Review of Matrix Algebra for Regression

A.Colin Cameron Department of Economics University of California - Davis accameron@ucdavis.edu

May 8, 2008

Abstract

This provides a review of key matrix algebra / linear algebra results. The most essential results are given first. More complete results are given in e.g. Greene Appendix A.

Contents

1	Matrices and Vectors	2
2	Types of matrices	2
3	Operators	3
4	Inverse of 2x2 matrix	4
5	Determinant	4
6	Inverse	5
7	Rank of a matrix	6
8	Positive definite matrices	7
9	Matrix differentiation	7

1 Matrices and Vectors

Matrix: A is an $m \times n$ matrix with m rows and n columns

$$\mathbf{A}_{(m \times n)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{mn} & \cdots & \cdots & a_{mn} \end{bmatrix}$$

The typical element is a_{ij} in the i^{th} row and j^{th} column. A 2 × 3 example is

$$\mathbf{A}_{(2\times3)} = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 4 & -1 & 2 \end{array} \right].$$

Column vector: Matrix with one column (n = 1)

$$\mathbf{a}_{(m\times 1)} = \begin{bmatrix} a_1\\a_2\\\vdots\\a_m \end{bmatrix}$$

Row vector: Matrix with one row (m = 1)

$$\mathbf{a}_{(1\times n)} = \left[\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array}\right]$$

Vectors are often defined to be column vectors in econometrics. In particular the parameter vector

$$\boldsymbol{\beta}_{(k\times 1)} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}.$$

2 Types of matrices

Addition: Can add matrices that are of the same dimension. i.e. both are $m \times n$.

Then ij^{th} element of $\mathbf{A} + \mathbf{B}$ equals $\mathbf{A}_{ij} + \mathbf{B}_{ij}$.

$$\begin{bmatrix} 1 & 2 & 0 \\ 4 & -1 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 1 & 0 \\ 4 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 0 \\ 8 & 0 & 4 \end{bmatrix}.$$

Subtraction: Add minus the matrix. **Multiplication:** Can multiply $\mathbf{A} \times \mathbf{B}$ if

Number of columns in $\mathbf{A} =$ Number of rows in \mathbf{B} .

If **A** is $m \times n$ and **B** is $n \times p$ then $\mathbf{A} \times \mathbf{B}$ is $m \times p$. The ij^{th} element of $\mathbf{A} \times \mathbf{B}$ is the inner product of the i^{th} row of **A** and the j^{th} column of **B**.

$$\left\{\mathbf{A}\times\mathbf{B}\right\}_{ij} = \sum_{k=1}^{p} a_{ik} b_{ik}.$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 1 \times 7 + 2 \times 8 + 3 \times 9 & 1 \times 10 + 2 \times 11 + 3 \times 12 \\ 4 \times 7 + 5 \times 8 + 6 \times 9 & 4 \times 10 + 5 \times 11 + 6 \times 12 \end{bmatrix}$$
$$= \begin{bmatrix} 7 + 16 + 27 & 10 + 22 + 36 \\ 28 + 40 + 54 & 40 + 55 + 72 \end{bmatrix} = \begin{bmatrix} 50 & 68 \\ 122 & 167 \end{bmatrix}.$$

Division: Does not exist. Instead multiply by the inverse of the matrix. **Transpose:** Converts rows of matrix into columns. Denoted \mathbf{A}^T or \mathbf{A}' . If \mathbf{A} is $m \times n$ with ij entry a_{ij} then \mathbf{A}' is $n \times m$ with ij entry a_{ji} .

$$\left[\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]' = \left[\begin{array}{rrrr} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array}\right].$$

If **AB** exists then

$$(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'.$$

3 Operators

Square matrix: A is $n \times n$ (same number of rows as columns). Diagonal matrix: Square matrix with all off-diagonal terms equal to 0. Block-diagonal matrix: Square matrix with off-diagonal blocks equal to 0. e.g. $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$.

Identity matrix: Diagonal matrix with diagonal terms equal to 1.

$$\mathbf{I}_{(n \times n)} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 \end{bmatrix}.$$

Then $\mathbf{A} \times \mathbf{I} = \mathbf{A}$ and $\mathbf{I} \times \mathbf{B} = \mathbf{B}$ for conformable matrices \mathbf{A} and \mathbf{B} .

Orthogonal matrix: Square matrix such that $\mathbf{A}'\mathbf{A} = \mathbf{I}$.

