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Abstract: These slides attempt to explain machine learning to empirical economists familiar
with regression methods. The slides cover standard machine learning methods such as
k-fold cross-validation, lasso, regression trees and random forests. The slides conclude with
some recent econometrics research that incorporates machine learning methods in causal
models estimated using observational data, specifically (1) IV with many instruments, (2)
OLS in the partial linear model with many controls, and (3) ATE in heterogeneous effects
model with many controls.
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Introduction

Introduction

@ Machine learning methods include data-driven algorithms to predict

y given x.

> there are many machine learning methods
> the best methods vary with the particular data application
» and guard against in-sample overfitting.

@ The main goal is prediction

» this is useful in some microeconometrics applications
» e.g. predict one-year survival probability after hip transplant.
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Introduction

Introduction (continued)

@ Current microeconometric applications instead focus on causal
estimation of a key parameter, such as an average marginal effect,
after controlling for confounding factors.

@ Applications to date are to quasi-experimental methods (rather than
fully structural models)

» apply to models with selection on observables only
* good controls makes this assumption more reasonable
» and to IV with available instruments
* good few instruments avoids many instruments problem.
@ Machine learning methods determine good controls (or instruments)

» but valid statistical inference needs to control for this data mining
» currently active area of econometrics research.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 3 /115



Introduction

@ The machine learnings summary is based on the masters level book

» ISL: Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibsharani (2013), An Introduction to Statistical Learning: with
Applications in R, Springer.

> A free legal pdf is at http://www-bcf.usc.edu/~gareth/ISL/

@ Supplementary material is in the Ph.D. level book

» ESL: Trevor Hastie, Robert Tibsharani and Jerome Friedman (2009),
The Elements of Statistical Learning: Data Mining, Inference and
Prediction, Springer.
> A free legal pdf is at
http://statweb.stanford.edu/~tibs/ElemStatLearn /index.html
@ A recent book is

> EH: Bradley Efron and Trevor Hastie (2016), Computer Age Statistical
Inference: Algorithms, Evidence and Data Science, Cambridge
University Press.

o My website has some material

> http://cameron.econ.ucdavis.edu/e240f/machinelearning.html
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Introduction

@ In this talk | first consider estimating prediction error

» relevant regardless of how the prediction is obtained.

@ Then | present various methods for obtaining predictions

» some familiar such as OLS, k-nearest neighbors
> others less familiar such as lasso, neural networks, regression trees,
random forests.

o Finally I consider using these methods in causal microeconometric
studies

> IV with many instruments
» OLS in partial linear model with many controls
» ATE with heterogeneous effects and many controls.
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Introduction

Overview

© Terminology
@ Estimating Prediction Error
@ Cross-validation
@ Goodness-of-fit measures
© Regression (Supervised learning for continuous y)

@ Subset selection of regressors

@ Shrinkage methods: ridge, lasso, LAR

©® Dimension reduction: PCA and partial LS
@ High-dimensional data

@ Nonlinear models

@ splines
@ local regression
@ neural networks

© Regression trees

@ Regression trees
@ Bagging, random forests and boosting
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Introduction

Overview (continued)

6. Classification (categorical y): logit, k-nn, LDA, SVM
7. Unsupervised learning (no y): PCA, cluster analysis
8. Causal inference with machine learning

@ |V estimation with many instruments
@ Partial linear model with many controls
@ ATE with heterogeneous effects and many controls

9. Big data

10. Some R commands for machine learning
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1. Terminology

@ Topic is called machine learning or statistical learning or data learning
or data analytics where data may be big or small.

@ Supervised learning = Regression

> We have both outcome y and regressors x
» 1. Regression: y is continuous
» 2. Classification: y is categorical

o Unsupervised learning

» We have no outcome y - only several x
» 3. Cluster Analysis: e.g. determine five types of individuals given
many psychometric measures.

@ These slides

» focus on 1.
> briefly mention 2.
> even more briefly mention 3.
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1. Terminology

Terminology (continued)

o Consider two types of data sets
» 1. training data set (or estimation sample)
* used to fit a model
» 2. test data set (or hold-out sample or validation set)

* additional data used to determine how good is the model fit
* a test observation (xg,yp) is a previously unseen observation.
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2. Estimating Prediction Error

We wish to predict y given x = (x1, ..., Xp).

A training data set d yields prediction rule f(x)

» we predict y at point xg using ¥ = £(x).
» e.g. for OLS y = xo(X'X)"1X'y.

Consider squared error loss (y — ¥)?

» some methods adapt to other loss functions

We wish to estimate the true prediction error

> Errg = Er[(y0 — %0)?]
» for test data set point (xg,yp) ~ F.

@ This is under-estimated by the estimation sample apparent error

> err = %Zle(y,- —3i)? or mean squared error (MSE)

> eg. Elerr] = nfk(T2 > 02 in the classical linear regression model.
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2. Estimating Prediction Error

Two ways to estimate prediction error

@ 1. Cross validation

» e.g. k-fold cross validation, leave-one-out cross validation

> use both a training set (estimation) and a validation set (evaluate
prediction)

> a nonparametric method

> can be applied to a wide range of settings and loss functions

» computationally more expensive.

@ 2. Penalty measures

Akaike's information criterion (AIC), Mallows CP, R

use only the training set

so estimation can use all the available data

a more parametric method as a model is specified

the penalty (for overfitting) varies with the setting and loss function
computationally quicker.

Y Y VvV VvV VY
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2. Estimating Prediction Error BNEERVEITELTCN}

Single-split Validation

@ Randomly divide available data into two parts

» 1. model is fit on training set
» 2. MSE is computed for predictions in validation set.

@ Example: choose degree k of a polynomial in
y =Byt Brx+Bpx* A+ Bxk te.

» for each degree k =0, ..., p estimate on the training set to get B/s,
predict on the validation set to get y; s and MSE
> choose the degree k with lowest MSE,.

@ Problems with this single-split validation

» 1. Lose precision due to smaller training set, so may actually
overestimate the test error rate (MSE) of the model.
» 2. Results depend a lot on the particular single split.
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2. Estimating Prediction Error BEERVEITET)]

Leave-one-out Cross Validation (LOOCV)

@ Use a single observation for validation and (n— 1) for training

> A(_,-) is y; prediction after OLS on observations 1,..,i —1,i+1,...,n.
» Cycle through all n observations doing this.

@ Then LOOCV measure is

Vi = %27:1 MSE_iy = %27:1()4 - )7(—/))2

@ Requires n regressions in general, except for OLS can show

CVim =52 (%)2

where y; is fitted value from OLS on the full sample
and hj; is ith diagonal entry in the hat matrix X(X'X)~1X.

@ Use for local nonparametric regression such as k-nearest neighbors,
kernel and local linear regression but not for global regression.
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2. Estimating Prediction Error BNEERVEITELTCN}

k-fold Cross Validation

@ Randomly divide data into K groups or folds of approx. equal size

First fold is the validation set

Method is fit in the remaining K — 1 folds

Compute MSE for the first fold

Repeat K times (drop second fold, third fold, ..) yields

Yy VvV VY

K
Vi) = & Lj1 MSE()).
@ Typically K =5 or K = 10.
@ LOOCV is case K = n.

» LOOCV is not as good as the n folds are highly correlated with each
other leading to higher variance

» K =5 or k =10 has lower variance with bias still reasonable

» LOOCV used for nonparametric regression where want good local fit.
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2. Estimating Prediction Error BNEERVEITELTCN}

One standard error rule for k-fold cross-validation:

@ A variation where don’t simply choose model with minimum CV
> a further guard against overfitting.

