Review of Matrix Algebra for Regression

A.Colin Cameron
Department of Economics
University of California - Davis
accameron@ucdavis.edu

May 8, 2008

Abstract

This provides a review of key matrix algebra / linear algebra results. The most essential results are given first. More complete results are given in e.g. Greene Appendix A.

Contents

1 Matrices and Vectors 2
2 Types of matrices 2
3 Operators 3
4 Inverse of 2×2 matrix 4
5 Determinant 4
6 Inverse 5
7 Rank of a matrix 6
8 Positive definite matrices 7
9 Matrix differentiation 7

1 Matrices and Vectors

Matrix: A is an $m \times n$ matrix with m rows and n columns

$$
\underset{(m \times n)}{\mathbf{A}}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{m n} & \cdots & \cdots & a_{m n}
\end{array}\right]
$$

The typical element is $a_{i j}$ in the $i^{\text {th }}$ row and $j^{\text {th }}$ column. A 2×3 example is

$$
\underset{(2 \times 3)}{\mathbf{A}}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
4 & -1 & 2
\end{array}\right] .
$$

Column vector: Matrix with one column ($n=1$)

$$
\underset{(m \times 1)}{\mathbf{a}}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right]
$$

Row vector: Matrix with one row ($m=1$)

$$
\underset{(1 \times n)}{\mathbf{a}}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]
$$

Vectors are often defined to be column vectors in econometrics. In particular the parameter vector

$$
\underset{(k \times 1)}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right] .
$$

2 Types of matrices

Addition: Can add matrices that are of the same dimension. i.e. both are $m \times n$.
Then $i j^{\text {th }}$ element of $\mathbf{A}+\mathbf{B}$ equals $\mathbf{A}_{i j}+\mathbf{B}_{i j}$.

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
4 & -1 & 2
\end{array}\right]+\left[\begin{array}{lll}
3 & 1 & 0 \\
4 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
4 & 3 & 0 \\
8 & 0 & 4
\end{array}\right] .
$$

Subtraction: Add minus the matrix.
Multiplication: Can multiply $\mathbf{A} \times \mathbf{B}$ if

$$
\text { Number of columns in } \mathbf{A}=\text { Number of rows in } \mathbf{B} \text {. }
$$

If \mathbf{A} is $m \times n$ and \mathbf{B} is $n \times p$ then $\mathbf{A} \times \mathbf{B}$ is $m \times p$.
The $i j^{\text {th }}$ element of $\mathbf{A} \times \mathbf{B}$ is the inner product of the $i^{\text {th }}$ row of \mathbf{A} and the $j^{\text {th }}$ column of \mathbf{B}.

$$
\{\mathbf{A} \times \mathbf{B}\}_{i j}=\sum_{k=1}^{p} a_{i k} b_{i k} .
$$

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{ll}
7 & 10 \\
8 & 11 \\
9 & 12
\end{array}\right] } & =\left[\begin{array}{ll}
1 \times 7+2 \times 8+3 \times 9 & 1 \times 10+2 \times 11+3 \times 12 \\
4 \times 7+5 \times 8+6 \times 9 & 4 \times 10+5 \times 11+6 \times 12
\end{array}\right] \\
& =\left[\begin{array}{cc}
7+16+27 & 10+22+36 \\
28+40+54 & 40+55+72
\end{array}\right]=\left[\begin{array}{cc}
50 & 68 \\
122 & 167
\end{array}\right]
\end{aligned}
$$

Division: Does not exist. Instead multiply by the inverse of the matrix.
Transpose: Converts rows of matrix into columns. Denoted \mathbf{A}^{T} or \mathbf{A}^{\prime}.
If \mathbf{A} is $m \times n$ with $i j$ entry $a_{i j}$ then \mathbf{A}^{\prime} is $n \times m$ with $i j$ entry $a_{j i}$.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

If $\mathbf{A B}$ exists then

$$
(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime} .
$$

3 Operators

Square matrix: A is $n \times n$ (same number of rows as columns).
Diagonal matrix: Square matrix with all off-diagonal terms equal to 0 .
Block-diagonal matrix: Square matrix with off-diagonal blocks equal to
0. e.g. $\left[\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}\end{array}\right]$.

Identity matrix: Diagonal matrix with diagonal terms equal to 1 .

$$
\underset{(n \times n)}{\mathbf{I}}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \cdots & \cdots & 1
\end{array}\right]
$$

Then $\mathbf{A} \times \mathbf{I}=\mathbf{A}$ and $\mathbf{I} \times \mathbf{B}=\mathbf{B}$ for conformable matrices \mathbf{A} and \mathbf{B}.
Orthogonal matrix: Square matrix such that $\mathbf{A}^{\prime} \mathbf{A}=\mathbf{I}$.
Idempotent matrix: Square matrix such that $\mathbf{A} \times \mathbf{A}=\mathbf{A}$.
Positive definite matrix: Square matrix \mathbf{A} such that $\mathbf{x}^{\prime} \mathbf{A x}>0$ for all vector $\mathbf{x} \neq \mathbf{0}$.
Nonsingular matrix: Square matrix A with inverse that exists (also called full rank matrix).

