240A Cameron Winter 2006 Department of Economics, U.C.-Davis

Midterm Exam: February 8

Compulsory. Closed book. Worth 32% of course grade. Read question carefully so you answer the question. Keep answers as brief as possible.

Question scores (total 50 points)

Question	1a	$1\mathrm{b}$	1c	1d	2a	2b	2c	3a	$3\mathrm{b}$	3c	3d	4a	4b	4c	5a	5b	5c	6a	6b	6c	6d
Points	2	2	2	2	2	2	2	2	2	4	2	4	2	2	2	4	2	2	2	3	3

1. Given sample values of (x, y) equal to (0, 0), (2, 4) and (4, 2), OLS regression of y on x and intercept gives $\hat{\beta}_1 = 1.0$ and $\hat{\beta}_2 = 0.5$. There is no need to derive these estimates. Answer the following giving the appropriate algebra (either summation or matrix notation is okay). [If your calculator performs regression do not use this feature. Use first principles.]

(a) Show that s, the standard error for this regression, equals 2.4495.

(b) Calculate $s_{\hat{\beta}_{\alpha}}$, the standard error of $\hat{\beta}_2$. [Use s = 2.4495 even if you cannot answer (a)].

(c) Calculate a 95 percent confidence interval for β_2 .

[For t with 1, 2 and 3 degrees of freedom, the critical values are 12.706, 4.303 and 3.182.]

(d) Calculate R^2 for this regression.

2. Suppose **b** is a 2×1 vector with entries b_1 and b_2 and **A** is a $a 2 \times 2$ matrix with entries a_{11} , a_{12} , a_{21} and a_{22} .

(a) Obtain the formula for b'Ab.

(b) Given (a), calculate $\partial \mathbf{b}' \mathbf{A} \mathbf{b} / \partial b_1$ and $\partial \mathbf{b}' \mathbf{A} \mathbf{b} / \partial b_2$.

(c) Verify that your answer in (b) implies $\partial \mathbf{b}' \mathbf{A} \mathbf{b} / \partial \mathbf{b} = 2\mathbf{A}\mathbf{b}$ if \mathbf{A} is symmetric..

3. Consider the usual multiple regression model with intercept, which can be written as $\mathbf{y} = \beta_1 \mathbf{l} + \mathbf{X}_2 \boldsymbol{\beta}_2 + \mathbf{u}$, where \mathbf{l} is an $N \times 1$ vector of ones, \mathbf{X}_2 is $N \times (k-1)$. Assume $\mathbf{u} \sim \mathcal{N}[\mathbf{0}, \sigma^2 \mathbf{I}]$. By subtracting means of regressors, an equivalent transformed model is

$$\mathbf{y} = \alpha_1 \mathbf{l} + \mathbf{X}_2^* \boldsymbol{\beta}_2 + \mathbf{u}$$
, where $\alpha_1 = \beta_1 + \bar{\mathbf{x}}_2' \boldsymbol{\beta}_2$

where $\mathbf{X}_{2}^{*} = \mathbf{X}_{2} - \mathbf{l}\mathbf{\bar{x}}_{2}'$, with $\mathbf{\bar{x}}_{2}' = \frac{1}{N}\mathbf{l}'\mathbf{X}_{2}$ a $1 \times (k-1)$ vector of means of the regressors.

(a) Write this transformed model as

$$\mathbf{y} = \mathbf{Z}\boldsymbol{\gamma} + \mathbf{u},$$

for appropriate \mathbf{Z} and $\boldsymbol{\gamma}$.

(b) Show that $X_{2}^{*'}l = 0$.

(c) Use $\hat{\gamma} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$ and part (b), even if you could not prove it, to show that OLS regression in the transformed model yields, after some algebra,

$$\left[\begin{array}{c}\widehat{\alpha}_1\\\widehat{\boldsymbol{\beta}}_2\end{array}\right] = \left[\begin{array}{c}\overline{y}\\(\mathbf{X}_2^{*\prime}\mathbf{X}_2^*)^{-1}\mathbf{X}_2^{*\prime}\mathbf{y}.\end{array}\right]$$

1

(d) And show that the usual OLS estimate of the variance matrix simplifies to

$$\widehat{\mathbf{V}}\left[\begin{array}{c}\widehat{\alpha}_1\\\widehat{\boldsymbol{\beta}}_2\end{array}\right] = s^2 \left[\begin{array}{cc}\frac{1}{N} & \mathbf{0}\\ \mathbf{0} & (\mathbf{X}_2^{*\prime}\mathbf{X}_2^{*})^{-1}\end{array}\right].$$

4. Now consider prediction of $E[y|\mathbf{x}_2 = \mathbf{x}_{2f}]$ using the transformed model of question 3, where you can use the results in 3(c) and 3(d). We use predicted value

$$\widehat{y}_f = \widehat{\alpha}_1 + \mathbf{x}_{2f}^{*\prime} \widehat{\boldsymbol{\beta}}_2$$

where \mathbf{x}_{2f}^* is a $(k-1) \times 1$ vector with j^{th} entry $(x_{jf} - \bar{x}_j)$.