@ K folds gives K estimates MSE(l), I\/ISE(K)
> this yields standard error of CV

1 K
SE(CV(K)) = \/m J:l(MSE(J) — CV(K))2

o Consider polynomial model of degree p.

> one standard error rule computes CV and se(CV) for p=1,2, ...
> then choose the lowest p for which CV is within one se(CV) of
minimum CV.
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2. Estimating Prediction Error Penalty measures

Penalty measures

@ A general result for regression model leading to prediction 7; of
#; = Elyi] is that for observation i (see EH p.219)

» E[(y; — 1i;)?] = E[true prediction error] —2 x Cov(i;, y;).
e So (y; — 7i;)? underestimates true prediction error

> by more the greater the correlation between y; and its prediction ;.
e With structure can derive Cov(ji;, yi)

» For linear regression with i.i.d. errors and p regressors

* Mallows Cp, = 1 Y0 (y; —7i)2 + 20%p
* Using some other machine learning methods replace p with “effective
degrees of freedom p = % Y1 Cov(ii;,yi).

o With normally distributed errors

> AIC = C,+ constant (Akaike's information criterion)
» LOOCV asymptotically equivalent to AIC.
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2. Estimating Prediction Error Penalty measures

Aside: Penalty measures

o Consider
o i~ (1, 0%), i =1,
> u; varies with x; but view x; as fixed so suppress x;
» stacked as 'y ~ (u,0?l).
@ Regression gives prediction 7 = r(y).
@ Define
» Prediction error: Err; = E[(yo; — 7i;)?] for new observation yp;
> Apparent error: err; = (y; — i;)?
@ Then taking expectations w.r.t. y and yp

» E[Err;] = Elerrj] +2Cov(ji;, yi)
» where Cov(i;, yi) = E[(j; — m;)(vi — ;)
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2. Estimating Prediction Error BAVETTEISHIEERTET L33

Variance-bias trade-off

o Consider regression model

y = f(x)+e
E[e] = 0 and ¢ independent of x

@ For out-of-estimation-sample point (yo, Xg) the MSE
El(yo — F(x0))?] = Var[f(xo)] + {Bias((x0))}* + Var(e)

@ Need to minimize sum of variance and bias-squared!

@ Trade-off: more flexible models have less bias and more variance.

@ And bias can be good if MSE is our goal

> e.g. shrinkage estimators
> e.g. In model y; ~ N(p;,1) the MLE is ji; = y;, i=1,...,n

* better is the James-Stein estimator Ji; = ¥ + b(y; — ¥) where
b=1--1:%" ,(y,—y)?and n > 4.
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2. Estimating Prediction Error ESIETERSENT

Stata Examp

e D.g.p. is quadratic with n = 40. Fit OLS polynomial of degree 4.

. * Generate data - vy = 42 - 4*x + 0.1*x"2 + e

. qui set cbs 40

et seed 10101

le

.genxl = n-med{n+l,2) //x1=113355.... 3939

. gen x2 = x1*2

. gen x3 = x1*3

. gen x4 = x1*4

. gen dtrain = mod{ n,2})=—1 // dtrain=1010 .... 10

. geny =2 + 0.1*{x1-20}*2 + rnormal(0,10)

. req y x1-x4, noheader
¥ Coef. Std. Exx. t Pl t] [95% Conf. Interwal]
x1 . 4540487 3.347179 0.14 0.893 -6.341085 7.249183
x2 -.437711 .3399652 -1.29 0.206 -1.127877 .2524551
=3 .020571 .0127659 1.61 0.116 —-.0053452 .0464871
=4 —-.0002477 .0001584 -1.356 0.127 -.0005692 .0000738

_cons 37.91263 9.619719% 3.94 0.000 18.38357 57.4417
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SED EHk
Predictions in training and test data sets

@ Left panel: Training data scatterplot and fitted curve.

@ Right panel: Test data scatter plot (different y, same x) and
predictions.

@ Clearly predicts much worse in test data set.
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2. Estimating Prediction Error ESIETERSENT

Split-sample validation
o Test MSE lowest for quadratic (Training MSE lowest for quartic).

* Split sample walidation - training and test MSE for polynomials up to deg 4
forvalues k = 1/4 {

2. qui req ¥y xl-x'k" if dtraimn—1

3. qui predict y k'hat

4. qui gen ¥ k'errorsq = (y'k'hat - y)*2

5. qui sun y'k'errersq if dtrain = 1

6. qui scalar mse’k'train = r{mean)

7. qui sun ¥ k'errorsq if dtrain — 0

B. qui scalar mse 'k'test = r{mean)

9.}
. di _n "MSE linear Train = " mseltrain " Test = " mseltest _n ///
> "MSE quadratic Train = " mseZtrain " Test = " mse2test _n ///
> "MSE cubic Train = " mse3train " Test = " mseltest _=n ///
> "MSE quartic Train = " msedtrain " Test = " msedtest _n
MSE limnear Train = 252 32258 Test = 412 98285
MSE quadratic Train = 92 781786 Test = 184.43114
MSE cubic Train = 87.577254 Test = 208_24569

MSE quartic Train = 72.864095 Test

207.7888B5
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2. Estimating Prediction Error ESIETERSENT

Five-fold cross validation for quartic on full sample

@ Apply to OLS on quadratic regression with all 40 observations

» Randomly form five folds, estimate on four, predict on fifth; repeat.
> CV(S) = %(15.27994 + .-+ 4 8.444316) = 12.39305.

. * Fiwve-fold creoss validation example for quadratic
. set seed 10101

. crossfold regress y xl x2

estl 15.27994
est2 16.77849
est3 11.15653
estd 10.30595
ests 8.444316

. * Compute five-fold cross validation measure - average of the abowe
. matrix RMSEs = x(est)

. svmat RMSEs, names (rmses)

. Sum rmses

Variable ‘

Cbs

Max

rmsesl ‘

A. Colin Cameron Univ. of California- Davis
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2. Estimating Prediction Error ESIETERSENT

Five-fold cross validation for all models

@ CV measure is lowest for quadratic

. * Five-fold cross validaticn measure for polynomials up to degree 4
. forvalues k = 1/4 {

2. qui set seed 10101

3. qui crossfold regress y xl-x'k'

4. qui matrix RMSEs k' = r{est)

5. qui svmat RMSEs k', names{rmses'k')
6. qui sum rmses k'

7. qui scalar cr’'k' = r{mean)

8.1}

. di _m "CV¥(3) for k 1

L A="govl ", "ou2 ", "ovd ", "ovd

-

CV(5) for k =1,...,4 12.393046, 12.393046, 12.629339, 12 475117
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Siein eemple
AIC and BIC penalty measures for full-sample

o AIC=—-2InL+2p, BIC=-2InL+pInN

@ Both favor quadratic.

* Full sample estimates with AIC, BIC penalty - polynomials up to deg 4
forvalues k = 1/4 {

2. qui reqg v xl-x'k'

3. qui scalar aic’k' = -2*e({ll) + 2*e{rank)

4 qui scalar bic'k' = -2*%e(ll) + e{rank)*1ln{e(N))

5.}
.di n "AIC for k=1,..,4 =" aicl ", " aic2 ", "aic3 ", "aic4, ///
> o "BIC for k = 1,..,4 = " bicl ", " bic2 ", "bic3 ", "bicd

ATC for k =1,..,4 348.99841, 314.26217, 316.01317, 315.3112
BIC for k = 1,..,4 = 352.37617, 319.32881, 322 76869, 323.7556
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3. Regression Methods

@ Terminology

Estimating Prediction Error

Regression (Supervised learning for continuous y)
Nonlinear models

Regression trees

Classification (categorical y): logit, k-nn, LDA, SVM
Unsupervised learning (no y): PCA, cluster analysis
Causal inference with machine learning

Big data

®©000000O0O0

Some R commands for machine learning
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3. Regression Methods

@ Consider linear regression model with p potential regressors where p is
too large.