4 Inverse of 2×2 matrix

Matrix inverse: Inverse \mathbf{A}^{-1} of the square matrix \mathbf{A} is a matrix such that

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} .
$$

For a 2×2 matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example:

$$
\left[\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right]^{-1}=\frac{1}{4 \times 3-2 \times 1}\left[\begin{array}{cc}
3 & -2 \\
-1 & 4
\end{array}\right]=\left[\begin{array}{cc}
0.3 & -0.2 \\
-0.1 & 0.4
\end{array}\right]
$$

Check:

$$
\begin{aligned}
{\left[\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
0.3 & -0.2 \\
-0.1 & 0.4
\end{array}\right] } & =\left[\begin{array}{ll}
4 \times 0.3+2 \times(-0.1) & 4 \times(-0.2)+2 \times 0.4 \\
1 \times 0.3+2 \times(-0.1) & 1 \times(-0.2)+3 \times 0.4
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

5 Determinant

For inversion of larger matrices we first introduce determinant.
The determinant is important as inverse of matrix exists only if $|\mathbf{A}| \neq 0$.
Determinant: $|\mathbf{A}|$ or $\operatorname{det} \mathbf{A}$ is a scalar measure of a square $n \times n$ matrix A that can be computed in the following recursive way.

$$
|\mathbf{A}|=a_{i 1} c_{i 1}+a_{i 2} c_{i 2}+\cdots+a_{i n} c_{i n} \text { (for any choice of row } i \text {) }
$$

where $c_{i j}$ are the cofactors:

$$
\begin{aligned}
a_{i j} & =i j^{t h} \text { element of } \mathbf{A} \\
c_{i j} & =i j^{\text {th }} \text { cofactor of } \mathbf{A} \\
& =(-1)^{i+j}\left|\mathbf{A}_{i j}\right| \\
\left|\mathbf{A}_{i j}\right| & =\text { minor of } \mathbf{A}
\end{aligned}
$$

Minor: The minor of \mathbf{A} is the determinant of $(n-1) \times(n-1)$ matrix formed by deleting the $i^{t h}$ row and $j^{\text {th }}$ column of \mathbf{A}.
Determinant of 2×2 matrix example:

$$
\begin{aligned}
& \left|\begin{array}{cc}
5 & 6 \\
8 & 10
\end{array}\right|=5 \times(-1)^{1+1} \times 10+6 \times(-1)^{1+2} \times 8=50-48=2 . \\
& \\
& \left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|=a \times(-1)^{1+1} \times d+b \times(-1)^{1+2} \times c=a d-b c .
\end{aligned}
$$

Determinant of 3×3 matrix example:

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|= & 1 \times(-1)^{1+1} \times\left|\begin{array}{cc}
5 & 6 \\
8 & 10
\end{array}\right|+2 \times(-1)^{1+2} \times\left|\begin{array}{cc}
4 & 6 \\
7 & 10
\end{array}\right| \\
& +3 \times(-1)^{1+3} \times\left|\begin{array}{cc}
4 & 5 \\
7 & 8
\end{array}\right| \\
= & 1 \times(50-48)-2 \times(40-42)+3 \times(32-35) \\
= & 2+4-9 \\
= & -3
\end{aligned}
$$

6 Inverse

Matrix inverse: Inverse \mathbf{A}^{-1} of the square matrix \mathbf{A} is a matrix such that

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

The inverse is the transpose of the matrix of cofactors divided by the determinant.

$$
\mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|}\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right] \text { where } c_{i j} \text { are the cofactors. }
$$

Inverse of $n \times n$ matrix \mathbf{A} exists if and only if any of the following

$$
\operatorname{rank}(\mathbf{A})=n
$$

\mathbf{A} is nonsingular

$$
|\mathbf{A}| \neq \mathbf{0}
$$

7 Rank of a matrix

Rank: Consider $m \times n$ matrix \mathbf{A} that is not necessarily square.

$$
\begin{aligned}
\operatorname{rank}(\mathbf{A}) & =\text { maximum number of linearly independent rows } \\
& =\text { maximum number of linearly independent columns } \\
& \leq \min (m, n)
\end{aligned}
$$

Let

$$
\mathbf{A}=\left[\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{n}\right] \text { where } \mathbf{a}_{i} \text { is the } i^{\text {th }} \text { column of } \mathbf{A}
$$

Then if the only solution to

$$
\lambda_{1} \mathbf{a}_{1}+\lambda_{2} \mathbf{a}_{2}+\cdots+X_{n} \mathbf{a}_{n}=\mathbf{0}
$$

is $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$ then $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent. If at least one λ is nonzero then they are linearly dependent.

This is important because if $\operatorname{rank}(\mathbf{A})=n$ and \mathbf{x} is $n \times 1$ then
(1) the system of equations $\mathbf{A} \mathbf{x}=\mathbf{b}$ has a unique nonzero solution for \mathbf{x}.
(2) the system of equations $\mathbf{A x}=\mathbf{0}$ has no solution for \mathbf{x} other than $\mathbf{x}=\mathbf{0}$.