Idempotent matrix: Square matrix such that $\mathbf{A} \times \mathbf{A} = \mathbf{A}$.

Positive definite matrix: Square matrix A such that $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all vector $\mathbf{x} \neq \mathbf{0}$.

Nonsingular matrix: Square matrix **A** with inverse that exists (also called full rank matrix).

4 Inverse of 2x2 matrix

Matrix inverse: Inverse A^{-1} of the square matrix A is a matrix such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

For a 2×2 matrix

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right].$$

Example:

$$\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}^{-1} = \frac{1}{4 \times 3 - 2 \times 1} \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 0.3 & -0.2 \\ -0.1 & 0.4 \end{bmatrix}.$$

Check:

$$\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 0.3 & -0.2 \\ -0.1 & 0.4 \end{bmatrix} = \begin{bmatrix} 4 \times 0.3 + 2 \times (-0.1) & 4 \times (-0.2) + 2 \times 0.4 \\ 1 \times 0.3 + 2 \times (-0.1) & 1 \times (-0.2) + 3 \times 0.4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

5 Determinant

For inversion of larger matrices we first introduce determinant. The determinant is important as inverse of matrix exists only if $|\mathbf{A}| \neq 0$. **Determinant:** $|\mathbf{A}|$ or det \mathbf{A} is a scalar measure of a square $n \times n$ matrix \mathbf{A} that can be computed in the following recursive way.

$$|\mathbf{A}| = a_{i1}c_{i1} + a_{i2}c_{i2} + \dots + a_{in}c_{in} \text{ (for any choice of row } i)$$

where c_{ij} are the **cofactors:**

$$\begin{array}{rcl} a_{ij} &=& ij^{th} \text{ element of } \mathbf{A} \\ c_{ij} &=& ij^{th} \operatorname{\mathbf{cofactor}} \text{ of } \mathbf{A} \\ &=& (-1)^{i+j} |\mathbf{A}_{ij}| \\ \mathbf{A}_{ij}| &=& \operatorname{minor} \text{ of } \mathbf{A} \end{array}$$

Minor: The minor of **A** is the determinant of $(n-1) \times (n-1)$ matrix formed by deleting the i^{th} row and j^{th} column of **A**. Determinant of 2×2 matrix example:

$$\begin{vmatrix} 5 & 6 \\ 8 & 10 \end{vmatrix} = 5 \times (-1)^{1+1} \times 10 + 6 \times (-1)^{1+2} \times 8 = 50 - 48 = 2.$$
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \times (-1)^{1+1} \times d + b \times (-1)^{1+2} \times c = ad - bc.$$

Determinant of 3×3 matrix example:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \times (-1)^{1+1} \times \begin{vmatrix} 5 & 6 \\ 8 & 10 \end{vmatrix} + 2 \times (-1)^{1+2} \times \begin{vmatrix} 4 & 6 \\ 7 & 10 \end{vmatrix}$$
$$+ 3 \times (-1)^{1+3} \times \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$$
$$= 1 \times (50 - 48) - 2 \times (40 - 42) + 3 \times (32 - 35)$$
$$= 2 + 4 - 9$$
$$= -3.$$

6 Inverse

Matrix inverse: Inverse A^{-1} of the square matrix A is a matrix such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

The inverse is the transpose of the matrix of cofactors divided by the determinant.

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{bmatrix} \text{ where } c_{ij} \text{ are the cofactors.}$$

Inverse of $n \times n$ matrix **A** exists if and only if any of the following

$$\operatorname{rank}(\mathbf{A}) = n$$

 \mathbf{A} is nonsingular
 $|\mathbf{A}| \neq \mathbf{0}$

7 Rank of a matrix

Rank: Consider $m \times n$ matrix **A** that is not necessarily square.

$$rank(\mathbf{A}) = maximum number of linearly independent rows$$

= maximum number of linearly independent columns
 $\leq min(m, n)$

Let

$$\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_n]$$
 where \mathbf{a}_i is the i^{th} column of \mathbf{A}

Then if the only solution to

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_n \mathbf{a}_n = \mathbf{0}$$

is $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ then $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent. If at least one λ is nonzero then they are linearly dependent.

This is important because if $\operatorname{rank}(\mathbf{A}) = n$ and \mathbf{x} is $n \times 1$ then (1) the system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique nonzero solution for \mathbf{x} . (2) the system of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ has no solution for \mathbf{x} other than $\mathbf{x} = \mathbf{0}$.

