# Econ 102 A01-A04 (Analysis of Economic Data): Cameron Fall 2022 Solutions to First Midterm Exam 

## Version A

1.(a) Histogram, discrete is best (as variable takes only four different values).
(b) No. (The command use can only read a Stata data set (more precisely Stata formatted dataset, usually with extension .dta).
(c) Take the natural logarithm (or $\ln (x))$.
(d) The variable $y$ is a standardized $z$-score with sample mean $0 \&$ sample standard deviation 1.
(e) $\sum_{i=1}^{3}\left(5+2 i^{2}\right)=\left(5+2 \times 1^{2}\right)+\left(5+2 \times 2^{2}\right)+\left(5+2 \times 3^{2}\right)=7+13+23=43$.
(f) $\bar{x}=(1+2+3+6) / 4=3$.
$s^{2}=\frac{1}{3}\left\{(1-3)^{2}+(2-3)^{2}+(3-3)^{2}+(6-3)^{2}\right\}=\frac{1}{3}\{4+1+0+9\}=14 / 3=4.667$.
2.(a) Lower quartile is 30 .
(b) No. There is very mild skewness. skewness $=0.389$ is not too different from zero and mean $=39.6$ is close to median=37.
(c) Box plot.
(d) A 90 percent confidence interval is $39.632 \pm t_{1193, .05} \times 10.586 / \sqrt{1194}=$
$=39.632 \pm 1.646 \times 0.3064=39.632 \pm 0.5043=(39.13,40.14)$.
(e) mean age
(f) $H_{0}: \mu=39$ against $H_{0}: \mu \neq 39$ at level 0.05 .
$t=(39.632-39) /(10.586 / \sqrt{1194})=0.632 / 0.3064=2.063$.
Since $|t|=2.063>t_{1193, .025}=1.962$ reject $H_{0}$.
We reject $H_{0}: \mu=39$ at significance level .05 .
3.(a) One point each. (1) Common mean $\mathrm{E}\left[X_{i}\right]=\mu$; (2) Common variance $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$;
(3) Independence of the $X_{i}$.
(b) $\mu=\mathrm{E}[X]=0.1 \times 2+0.6 \times 5+0.3 \times 6=0.2+3.0+1.8=5$.
$\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]=0.1 \times(2-5)^{2}+0.3 \times(5-5)^{2}+0.3 \times(6-5)^{2}$
$=0.1 \times 9+0.3 \times 0+0.3 \times 1=0.9+0+0.3=1.2$.
(c) The mean of variable $u$ is 0.5 since it is uniformly distributed on the interval $(0,1)$.
(d) Not surprising. For a $95 \%$ confidence interval we expect roughly $95 \%$ of 1000 or 950 to include $\mu$, so 50 do not include $\mu$. 60 is quite close.
(e) $\bar{X}$ has mean 200, variance $100 / 25=4$ and standard deviation $\sqrt{4}=2$.

## Multiple Choice for Version A

$$
\left.\begin{array}{cccccc}
\text { Question } & \text { 1. } & \text { 2. } & \text { 3. } & \text { 4. } & \text { 5. } \\
\text { Answer Version A } & c & b & c & a & b
\end{array}\right) \text { is } 100 \pm 1 \times \sqrt{25} .
$$

The course grade will be based on a curve from the combined scores of midterm 1 (20\%), midterm $2(20 \%)$, final ( $40 \%$ ), and assignments ( $20 \%$ ). The curve for this exam is only a guide. Curve for this exam has average GPA 2.79.

| Scores out of | 35 |
| :--- | :--- |
| $75 t h$ percentile | $31.5(90 \%)$ |
| Median | $30(86 \%)$ |
| 25th percentile | $26.5(76 \%)$ |


| A+ | 34 and above | C+ | 26.5 and above |
| :--- | :--- | :--- | :--- |
| A | 32 and above | C | 25.5 and above |
| A- | 31 and above | C- | 24 and above |
| B+ | 30 and above | D+ | 22 and above |
| B | 29 and above | D | 20 and above |
| B- | 28 and above | D- | 18 and above |