In particular for ordinary least squares the estiamting equations are

$$
\mathbf{X}^{\prime} \mathbf{X} \widehat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}
$$

To solve for $k \times 1$ vector $\widehat{\boldsymbol{\beta}}$ need $\operatorname{rank}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=k$ which in turn requires $\operatorname{rank}(\mathbf{X})=k$.

8 Positive definite matrices

Quadratic form: The scalar $\mathbf{x}^{\prime} \mathbf{A x}$ based on a symmetric matrix.

$$
\begin{aligned}
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}= & {\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] } \\
= & a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+\cdots+2 a_{1 n} x_{1} x_{n} \\
& +a_{22} x_{1}^{2}+2 a_{23} x_{2} x_{3}+\cdots+2 a_{2 n} x_{2} x_{n} \\
& +\cdots+a_{n n} x_{n}^{2} .
\end{aligned}
$$

Positive definite matrix: $\mathrm{x}^{\prime} \mathbf{A x}>0$ for all $\mathrm{x} \neq \mathbf{0}$.
Positive semidefinite matrix: $\mathrm{x}^{\prime} \mathbf{A x} \geq 0$ for all $\mathrm{x} \neq \mathbf{0}$.
Variance matrix: The variance matrix of a vector random variable is always positive semidefinite, and is positive definite if there is no linear dependence among the components of \mathbf{x}.

A useful propery is that if a matrix \mathbf{A} is symmetric and positive definite a nonsingular matrix \mathbf{P} exists such that

$$
\mathbf{A}=\mathbf{P P}^{\prime}
$$

9 Matrix differentiation

This is initially for reference only. Use when obtain estimating equaitons.
There are rules for ways to store e.g. derivative of a vector with respect to a vector.
The starting point is that the derivative of a scalar with respect to a column vector is a column vector, and the derivative of a scalar with respect to a row vector is a row vector.

Let \mathbf{b} be an $n \times 1$ column vector.

1. Differentiation of scalar wrt column vector.

Let $f(\mathbf{b})$ be a scalar function of \mathbf{b}.

$$
\frac{\partial \mathbf{f}(\mathbf{b})}{\partial \mathbf{b}}=\left[\begin{array}{c}
\frac{\partial \mathbf{f} \mathbf{(b)}}{\partial b_{1}} \\
\vdots \\
\frac{\partial \mathbf{f} \mathbf{(b)}}{\partial b_{n}}
\end{array}\right]
$$

2. Differentiation of row vector wrt column vector.

Let $\mathbf{f}(\mathbf{b})$ be a $m \times 1$ row function of \mathbf{b}.

$$
\mathbf{f}(\mathbf{b})=\left[\begin{array}{lll}
f_{1}(\mathbf{b}) & \cdots & f_{m}(\mathbf{b})
\end{array}\right]
$$

Then

$$
\begin{aligned}
\frac{\partial \mathbf{f}(\mathbf{b})}{\partial \mathbf{b}} & =\left[\begin{array}{lll}
\frac{\partial f_{1}(\mathbf{b})}{\partial \mathbf{b}} & \cdots & \frac{\partial f_{m}(\mathbf{b})}{\partial \mathbf{b}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{1}(\mathbf{b})}{\partial b_{1}} & \cdots & \frac{\partial f_{m}(\mathbf{b})}{\partial b_{1}} \\
\vdots & & \vdots \\
\frac{\partial f_{1}(\mathbf{b})}{\partial b_{n}} & & \frac{\partial f_{m}(\mathbf{b})}{\partial b_{n}}
\end{array}\right]
\end{aligned}
$$

3. Second derivative of scalar function $f(\mathbf{b})$ with respect to column vector.

$$
\left.\left.\begin{array}{rl}
\frac{\partial^{2} f(\mathbf{b})}{\partial \mathbf{b} \partial \mathbf{b}^{\prime}} & =\frac{\partial}{\partial \mathbf{b}}\left(\frac{\partial f(\mathbf{b})}{\partial \mathbf{b}^{\prime}}\right) \\
& =\frac{\partial}{\partial \mathbf{b}}\left[\frac{\partial f(\mathbf{b})}{\partial b_{1}}\right.
\end{array} \cdots \frac{\partial f(\mathbf{b})}{\partial b_{n}}\right]\right] .\left[\begin{array}{ccc}
\frac{\partial}{\partial \mathbf{b}}\left(\frac{\partial f(\mathbf{b})}{\partial b_{1}}\right) & \cdots & \frac{\partial}{\partial \mathbf{b}}\left(\frac{\partial f(\mathbf{b})}{\partial b_{n}}\right)
\end{array}\right] .
$$

4. Chain rule for $f()$ scalar and \mathbf{x} and \mathbf{z} column vectors.

Suppose $f(\mathbf{x})=f(g(\mathbf{x}))=f(\mathbf{z})$ where $\mathbf{z}=g(\mathbf{x})$. Then

$$
\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}=\frac{\partial \mathbf{z}^{\prime}}{\partial \mathbf{x}} \times \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}}
$$