- (a) Obtain $\widehat{V}[\widehat{y}_f]$. [Hint: first write \widehat{y}_f in the form $\mathbf{c}'\widehat{\gamma}$].
- (b) Hence obtain a 95 percent confidence interval for \hat{y}_f as a prediction of $E[y|\mathbf{x}_2 = \mathbf{x}_{2f}]$.
- (c) For what value of \mathbf{x}_{2f} is this confidence interval the narrowest? Explain your answer.
- 5. Consider the OLS estimator $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ in the multiple regression model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u},$$

where \mathbf{y} is an $N \times 1$ vector, \mathbf{X} is an $N \times k$ matrix, $\boldsymbol{\beta}$ is a $k \times 1$ vector and \mathbf{u} is an $N \times 1$ vector. We assume that \mathbf{X} is fixed and $\mathbf{u} \sim N[\mathbf{0}, \boldsymbol{\Sigma}]$ where $\boldsymbol{\Sigma} \neq \sigma^2 \mathbf{I}$.

(a) Obtain $E[\widehat{\beta}]$.

(b) Obtain $V[\widehat{\boldsymbol{\beta}}]$.

(c) Give the distribution of $\hat{\beta}$.

6. Consider the attached Stata output that uses data from the study by Joni Hersch, "Compensating Wage Differentials for Gender-Specific Job Injury Risks," American Economic Review, 1998, pp. 598-607. The original data are from the 1994 Current Population Survey, for a sample of males age 18-65.

Dependent Variable:

lnwage = Natural logarithm of hourly wage rate in dollars

Regressors:

jirate = job injury rate per 100 workers per year for the industry that the individual works in exper = years of work experience

expersq = experience-squared

educ = years of schooling

union = 1 if union member and 0 otherwise

nonwhite = 1 if nonwhite and 0 otherwise

(a) Which regressors are statistically significant at level 0.05 using a two-sided test? Explain.

(b) Are the regressors jointly statistically significant at level 0.05? Explain.

(c) State how you would set up a test of the null hypothesis that exper and experse are jointly statistically significant at level 0.05. [There is not enough information to complete the test].

(d) Test at level 0.05 the claim that one more year of education is associated with a 10 percent rise in wage. [Note: $d\ln y/dx = (dy/y)/dx$.] State clearly details of the test and your conclusion.

Variable | Obs Std. Dev. Max Mean Min ____+ ------_____ lnwage | 2.476015 4.454347 182 .4783792 1.15268 jirate | 4.23074 1.529187 1.195951 7.602587 182 exper | 182 20.38736 11.73709 0 0 expersq | 182 552.647 571.8225 3025 educ | 182 12.21703 2.704791 1 _____ _____ ___ ----+-_____ 0 union | 182 .1868132 .3908367 nonwhite | 182 .0769231 .2672044 0

. summarize lnwage jirate exper expersq educ union nonwhite

. regress lnwage jirate exper expersq educ union nonwhite

Source	SS	df	MS		Number of obs	= 182
Model	13.2466557	6 2.2	20777595		F(6, 175) Prob > F	= 13.71 = 0.0000
Residual	28.174595	175 .16	0997685		R-squared	= 0.3198
Total	41.4212507	181 .22	28846689		Adj R-squared Root MSE	= 0.2965 = .40125
lnwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
jirate	0173072	.0198123	-0.87	0.384	0564089	.0217945
exper	.0250062	.009082	2.75	0.007	.0070818	.0429307
expersq	0002364	.0001918	-1.23	0.219	0006149	.0001421
educ	.0836888	.0124466	6.72	0.000	.0591241	.1082536
union	.1123168	.0778764	1.44	0.151	0413811	.2660147
nonwhite	2754669	.1119563	-2.46	0.015	4964253	0545085
_cons	1.147848	.2028857	5.66	0.000	.74743	1.548265

55

17

1

1