@ Methods that reduce the model complexity are

» choose a subset of regressors
» shrink regression coefficients towards zero

* ridge, lasso, LAR
> reduce the dimension of the regressors

* principal components analysis.

@ Linear regression may predict well if include interactions and powers
as potential regressors.
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SIETEEE TN A Subset Selection of Regressors

Subset Selection of Regressors

@ General idea is for each model size choose best model and then chose
between the different model sizes.

e So

» 1. For k =1,2,...,p choose a “best” model with k regressors
» 2. Choose among these p models based on model fit with penalty for
larger models.

@ Methods include

> best subset

» forwards stepwise
> backwards stepwise
> hybrid.
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S5 53 63 G RegeEss
Subset Selection Procedures

@ Best subset
» For each k =1, ..., p find the model with lowest RSS (highest R?)
> Then use AIC etc. or CV to choose among the p models (want lowest
test MSE)
» Problem: 2P total models to estimate
@ Stepwise forwards
Start with 0 predictors and add the regressor with lowest RSS
Start with this new model and add the regressor with lowest RSS
etc.
Requires p+ (p— 1)+ ---1 = p(p+1)/2 regressions.
@ Stepwise backwards
> similar but start with p regressors and drop weakest regressor, etc.
> requires n < p.
@ Hybrid
» forward selection but after new model found drop variables that do not
improve fit.

vV VY VY
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SIETEEE TN A Subset Selection of Regressors

Subset Selection Procedures (continued)

@ There are algorithms to speed these methods up
> e.g. leaps and bounds procedure for best subsets.
@ Near enough may be good enough

> best subsets gives the best model for the training data
» but stepwise methods will get close and are much faster.
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S5 53 63 G RegeEss
Subset Selection and Cross Validation

@ Need to correctly combine cross validation and subset selection

v

1. Divide sample data into K folds at random

2. For each fold find best model with 0, 1, ..., p regressors and
compute test error using the left out fold

3. For each model size compute average test error over the K folds
4. Choose model size with smallest average test error (or use one
standard error rule)

5. Using all the data find and fit the best model of this size.

v

v

v

>
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il 2652 il
Shrinkage Methods

@ Shrinkage estimators minimize RSS (residual sum of squares) with a
penalty for model size

> this shrinks parameter estimates towards zero.
@ The extent of shrinkage is determined by a tuning parameter
> this is determined by cross-validation or e.g. AIC.

@ Ridge and lasso are not invariant to rescaling of regressors, so first
standardize

> so x;; below is actually (X,'j — >"<j)/5j
» x; does not include an intercept nor does data matrix X
> we can recover intercept B, as By = ¥.

o Sowork with Y =X'B+e =B, X1 +B,X0+ -+, Xp +¢
> instead of Y = By + By X1 + B Xo + -+ B, Xp + e
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3. Regression Methods Ridge Regression

Ridge Regression

@ The ridge estimator E)\ of B minimizes
Y (i = xiB)? +AY L B = RSS + A(|1B]]2)*

» where A > 0 is a tuning parameter

> 11l = /Ty B is L2 norm.

@ Equivalently the ridge estimator minimizes RSS subject to
2
Zf:l ,BJ' <s.
@ The ridge estimator is

By = (X'X+ Al)"IX'y.

o Features
> BA—>[A30L5 aS/\—>0and3/\—>0as)\—>oo.
» best when many predictors important with coeffs of similar size
> best when LS has high variance R
> algorithms exist to quickly compute B, for many values of A
» then choose A by cross validation.
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i3 AT
Ridge Derivation

@ 1. Objective function includes penalty
> Q(B) = (y—XB)'(y = XB) + AB'B
> 9Q(B)/9p = —2X'(y — XB) +2Ap =0
» = X'XB+AIB =Xy
> = By = (X'X+ A1) IXly.

@ 2. Form Lagrangian (multiplier is A) from objective function and
constraint

» Q(B) = (y—XB)'(y — XB) and conftraint BB<s
> L(B.A) = (y—XB)'(y —XB) + A(B'B —s)

AL(B,A) /3B = —2X'(y — XB) + 218 = O

= B, = (XX +A1)~IXy

Here A = dLopt(B. A, s)/0s.

v

v

v
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3. Regression Methods EE)

Lasso (Least Absolute Shrinkage And Selection)

@ The lasso estimator EA of B minimizes
Y= xiB)? + A} Bl = RSS + AllBlly

» where A > 0 is a tuning parameter
> |IBllL = Py |B;] is L1 norm.

o Equivalently the lasso estimator minimizes RSS subject to
p
=1 |;BJ’ <s.

o Features

> best when a few regressors have f; # 0 and most f; =0
> leads to a more interpretable model than ridge.

@ Lasso and ridge are special cases of bridge

> minimize Y7 (yi — x:-ﬁ)2 + /\Zle |ﬂj|7 for specified v > 0.
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CRNEECH MY ST B Lasso versus Ridge

Lasso versus Ridge

@ Consider simple case where n = p and X = L.

~0LS
o OLS: B%7 = (') ry = y
~0LS
> SO ‘BJ =Y

o Ridge: B = (N + AWy =y/(1+A)
~R
»soB; =y /(1+A)
» shrink all towards zero
@ Lasso shrinks some a bit towards 0 and sets others = 0
yi—A/2 ify; > A/2

~L .
ﬁj: yi+A/2 ify; < —A/2
0 if lyj| > A/2

@ Best subset of size M in this example

~BS

B =B < UIB| = (Bl

where ,[AB(M) is the M largest OLS coefficient.
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3. Regression Methods

Lasso versus Ridge

olin Cameron Univ. of California- Davis Machine Learning



Lers: vl eson
Least Angle Regression (LAR)

See ESL p.73-79, 86-93.
Lasso is a minor adaptation of LAR

» Lasso is usually estimated using a LAR procedure.

o Forward-stagewise algorithm for LAR proceeds as follows
» Choose a small «.
> 1. Start with initial residual r =y, and ; = f, =--- = B, = 0.
2. Find the predictor z; (j = 1,..., p) most correlated with r
3. Update B; = B; +0;, where §; = & x sign(Zr).
4. Set r =r —§,z;, and repeat Steps 2 and 3 many times.

v

v

v

Choose the step with minimum Mallows CP.
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3. Regression Methods Least Angle Regression

Lasso extensions

o Can weight each f differently

» Belloni, Chernozhoukov et al. do this.

@ The group lasso allows to include regressors as groups (e.g. race
dummies as a group)

> with L groups minimize over 8

Y (= T xi) + AL ver (X0 16y])
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ERGEECHIMYISTEM  Dimension Reduction

Dimension Reduction

@ Reduce from p regressors to M < p linear combinations of regressors

» Form X* = XA where Ais px M and M < p
> Y = By + XB + u reduced to
- Y =By + X'Btv

= By + XB" + v where g* = AB.

@ Two methods
» 1. Principal components
* use only X to form A (unsupervised)
» 2. Partial least squares
* also use relationship between y and X to form A (supervised).
@ For both should standardize regressors as not scale invariant.

@ And often use cross-validation to determine M.
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Pzl Eorporens ATelE
Principal Components Analysis (PCA)

o Eigenvalues and eigenvectors of X’'X

> Let A = Diag[A;] be p x p vector of eigenvalues of X'X
» Orderso Ay > Ap > - > Ay
» Let H=[h; --- hp] be p X p vector of corresponding eigenvectors
» X’Xh; = A1hy and X’XH = AH and H'H
@ Then

» the j principal component is Xh;
» M—principal components regression uses X* = XA
where A = [hy --- hy].
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3. Regression Methods Principal Components Analysis

Principal Components Analysis

@ The first principal component has the largest sample variance among
all normalized linear combinations of the columns of X.

