05$.

6. That $y_i = \beta_1 + \beta_2 x_i + u_i$ where u_i are iid $\mathcal{N}[0, \sigma^2]$.

7. $t = (\hat{\beta}_2 - 50)/s_{\hat{\beta}_2} = (73.77 - 50)/11.175 = 2.13.$ $p = \texttt{ttail}(27, 2.13) \times 2 = .021 \times 2 = .042.$ Reject $H_0: \beta_{safeet} = 50$ against $H_a: \beta_{safeet} \neq 50$ as p < .05.

8. By \$68.37.

9. Yes as p = 0.00 < 0.05 or $t = 4.40 > t_{.025;27} = \text{invttail(22,.025)} = 2.07$.

10. No. All have p > 0.05 using two-sided tests.

11. $R^2 = 0.6506$. This is not a big improvement on 0.6175 with just sqfeet as regressor.

12. Yes. F = 6.83 has p = 0.000 < 0.05.

13. Yes using R^2 . No using \overline{R}^2 which falls from 0.6033 to 0.5552.

We could also do F-test on the five extra regressors (but this will lead to non-rejection of H_0 since \bar{R}^2 did not increase).