In particular for ordinary least squares the estiamting equations are

$$\mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}.$$

To solve for $k \times 1$ vector $\hat{\boldsymbol{\beta}}$ need rank $(\mathbf{X}'\mathbf{X}) = k$ which in turn requires rank $(\mathbf{X}) = k$.

8 Positive definite matrices

Quadratic form: The scalar $\mathbf{x}' \mathbf{A} \mathbf{x}$ based on a symmetric matrix.

$$\mathbf{x'Ax} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= a_{11}x_1^2 + 2a_{12}x_1x_2 + \cdots + 2a_{1n}x_1x_n$$
$$+ a_{22}x_1^2 + 2a_{23}x_2x_3 + \cdots + 2a_{2n}x_2x_n$$
$$+ \cdots + a_{nn}x_n^2.$$

Positive definite matrix: $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$. Positive semidefinite matrix: $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \neq \mathbf{0}$.

Variance matrix: The variance matrix of a vector random variable is always positive semidefinite, and is positive definite if there is no linear dependence among the components of \mathbf{x} .

A useful property is that if a matrix \mathbf{A} is symmetric and positive definite a nonsingular matrix \mathbf{P} exists such that

$$\mathbf{A}=\mathbf{P}\mathbf{P}^{\prime}.$$

9 Matrix differentiation

This is initially for reference only. Use when obtain estimating equaitons. There are rules for ways to store e.g. derivative of a vector with respect to a vector.

The starting point is that the derivative of a scalar with respect to a column vector is a column vector, and the derivative of a scalar with respect to a row vector is a row vector.

Let **b** be an $n \times 1$ column vector.

1. Differentiation of scalar wrt column vector. Let $f(\mathbf{b})$ be a scalar function of \mathbf{b} .

$$\frac{\partial \mathbf{f}(\mathbf{b})}{\partial \mathbf{b}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{b})}{\partial b_1} \\ \vdots \\ \frac{\partial \mathbf{f}(\mathbf{b})}{\partial b_n} \end{bmatrix}$$

2. Differentiation of row vector wrt column vector. Let $\mathbf{f}(\mathbf{b})$ be a $m \times 1$ row function of \mathbf{b} .

$$\mathbf{f}(\mathbf{b}) = \begin{bmatrix} f_1(\mathbf{b}) & \cdots & f_m(\mathbf{b}) \end{bmatrix}$$

Then

$$\frac{\partial \mathbf{f}(\mathbf{b})}{\partial \mathbf{b}} = \begin{bmatrix} \frac{\partial f_1(\mathbf{b})}{\partial \mathbf{b}} & \cdots & \frac{\partial f_m(\mathbf{b})}{\partial \mathbf{b}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{b})}{\partial b_1} & \cdots & \frac{\partial f_m(\mathbf{b})}{\partial b_1} \\ \vdots & \vdots \\ \frac{\partial f_1(\mathbf{b})}{\partial b_n} & \frac{\partial f_m(\mathbf{b})}{\partial b_n} \end{bmatrix}$$

3. Second derivative of scalar function $f(\mathbf{b})$ with respect to column vector.

$$\begin{aligned} \frac{\partial^2 f(\mathbf{b})}{\partial \mathbf{b} \partial \mathbf{b}'} &= \frac{\partial}{\partial \mathbf{b}} \left(\frac{\partial f(\mathbf{b})}{\partial \mathbf{b}'} \right) \\ &= \frac{\partial}{\partial \mathbf{b}} \left[\frac{\partial f(\mathbf{b})}{\partial b_1} \cdots \frac{\partial f(\mathbf{b})}{\partial b_n} \right] \\ &= \left[\frac{\partial}{\partial \mathbf{b}} \left(\frac{\partial f(\mathbf{b})}{\partial b_1} \right) \cdots \frac{\partial}{\partial \mathbf{b}} \left(\frac{\partial f(\mathbf{b})}{\partial b_n} \right) \right] \\ &= \left[\frac{\partial^2 f(\mathbf{b})}{\partial b_1 \partial b_1} \cdots \frac{\partial f(\mathbf{b})}{\partial b_1 \partial b_n} \right] \end{aligned}$$

4. Chain rule for f() scalar and \mathbf{x} and \mathbf{z} column vectors. Suppose $f(\mathbf{x}) = f(g(\mathbf{x})) = f(\mathbf{z})$ where $\mathbf{z} = g(\mathbf{x})$. Then

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{z}'}{\partial \mathbf{x}} \times \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}}.$$