@ The second principal component has the largest variance subject to
being orthogonal to the first, and so on.

@ PCA is unsupervised so seems unrelated to Y but

» ESL says does well in practice.

» PCA has the smallest variance of any estimator that estimates the
model Y = XB + u with i.i.d. errors subject to constraint C8 = ¢
where dim[C] < dim[X].

» PCA discards the p — M smallest eigenvalue components whereas ridge
does not, though ridge does shrink towards zero the most for the
smallest eigenvalue components (ESL p.79).
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ERNECESI MY ISAII El  Partial Least Squares

Partial Least Squares

@ Partial least squares produces a sequence of orthogonal linear
combinations of the regressors.

o 1. Standardize each regressor to have mean 0 and variance 1.
@ 2. Regress y individually on each x; and let z; = Zle §1jxj

@ 3. Regress y on z; and let ?(1) be prediction of y.
(1)

@ 4. Orthogonalize each x; by regress on z; to give X, =X — 217
—1s (1)

where T; = (z;21) " '2ix;

(1)

@ 5. Go back to step 1 with x; now x;’, etc.
» When done y =y 432 ...

@ Partial least squares turns out to be similar to PCA

> especially if R? is low.
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liigo-Diresterel) Modtle
High-Dimensional Models

@ High dimensional simply means p is large relative to n

> in particular p > n
» n could be large or small.

@ Problems with p > n:

-2
» Cp, AIC, BIC and R cannot be used.
> due to multicollinearity cannot identify best model, just one of many

good models.
» cannot use regular statistical inference on training set
@ Solutions

» Forward stepwise, ridge, lasso, PCA are useful in training
» Evaluate models using cross-validation or independent test data

* using e.g. MSE or R2.
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3. Regression Methods BSIEIENSEN T

Stata Example: best subset selection using penalty

@ Section 2 quadratic d.g.p. n = 40 and polynomials to degree 4.

@ A model with three regressors has lowest FZ, AIC and Mallows CP

> With regressors x3, x* and x? that minimize MSE with three

regressors.

. * Subset selection with add-omn vselect
. wselect vy x1 x? x3 x4, best

Response 4

Selected predictors: x3 x4 x2 xl1

Optimal models:

[

# Preds RZADJ
1 .0724281 49.77402
2 .5815134 3.679737
3 .6002677 3.018401
4 5890628

predictors for each model:

=4

=2 x1

=3 x4 x2
=3 x4 x2 x1

- W N

A. Colin Cameron Univ. of California- Davis

5

AIC
345.1659
314.2622
313.3322
315.3112

Machine Learning

ATCC
345_8326
315.405
315.0969
317.8567

BIC
348 5437
319.3288
320.0877
323.7556
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3. Regression Methods BSIEIENSEN T

Subset selection using penalty

@ User add-on command vselect also allows forwards and backwards
selection and specifying regressor(s) that should always be included.

* Stepwise forwards using AIC

vselect y x1 x2 x3 x4, forward aic

* Stepwise backwards using AIC

vselect y x1 x2 x3 x4, backward aic

* Best subsets with x1 always included
vselect y x2 x3 x4, fix(x1l) best.

vV Y VYV VY

@ User add-in command gvselect can be used for other estimation
commands, not just OLS

> * Add-on command gvselect for OLS regression with x1
always included
> gvselect <xlist> x2 x3 x4: regress y <xlist> x1
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3. Regression Methods BSIEIENSEN T

Subset selection using statistical significance

@ This uses Stata built-in command stepwise

» Backward selection best model has three regressors x

2

* Stepwise backward using statistical significance at five percent
stepwise, pr(.05): regress y xl1 x? x3 x4
begin with full model

p = 0.8929 >= 0.0500 remowing =1

, x3 and x*.

Source 58 df M3 Number of obs = 40
F(3, 36) = 20.52

Model 8274 11622 3 2758.03874 Prob > F = 0.0000
Residual 4838 _24796 36 134.395777 R-squared = 0.6310
Adj R-squared = 0.6003

Total 13112 3642 39 336.214466 Root MSE = 11.593
¥ Coef . Std. Err. t P> tl [95% Conf. Imntervall]

=4 -.0002289 . 0000764 -3.00 0.005 -.0003839 —-.000074

=2 -.3929775 .0815041 -4.82 0.000 -.5582754 -.2276796

=3 .0189766 .0049143 3_86 0.000 . 0020099 .0289433
cons 39.05448 4.592698 8.50 0.000 29.74006 48 36891

A. Colin Cameron Univ. of California- Davis
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3. Regression Methods BSIEIENSEN T

Subset selection using statistical significance (continued)

@ Forward selection in order x, x

2

» as regress y x1 leads to t = —0.45 for regressor x!

,x3 and x* chooses no regressors

. * Stepwise forward in specified order (hierarchical) testing at five percent
. stepwise, pe{.03) hierarchical: regress y x1 x? x3 x4
begin with empty model

p = 0.6543 >= 0.0500 testing xl1

p >= 0.0300

for all terms in model

Source 85 daf Ms Number of cbs = 40
F{0, 39} = 0.00
Model 0 ] . Preb > F = .
Residual 13112 _3642 39 336.214466 R-squared = 0.0000
Adj R-squared = 0.0000
Total 13112 3642 39 336.214466 Root MSE = 18_336
v Coef . Std. Err. t Pl t] [95% Conf. Intervall]
_cons 15.86777 2.8992 5.47 0.000 10.00359 21.73196
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SE BETE
Standardize variables

e Standardize regressors to (0, 1) and demean dependent variable.

* Standardize wariables
foreach var of warlist x1 x? x3 x4 {

2. qui egen z var' = std{ var')
3. }
. qul sSum ¥y

. qui gen ydemeaned = y - r{mean)
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Siizn Bl
Lasso computed using Lasso shooting algorithm

@ Stata user-written command lassoshooting.ado due to Christian
Hansen

> uses the coordinate descent (called lasso shooting) algorithm of Fu
(1998) Penalized Regressions: The Bridge Versus the Lasso. Journal of
Computational and Graphical Statistics, 7:397-416

> this converts a nonsmooth convex problem to a smooth convex
problem by reducing to a sequence of one-dimensional optimizations
made smooth by introducing an additional parameter.

@ The command has an algorithm for initial computation of lambda

> then vary this to get a reasonable number of variables selected
» CV is not used and output does not give MSE.
> better to use R function cv.glmnet(,alpha=1) in glmnet library
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Siizn Bl
Compute lambda
@ Formula gives A = 38.6

* Compute lamda for lassoShooting command
. qui reg ¥ x1 x2 x3 x4

scala.l; nobs = e{H)

sealar ¢ = 1.1

scalar p = e{rank) // number of wariables
scalar gamma = 0.1/1n{ncbs)

scalar ke = 1

di "lambda from theory: " 2*c*sqgrt(ncbs)*inwvnormal{l - (gamma/(2*ke*p})]
lambda from theory: 3B.692789

. di "altermative:" 2*c*sqgrt(nocbs)*inwnormal {1 - (0.05/(2*ke*p}))
alternatiwve:35.840145

. di "altermative:" 2*c*sgrt(2*ncbs*log({2*p)}/gamma)
alternmatiwve:181.35217
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Siizn Bl
Lasso computed using Lasso shooting algorithm

@ Result below for A = 30 chooses x* (regressor named zx4)

