Assignment 1: OLS and GLS (b13)

A. Colin Cameron U.C.-Davis

Data are at http://cameron.econ.ucdavis.edu/bgpe2013

- 1. Use 2001 data in file musdata10.dta IMPORTANT: keep if year01==1
- (a) Use commands describe and summarize to describe and summarize the data.

Which of the variables private, chronic, female, and income is most highly correlated with docvis? Use command correlate.

- (b) Perform OLS regression of docvis on private, chronic, female, and income, obtaining heteroskedastic-robust standard errors.
- (c) Which variables are statistically significant at level 0.01 using two-sided tests?
- (d) Test the joint statistical significance at level 0.01 of regressors private and chronic using command test.
- (e) Do the heteroskedastic-robust standard errors differ much from default standard errors?
- (f) State in simple words the impact of private insurance on doctor visits.
- (g) Use command mfx with eyex to obtain the income elasticity of doctor visits, evaluated at the sample mean of the regressors. Is this a large or small effect?
- (h) Command egen x=mean(x) creates a variable with all observations equal to the mean of variable x. Use this command to create demeaned variables $x_i \bar{x}$ for income and $y_i \bar{y}$ for docvis. Use command regress to show that OLS of $y_i \bar{y}$ on $y_i \bar{y}$ without an intercept is equivalent to OLS of y_i on x_i with an intercept.
- 2. Consider the estimator $\widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y}$ in the multiple regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$, where \mathbf{y} is an $N \times 1$ vector, \mathbf{X} and \mathbf{Z} are $N \times k$ matrices, $\boldsymbol{\beta}$ is a $k \times 1$ vector and \mathbf{u} is an $N \times 1$ vector. We assume that both \mathbf{X} and \mathbf{Z} are fixed (for simplicity), and $\mathbf{u} \sim [\mathbf{0}, \ \sigma^2 \mathbf{I}]$. For asymptotic theory there is no need to use laws of large numbers and central limit theorems. Instead just use $\operatorname{plim} \frac{1}{N} \mathbf{Z}' \mathbf{X}$ exists, $\operatorname{plim} \frac{1}{N} \mathbf{Z}' \mathbf{u} = \mathbf{0}$ and $\frac{1}{\sqrt{N}} \mathbf{Z}' \mathbf{u} \stackrel{d}{\to} \mathcal{N}[\mathbf{0}, \ \mathbf{B}]$. To answer this question adapt the proof for OLS.
- (a) Show whether or not $\widehat{\beta}$ is consistent.
- (b) Obtain the limit distribution of $\sqrt{N}(\hat{\beta} \beta)$. [Your derivation can be brief].
- (c) Your answer in part (b) will depend in the matrix **B**. Give the likely form of **B** in terms of σ^2 , **X** and **Z**. Hence give the asymptotic distribution of $\widehat{\boldsymbol{\beta}}$ in terms of σ^2 , **X** and **Z**.
- 3. Consider the estimator $\widetilde{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{y}$ in the linear regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$, where \mathbf{y} is an $N \times 1$ vector, \mathbf{X} is an $N \times k$ matrix of constants, \mathbf{W} is a symmetric $N \times N$ matrix of constants, $\boldsymbol{\beta}$ is a $k \times 1$ vector and \mathbf{u} is an $N \times 1$ vector, and it is assumed that \mathbf{u} has mean $\mathbf{0}$ and variance matrix $\mathbf{\Omega} = \mathrm{Diag}[\sigma_i^2]$, so the error term is heteroskedastic.
- (a) Show that $\widetilde{\beta}$ is unbiased, stating clearly any assumptions.
- (b) Obtain the variance matrix of $\widetilde{\beta}$, stating clearly any assumptions.
- (c) Prove that $\widetilde{\beta}$ is consistent, stating clearly any assumptions. [Your derivation can be brief].
- (d) Obtain the limit distribution of $\sqrt{N}(\widetilde{\boldsymbol{\beta}} \boldsymbol{\beta})$, stating clearly any assumptions. [Your derivation can be brief].

- (e) Hence give the asymptotic distribution of $\widetilde{\beta}$.
- (f) State how to obtain a consistent estimate of the asymptotic variance of $\widetilde{\beta}$ even if there is no consistent estimate of Ω .
- 4. Do the same simulation using exactly the same code as that given in file ct_olsgls.do with the following single change: replace

```
generate y = 1 + 2*x + rchi2(1)-1 // demeaned chi^2 error with generate y = 1 + 2*x + abs(x)*(rchi2(1)-1)
```

- (a) What is the d.g.p. for this simulation? Give the model for y_i and the model for the error u_i .
- (b) Does the simulation show that the OLS estimator is consistent here? Explain.
- (c) Does the simulation show that the default OLS standard errors are correct here? Explain.
- (d) Do the default OLS standard errors lead to tests of the correct size? Explain.
- (e) Now repeat the same exercise but compute robust standard errors. Do these standard errors lead to tests of the correct size? Explain.
- (f) Do the robust standard errors lead to tests of the correct size? Explain.