## Version B of 102A

1.(a) $\bar{x}=(1+5+6+8) / 4=5$.
$s^{2}=\frac{1}{3}\left\{(1-5)^{2}+(5-5)^{2}+(6-5)^{2}+(8-5)^{2}\right\}=\frac{1}{3}\{16+0+1+9\}=26 / 3=8.667$.
(b) $\sum_{i=1}^{3}\left(2+\frac{6}{i}\right)=\left(2+\frac{6}{1}\right)+\left(2+\frac{6}{2}\right)+\left(2+\frac{6}{3}\right)=8+5+4=17$
(c) The variable $y$ is a standardized z-score with sample mean $0 \&$ sample standard deviation 1.
(d) No. (The command use can only read a Stata data set (more precisely Stata formatted dataset, usually with extension .dta).
(e) Histogram, discrete is best (as variable takes only four different values).
(f) Take the natural logarithm (or $\ln (x))$.
2.(a) Upper quartile is 49.
(b) No. There is very mild skewness. skewness $=0.355$ is not too different from zero and mean=39.8 is close to median=39.
(c) Box plot.
(d) A 99 percent confidence interval is $39.776 \pm t_{919,005} \times 10.675 / \sqrt{920}=$
$=39.776 \pm 2.581 \times 0.3519=39.776 \pm 0.908=(38.87,40.68)$.
(e) mean age
(f) $H_{0}: \mu=40$ against $H_{0}: \mu \neq 40$ at level 0.05 .
$t=(39.776-40) /(10.675 / \sqrt{920})=-0.224 / 0.3519=-0.637$.
Since $|t|=0.637<t_{919,025}=1.963$ do not reject $H_{0}$.
We do not reject $H_{0}: \mu=40$ at significance level .05 .
3.(a) $\mu=\mathrm{E}[X]=0.3 \times 2+0.5 \times 4+0.2 \times 7=0.6+2+1.4=4$.
$\sigma^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]=0.3 \times(2-4)^{2}+0.5 \times(4-4)^{2}+0.2 \times(7-4)^{2}$
$=0.3 \times 4+0.5 \times 0+0.2 \times 9=1.2+0+1.8=3$.
(b) The mean of variable x is $\frac{1}{6}=0.1667$ since $x=1$ with probability $\frac{1}{6}$ and $x=0$ with probability $\frac{5}{6}$.
(c) $\bar{X}$ has mean 300 , variance $400 / 16=25$ and standard deviation $\sqrt{25}=5$
(d) Surprising. For a $95 \%$ confidence interval we expect roughly $95 \%$ of 1000 or 950 to include $\mu$. 40 is very different from 950.
(e) One point each. (1) Common mean $\mathrm{E}\left[X_{i}\right]=\mu$; (2) Common variance $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$;
(3) Independence of the $X_{i}$.

## Multiple Choice for Version B

$$
\begin{array}{ccccccc}
\text { Question } & \text { 1. } & \text { 2. } & \text { 3. } & \text { 4. } & \text { 5. } & 1 . \text { is } 400 \pm 1 \times \sqrt{100} . \\
\text { Answer Version B } & d & a & c & a & b & \text {. }
\end{array}
$$

The course grade will be based on a curve from the combined scores of midterm 1 (20\%), midterm $2(20 \%)$, final ( $40 \%$ ), and assignments ( $20 \%$ ). The curve for this exam is only a guide. Curve for this exam has average GPA 3.79.

| Scores out of | 35 |
| :--- | :--- |
| 75th percentile | $31.5(90 \%)$ |
| Median | $30(86 \%)$ |
| 25th percentile | $26.5(76 \%)$ |


| A+ | 34 and above | C+ | 26.5 and above |
| :--- | :--- | :--- | :--- |
| A | 32 and above | C | 25.5 and above |
| A- | 31 and above | C- | 24 and above |
| B+ | 30 and above | D+ | 22 and above |
| B | 29 and above | D | 20 and above |
| B- | 28 and above | D- | 18 and above |