» No regressors chosen when A = 38.6
» x1 and x* chosen when A = 20

. * LASSO using lassoShooting.do
. * Verbose 0, 1, 2 gives increasing output as does fdisplay 0, 1
. lassoShooting ydemeaned zx1 zx? zx3 zx4, ///
> lambda {30) lasiter{100) wverbose{(l)} fdisplay({l)
Number of iteratioms: 6
Total Shoots: 24
Fumber of iteratiomns: 2
Total Shoots:
Selected| LASSO Post-LASSO0

z:4| .05425149 5.6875173

. * Lasso is penalized coefficient and post-Lasso is OLS coefficient

. reg yd d zx4, head
ydemeaned Coef . Std. Err. t P>l t] [95% Conf. Intervall]
zxd 5.687517 2.827807 2.01 0.051 -.0370777 11.41211
_cons -2.43e-07 2.792235 -0.00 1.000 -5.652585 5.652584

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017

51 / 115



SE BETE
Lasso computed using LARS algorithm

@ From output given in the next slides

first step has no regressors

second step includes x*

third step additionally includes x (so x and x*)

fourth step drops x* and adds x3 (so x and x3)

fifth step keeps the same variables but different coefficient values
etcetera up to eleven steps.

vV Y VYV VvV VY

@ At each step compute Mallows CP

» fourth step has lowest CP so choose this (so x and x3)
» more precisely zx1 and zx3.
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Siizn Bl
Lasso using LARS (continued)

@ lars ydemeaned zxl zx2 zx3 zx4, a(lasso)

» vyields coefficients at each of 11 steps

sbeta[ll,4]

cl
rl 0
2 0
r3 -136.81263
r4d -191.36341
r5 -205.80797
r6 -253.36327
r7 -231.17085
r8 -260.03834
9 0
rl0 0
rll 33.119025

OOQOOR’

110.71544
-1.421e-14
-1.421e-14
-1169.5549
-1171.7384
-1318.5119

OOOE’

201.34569
215.79025
150.46381
321.12102
44696952
2138.0951
2143.1645
2353.4804

A. Colin Cameron Univ. of California- Davis
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0

14 . 544161
151.35679
0

0

0
-82.453021
-182_ 44786
-964 75152
-967. 6894
-1064.3873
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SE BETE
Lasso using LARS (continued)

Cp, R-#quared and Actions along the sequence of models

Step cp BR-ogquare Acticn
1 40,6356 o, 0000
2 37.7082 0. 0627 +rxd
E] Q. 7066 0, 5586 +zxl
4 -D.0EBL *| 0.55942 +zxd —zxd
5 1.542% 0, 5588
[ 3.1528 0.6038 +zx2
7 4.8322 0, 6078 +xxd
8 64119 0.6133
Ll T.0180 0, 6310 =xxl
10 8.0172 0.6310
11 11,0000 0, 6312 +zxl

* indicates the smallest walue fox Cp

The coefficient walues for the minimum Cp

Variable Coefficient ‘

=l —-30. 6427
=x3 322411
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Stata Example
Ridge Regression

. % Ridge regression with lambda = 0.01
. ridgercg ydemeaned zxl zx2 zx3 zxd, kr{0.01} model {ors)

* {OL5) Ridge Regression — Ordinary Ridge Regressiom

ydemeaned = zxl 4 =P 4+ == 4 z=d

Ridge k Value = a.01000 ] Ordinary Ridge Regression

Sample Size = 40

Wald Test - 42,2729 | PF-Valua > Chi2{4) - 0.0000
F-Test = 10.81B2 1 P-Walue > F(4 , 35) = 0. 0000
{Busa 1573} R2 - 0.5876 1 Raw Mcmants R2 - 0.5876
{Buse 1973) RZ Adj = 0.5405 1 Baw Moments B2 Adj = 0.5405
Hoot MSE (Sigma} = 12.4293 | Log Likelihood Function =  -154.8881

- HZh= 0.5%06 HZh Adj= 0.5428 PF-Test = 12 62 P-Value > F{d , 35) 0.0000
= RZv= 0.5088 RZv Adj= 0.4538 F-Test = .10 P<Value > F(4 , 35) 0.0000

ydemeaned Coef . Std. Erx. t Pt [85% Comf. Interval]
=xl =30.16159 41.33836 =0.73 0.470 =114.0833 53. 75834

2 523065 173 3994 0.03 0.976 —346_TaER 3572501

=x3 15.73436  247.2998 0. 08 0.950 =-486.311 517.77197

=xd 11. 10298 115 2382 o.1n 0.924 —222 843 2450485

conE =2.52e-07 1.965243 =0, 00 1.000 =3 . 9BBELS 3. 989654
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Siizn Bl
Ridge Regression

o Coefficients are generally smaller than OLS
» and in-sample RMSE is 11.754 for OLS and 12.4295 for ridge.

* Versus OLS
. regress ydemeaned zxl zx2? zx3 zxd

Source S5 df Ms Number of obs = 40
F{4, 33) = 14.98

Model 8276_6599 4 2069.16497 Prob > F = 0.0000
Residual 4835._70386 35 138.162967 R-squared = 0.6312
Adj R-squared = 0.3891

Total 13112 3638 39 336.214455 Root MSE = 11.754
ydemeaned Coef. Std. Err. t P> tl [95% Conf. Interwval]
zxl 5.303288 39.09335 0.14 0.893 -74.06043 84_66701

zx2 -211_1309 163.9824 -1.29 0.206 -544 0328 121.7711

zx3 376.8585 233.8604 1.61 0.116 -97.82175 851.6387

zx4 -170._4384 108.9798 -1.56 0.127 -391.6791 50.80238
_cons -2.3%e-07 1.858514 -0.00 1.000 -3.772984 3.772984
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4. Nonlinear Models

Q@ Terminology

Estimating Prediction Error

Regression (Supervised learning for continuous y)
Nonlinear models

Regression trees

Classification (categorical y): logit, k-nn, LDA, SVM
Unsupervised learning (no y): PCA, cluster analysis
Causal inference with machine learning

Big data

®©000000O0O0

Some R commands for machine learning

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 57 / 115



4. Nonlinear Models

4. Nonlinear Models

@ Basis function models

. polynomial regression

. step functions

. regression splines

. smoothing splines

. wavelets

polynomial is global while the others break range of x into pieces.

b wWwN

Y VvV VvV VvV VY

@ Other methods

> local polynomial regression
> generalized additive models
> neural networks.
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CO\HITMEETAVIEEN  Basis Functions

Basis Functions

@ General approach (scalar X for simplicity)
i =B+ Bibi(xi) + -+ By (xi) + &

» where by, ..., bx are basis functions that are fixed and known.

o Polynomial regression sets bj(x;) = x!

> typically K < 3 or 4.
» fits globally and can overfit at boundaries.

@ Step functions: separate fits in each interval (¢j, ¢j11)

> piecewise constant b;(x;) = 1[¢; < x; < ¢j41]

> piecewise linear use 1[¢; < x; < ¢jy1] and x; x 1[¢; < x; < ¢j41]
» problem is discontinuous at the cut points (does not connect)

» solution is splines.
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Splines
Splines
@ Begin with piecewise linear with two knots at ¢ and d

f(x) =mlx < c]+aoxl[x < c] +aglc < x < d
+agxlfc < x < d]+asl[x > d] + agx1[x > d].

@ To make continuous at ¢ (so f(c—) = f(c)) and d we need two

constraints
at ¢c: a1 +aprc = w3+ wgcC

at d: w3+ asd = a5 + apd.

@ Alternatively introduce truncated power basis functions

hi(x) =xp = {

@ Then the following imposes the two constraints (so have 6 —2 = 4
regressors)

f(x) = Bo + Bix + By(x — )+ + By(x — d)+

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 60 / 115

x x>0
0 otherwise.




Cirloe |egreson Spies
Cubic Regression Splines

@ This is the standard.
@ Piecewise cubic model with K knots

> require f(x), f'(x) and f”'(x) to be continuous at the K knots
@ Then can do OLS with

F(x) = o+ Brx+ Box* + Bax + By (x — )i + - ""13(3+K)(X—CK)§r

» for proof when K = 1 see ISL exercise 7.1.

@ This is the lowest degree regression spline where the graph of /f?(x) on
x seems smooth and continuous to the naked eye.

> There is no real benefit to a higher order spline.
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Oifizr Splives
Other Splines

Regression splines overfit at boundaries.

A natural spline is an adaptation that restricts the relationship to be
linear past the lower and upper boundaries of the data.

Regression splines and natural splines require choosing the cut points
(e.g. use quintiles of x)

Smoothing splines use all distinct values of x as knots but then add a
smoothness penalty that penalizes curvature.

> The function g(-) minimizes

b
27:1()’,- —g(x;))? —l—)\/ g" (t)dt where a < all x; < b.
a

» A = 0 connects the data points and A — oo gives OLS.

@ B splines are discussed in ESL ch.5 appendix.
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Lozz| o bemiel egreston
Local Polynomial Regression

@ Local polynomial at x = xp of degree d
-~ d ~0 ;
f(XO) = Ej:g IB_]XI]
~0 ~0 .. . .
> where /30, .Bd minimize the locally weighted least squares

27:1 Ky (x0, x;) (YI - 27:0 :B?X:j)2

The weights K (xo, x;) are given by a kernel function and are highest
at x; = Xxg.

@ The tuning parameter A determines how far out to average.

@ d = 0 is local constant (Nadaraya-Watson kernel regression).
@ d =1 is local linear.
o

Can generalize to local ML max Y7 ; K (xo, xi) In f (yi, x;, 90).
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it Pl els
Flexible Models with Multiple Predictors

@ For splines use multivariate adaptive regression splines (MARS) - see
ESL ch.9.4.

o For fully nonparametric regression run into curse of dimensionality
problems

> so place some structure.

@ Economists use single-index models with f(x) = g(x'B) with g(+)
unspecified.

» advantage is interpretability
> project pursuit regression (below) generalizes.

@ Regression trees are used a lot (next topic).

@ Here first consider

» generalized additive models
> neural networks.
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CINHITEETRVIGEEN  Generalized Additive Models

Generalized Additive Models (GAM:s)

@ A linear combination of scalar functions
p
yi=a+) " filxg) +e
where x; is the j™ regressor and f(-) is (usually) determined by the

data.

@ Advantage is interpretability (due to each regressor appearing
additively).

@ Can make more nonlinear by including interactions such as xj1 X xj»
as a separate regressor.

e For f;(-) unspecified reduces p—dimensional problem to sequence of
one-dimensional problems.

@ ESL ch.9.1.1 presents the backfitting algorithm when smoothing
splines are used that minimize the penalized RSS

n 2
PRSS(a, i, fy) = Y0 (vi—a— Y0 60q)) + 10, A / (e

@ Problems implementing if many possible regressors.
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CINLIEETRVICEEN  Project Pursuit Regression

Project Pursuit Regression

@ See ESL chapter 11.2.
e The GAM is additive in functions f;(x;), j =1, ..., p, that are distinct
for each regressor.
o Instead be additive in functions of x1,...,x,, m=1,..., M.
o Project pursuit regression minimizes Y0, (y; — f(x;))? where
M
F(xi) =) 1 8m(Xiwm)
» additive in derived features x’w, rather than in the xjfs.
@ Here the g, (+) functions are unspecified.
@ This is a multi-index model with case M = 1 being a single-index

model.
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4. Nonlinear Models Neural Networks

Neural Networks

@ See ESL chapter 11.2-11.10.

o Neural network is a richer model for f(x;) than project pursuit, but
unlike project pursuit all functions are specified. Only parameters
need to be estimated.

@ Consider a neural network with two layers: Y depends on Z's (a
hidden layer) that depend on X’s.

Zn =glaom+Xanm) m=1.., M
usually g(v) =1/(1+e7")
T =py+7Z'B
f(X) = h(T)

usually h(T) =T

o So f(x;) =M | g(wom + Xla,) where g(v) =1/(1+e7).
@ We need to find the number M of hidden units and estimate the «’s.
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4. Nonlinear Models Neural Networks

Neural Networks (continued)

@ Minimize the sum of squared residuals but need a penalty on &’s to

avoid overfitting.
» Since penalty is introduced standardize x’s to (0,1).
» Best to have too many hidden units and then avoid overfit using
penalty.
@ Neural nets are good for prediction
> especially in speech recognition, image recognition, ...
> but very difficult (impossible) to interpret.
o Estimate iteratively using iterative gradient methods
> initially people used back propagation
> faster is to use variable metric methods (such as BFGS) that avoid
using the Hessian or use conjugate gradient methods
> different starting values lead to different estimates (nonconvex
objective function) so use several starting values and average results or

use bagging.
@ Deep learning uses nonlinear transformations such as neural networks

> deep nets are an improvement on original neural networks.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 68 / 115



5. Regression Trees

5. Regression Trees

Q@ Terminology

Estimating Prediction Error

Regression (Supervised learning for continuous y)
Nonlinear models

Regression trees

Classification (categorical y): logit, k-nn, LDA, SVM
Unsupervised learning (no y): PCA, cluster analysis
Causal inference with machine learning

Big data

®©000000O0O0

Some R commands for machine learning
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5. Regression Trees

5. Regression Trees: Overview

@ Regression Trees sequentially split regressors x into regions that best
predict y

> e.g., first split is income < or > $12,000
and second split is on gender
and third split is income < or > $30,000 (if income > $12,000).

@ Trees do not predict well

> due to high variance
> e.g. split data in two then can get quite different trees
> e.g. first split determines future splits.

@ Better methods are then given next

> bagging (bootstrap averaging) computes regression trees for different
samples obtained by bootstrap and averages the predictions.

» random forests use only a subset of the predictors in each bootstrap
sample

» boosting grows trees based on residuals from previous stage

> bagging and boosting are general methods (not just for trees).
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5. Regression Trees

Regression Trees

@ Regression Trees

> sequentially split x’s into rectangular regions in way that reduces RSS
> then ¥; is the average of y's in the region that x; falls in
> with J blocks RSS= Y7 Lier,(vi — 7r,)%.

@ Need to determine both the regressor j to split and the split point s.

» For any regressor j and split point s, define the pair of half-planes

R1(j,s) = {X|X; < s} and R2(j,s) = {X|X; > s}
Find the value of j and s that minimize

Y i)+ Y (i m)?

ix;€R1(j,s) ix;€R1(j,s)

where yr1 is the mean of y in region R1 (and similar for R2).
» Once this first split is found, split both R1 and R2 and repeat
» Each split is the one that reduces RSS the most.
Stop when e.g. less than five observations in each region.
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5. Regression Trees

@ The following diagram arises if (1) split X1 in two; (2) split the lowest
X1 values on the basis of X2 into R1 and R2; (3) split the highest X1
values into two regions (R3 and R4/R5); (4) split the highest X1
values on the basis of X2 into R4 and R5.

R, 4

Xa
>

Ry
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o The model is of form f(X) = Y/_; cm x 1[X € R}].
@ The approach is a topdown greedy approach

> top down as start with top of the tree

» greedy as at each step the best split is made at that particular step,
rather than looking ahead and picking a split that will lead to a better
tree in some future step.

@ This leads to overfitting, so prune

> use cost complexity pruning (or weakest link pruning)
» this penalizes for having too many terminal nodes
> see ISL equation (8.4).

@ Regression trees are easy to understand if there are few regressors
@ But they do not predict as well as methods given so far

> due to high variance (e.g. split data in two then can get quite different
trees).

@ Better methods (bagging, random forests and boosting) are given
next.
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Bagging (Bootstrap Aggregating)

@ This method is a general method for improving prediction that works
especially well for regression trees.
Idea is that averaging reduces variance.

So average regression trees over many samples

> where different samples are obtained by bootstrap (so not completely
independent of each other) R
» For each sample obtain a large tree and prediction fp,(x).

> Average all these predictions: ?bag (x) = % ZE:l o (x).
@ Get test error by using out-of-bag (OOB) observations not in the
bootstrap sample

> Pr[jth obs not in resample] = (1 — %)” —e1=0368~1/3.
> this replaces cross validation.

Interpretation of trees is now difficult so

> record the total amount that RSS is decreased due to splits over a
given predictor, averaged over all B trees.
> A large value indicates an important predictor.
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5. Regression Trees Random Forests

Random Forests

@ The B bagging estimates are correlated in part because if a regressor
is important it will appear near the top of the tree in each bootstrap
sample.

» The trees look similar from one resample to the next.

@ As for boosting get bootstrap samples.

@ But within each bootstrap sample each time a split in a tree is
considered, use only a random sample of m < p predictors in deciding
the next split.

> usually m=~,/p.
@ This reduces correlation across bootstrap resamples.

@ Simple bagging is random forest with m = p.
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Eoasiing
Boosting

@ This method is also a general method for improving prediction.
@ Regression trees use a greedy algorithm.
@ Boosting uses a slower algorithm to generate a sequence of trees

» each tree is grown using information from previously grown trees
» and is fit on a modified version of the original data set
» boosting does not involve bootstrap sampling.

e Specifically (with A a penalty parameter)

> given current model b fit a decision tree to model b's residuals (rather
than the outcome Y')

» then update f(x) = previous 7(x) + AF2(x)
» then update the residuals r; = previous r; — Af?(x;)
> the boosted model is f(x) = Y2_, AfP(x;).
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6. Classification

6. Classification

@ Terminology

Estimating Prediction Error

Regression (Supervised learning for continuous y)
Nonlinear models

Regression trees

Classification (categorical y): logit, k-nn, LDA, SVM
Unsupervised learning (no y): PCA, cluster analysis
Causal inference with machine learning

Big data

®©000000O0O0

Some R commands for machine learning
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CINEEESTIEN  Classification Methods

6. Classification Methods

@ y's are now categorical (e.g. binary if two categories).
Use (0,1) loss function

» 0 if correct classification and 1 if misclassified.

Regression methods predict probabilities and then use Bayes classifier.

> logistic regression, multinomial regression, k nearest neighbors
> assign to class with the highest predicted probability
> inbinarycasey=1ifp>05andy=0if p < 0.5.

Discriminant analysis additionally assumes a normal distribution for
the x's

> use Bayes theorem to get Pr[Y = k|X = x].

Support vector classifiers and support vector machines use separating
hyperplanes of X and extensions.
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6. Classification Loss Function

A Different Loss Function

@ y's are now categorical (e.g. binary if two categories).
@ Use (0,1) loss function (ESL pp.20-21).
» 0 if correct classification and 1 if misclassified.
L(G,G(X)) is 0 on diagonal of K x K table and 1 elsewhere
» where G is actual categories and Gis predicted categories.

@ Then minimize the expected prediction error
EPE = EcxI[L(G.G(X))]
= Ex | X, L(G.G(X)) x PrlGi|X]|
@ Minimize EPE pointwise
f(x) =argmingeg [Zszl L(Gy,g) X Pr[Gk|X = x]}

d/0dc = argmingeg[l — Pr[g|X = x]]
= maxgcg Pr(g|X = x]

o Called Bayes classifier. Classify the most probable class.
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6. Classification Test Error Rate

Test Error Rate

@ Instead of MSE we use the error rate

1 «n —~
Error rate = - Y 1y Ayl

where indicator 1[A] = 1 if event A happens and = 0 otherwise.
@ The test error rate is for the ng observations in the test sample

Ave(1[yo # ¥o)) Z 1yoi # Yoil-

@ Cross validation uses number of mlscla55|f|ed observations. e.g.

LOOCV is
Z, | Erri —fZ 1y, # ¥

@ Some termmology

> A confusion matrix is a K x K table of counts of (y,y)
» In 2 x 2 case with y =1 or 0

* sensitivity is % of y = 1 with prediction y =1

* specificity is % ofy = 0 W|th predlctlon y=0

N
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6. Classification Logit and k-NN

Logit and k-NN

Directly model p(X) = Pr[y|X].

e Logistic (logit) regression for binary case obtains MLE for
X
In (25%7) = Bo +X'B
o

Statisticians implement using a statistical package for the class of
generalized linear models (GLM)

> logit is in the Bernoulli (or binomial) family with logistic link
> logit is often the default.

k-nearest neighbors KNN for many classes

> PrlY = j|X = Xo] = & Lien, i = J]
» where Nj is the K observations on X closest to Xg

In both cases we obtain predicted probabilities

> then assign to the class with highest predicted probability.
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6. Classification Linear Discriminant Analysis

Linear Discriminant Analysis

Discriminant analysis specifies a joint distribution for (Y, X).

Linear discriminant analysis with K categories

» assume X|Y = k is N(p,, X) with density f (X) = Pr[X = x|Y = k]
» and let 71, = Pr[Y = k]

@ The desired Pr[Y = k|X = x] is obtained using Bayes theorem

(X
PrlY = k|]X =x] = #f@()x)

Assign observation X = x to class k with largest Pr[Y = k|X = x].

» Upon simplification this is equivalent to choosing model with largest
discriminant function

1
Se(x) =Xy, — Eyk’Z_lyk +In 71y
> use i, =%, = \7§r[xk] and 7Ty = %Z,’-Vﬂ 1[y; = k].

o Called linear discriminant analysis as linear in x.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 82 /115



6. Classification Quadratic Discriminant Analysis

Quadratic Discriminant Analysis

@ Quadratic discriminant analysis

> allow different variances so X|Y = k is N(p,, X)

@ Upon simplification, the Bayes classifier assigns observation X = x to
class k which has largest

1 1 1
Sk (x) = —EX’Z;1x+x’Z;1yk — Eyk'Z;lyk -5 In |2y | + In 7k

» called quadratic discriminant analysis as linear in x

@ Use rather than LDA only if have a lot of data as requires estimating
many parameters.
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Lov e el
LDA versus Logit

@ ESL ch.4.4.5 compares linear discriminant analysis and logit

» Both have log odds ratio linear in X

» LDA is joint model if Y and X versus logit is model of Y conditional
on X.

> In the worst case logit ignoring marginal distribution of X has a loss of
efficiency of about 30% asymptotically in the error rate.

» If X’s are nonnormal (e.g. categorical) then LDA still doesn't do too
bad.
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6. Classification

Linear and Quadratic Boundaries
o LDA uses a linear boundary to classify and QDA a quadratic

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with £1 = Xs. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approzimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that £y # Xa. Since the Bayes decision
boundary is non-linear, it is more accurately approrimated by QDA than by LDA.

[m] = =

il
it
N
0
o)
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Suppar: Vesier Cessiicr
Support Vector Classifier

@ Build on LDA idea of linear boundary to classify when K = 2.
@ Maximal margin classifier

> classify using a separating hyperplane (linear combination of X)

» if perfect classification is possible then there are an infinite number of
such hyperplanes

> so use the separating hyperplane that is furthest from the training
observations

> this distance is called the maximal margin.

@ Support vector classifier

> generalize maximal margin classifier to the nonseparable case

» this adds slack variables to allow some y's to be on the wrong side of
the margin

» Maxg M (the margin - distance from separator to training X's)
subject to B'B # 1, y;(By +X;B) > M(1—¢;), & >0 and
Y& <C.
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Sz e i
Support Vector Machines

@ The support vector classifier has linear boundary
» f(x0) = By + L1 aixpX;, where x(x; = Zle X0jXij-
@ The support vector machine has nonlinear boundaries
> f(x0) =By + L1 @iK(xg,x;) where K(-) is a kernel
> polynomial kernel K(xg,x;) = (1 -l—Zf:l XOinj)d
> radial kernel K(xq,x;) = exp(—7 Zj?:l(xoj - x,-j)z)

o Now extend to K > 2 classes (see ISL ch. 9.4).

> one-versus-one or all-pairs approach
» one-versus-all approach.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017

87 / 115



7. Unsupervised Learning

7. Unsupervised Learning

@ Terminology

Estimating Prediction Error

Regression (Supervised learning for continuous y)
Nonlinear models

Regression trees

Classification (categorical y): logit, k-nn, LDA, SVM
Unsupervised learning (no y): PCA, cluster analysis
Causal inference with machine learning

Big data

®©000000O0O0

Some R commands for machine learning
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7. Unsupervised Learning

7. Unsupervised Learning

@ Challenging area: no y, only X.
@ Principal components analysis.
o Clustering Methods

» k means clustering.
> hierarchical clustering.
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7. Unsupervised Learning Principal Components

Principal Components

@ Initially discussed in section on dimension reduction.

@ Goal is to find a few linear combinations of X that explain a good

fraction of the total variance Y7, Var(X;) = ¥7_, LYy X3 for
mean 0 X's.

© Zpn =Y 1 X where Y0, 7 =1 and ¢, are called factor
loadings.

@ A useful statistic is the proportion of variance explained (PVE)

> a scree plot is a plot of PVE,, against m

» and a plot of the cumulative PVE by m components against m.
» choose m that explains a “sizable” amount of variance

> ideally find interesting patterns with first few components.

@ Easier when used PCA earlier in supervised learning as then observe
Y and can treat m as a tuning parameter.
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lclteans Ausiaiig
K-Means Clustering

@ Goal is to find homogeneous subgroups among the X.
@ K-Means splits into K distinct clusters where within cluster variation
is minimized.
e Let W(Ck) be measure of variation
> Minimizec, ¢, Z,}le W(Cy)
> Euclidean distance W(Cy) = A~ Y fec, £F_; (5 — xi)?
@ Global maximum requires K" partitions.
o Instead use algorithm 10.1 (ISL p.388) which finds a local optimum

> run algorithm multiple times with different seeds
» choose the optimum with smallest ZkK:1 W(Cx).
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7. Unsupervised Learning Hierarchical Clustering

Hierarchical Clustering

Do not specify K.

Instead begin with n clusters (leaves) and combine clusters into
branches up towards trunk

> represented by a dendrogram
> eyeball to decide number of clusters.

@ Need a dissimilarity measure between clusters

» four types of linkage: complete, average, single and centroid.

For any clustering method

> it is a difficult problem to do unsupervised learning
> results can change a lot with small changes in method
> clustering on subsets of the data can provide a sense of robustness.
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8. Causal Inference with Machine Learning

8. Causal Inference with Machine Learning

Q@ Terminology

Estimating Prediction Error

Regression (Supervised learning for continuous y)
Nonlinear models

Regression trees

Classification (categorical y): logit, k-nn, LDA, SVM
Unsupervised learning (no y): PCA, cluster analysis
Causal inference with machine learning

Big data

®©000000O0O0

Some R commands for machine learning
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8. Causal Inference with Machine Learning

@ Current microeconometric applications instead focus on causal
estimation of a key parameter, such as an average marginal effect,
after controlling for confounding factors

» apply to models with selection on observables only
* good controls makes this assumption more reasonable
> and to IV with available instruments
* good few instruments avoids many instruments problem.
@ Machine learning methods determine good controls (or instruments)

» but valid statistical inference needs to control for this data mining
» currently active area of econometrics research.
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Instrumental variables estimation with many instruments
IV with Many Instruments

@ Instrumental variables model with many valid instruments

> Model: y; = df«x + &
» Complication: At least one component of d; is endogenous
> Instruments: x; that satisfy E[d;|x;] = 0.

Many instruments can arise naturally or because we additionally
consider powers and interactions of a smaller number of instruments

> Let the p instruments be f; = (fi1, ..., fip) = (A (X;), ... f(Xip)).

There is no problem in getting consistent IV estimates.

In theory efficiency improves with more instruments

» but asymptotic theory works poorly if include too many instruments.
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8. Causal Inference with Machine Learning Instrumental variables estimation with many instruments

@ Belloni et al. (2012) propose using LASSO to pick just a few
instruments

» 2012 Econometrica paper is good for details

* A. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012), “Sparse
Models and Methods for Optimal Instruments with an Application to
Eminent Domain”, Econometrica, Vol. 80, 2369-2429.

» 2014 JEP paper is more accessible and has application

* A. Belloni, V. Chernozhukov and C. Hansen (2014), “High-dimensional
methods and inference on structural and treatment effects,” Journal of
Economic Perspectives.

@ Key assumption is that only s of p possible instruments are needed

> an assumption of sparsity
» use LASSO or other methods to choose the s instruments
> then proceed with usual IV estimator and inference.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 96 / 115



N EETTEE R N CO TR M Y BT I RETG A Instrumental variables estimation with many instruments

@ For simplicity consider just one endogenous regressor

> S0y = df.a—i—s; = ad;—i—w;d—i—s,-.

> then in i.i.d. case optimal instrument D; = E|[d;|x/]

» we model d; = f/f+v;

> we do LASSO of d; on f; to give B (Lasso or post-lasso)

> the instrument for d; is d; = f/ and w; as instrument for w;.
o Combining:

» Model: y; = d:-lx +¢& = ad + W:(s + &

> IV estimator: @ = (Y7 ; a;.d;)fl( " a;-y,-)

* where d; = (d;,w;) and d; = (H,-,w,-).

> V(@) = (T7y did) (S0 Edjd)) (27 didy)
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8. Causal Inference with Machine Learning Instrumental variables estimation with many instruments

@ Further implementation details

> we do LASSO of d; on f; to give
B= mﬁin% Y7 1 (di — £B)? + 2| Y;(B)| where A is the penalty level

Y(B) = Diag(¥,. -++p) are penalty loadings.
» A= c2y/nd (1 - ﬁ) v = 0.1/ In(max(p, n)); c=1.1.

>|dea||y§j:,/ lelj Jj=1,.

> Since don't know vl-2 use initial conservative ?J-, use consequent V,?,

and iterate.
» Uses Stata add-on lassoShooting.ado.

o Further theory details on approximate sparsity
> Eldi|x;] = fiB+a(x;)
> Zj'):l l[ﬁj # 0] < s = o(n) # instruments grows at rate less than n

» a(xj) < Op(\/s/n) approximation error at most of order v/s/n and
hence < o0p(1)]
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N EETTEE R N CO TR M Y BT I RETG A Instrumental variables estimation with many instruments

@ Application: effect of endogenous court decisions on house prices

> yct = home price index within court circuit ¢ at time t

» dct = # of takings appellate decisions that rule that a taking was
unlawful

> Yet = &c + &t +act + Bdet + W,ct5 + &ct

> Frisch-Waugh partial out fixed effects, time trends and w;

> Vet =0+ Bdet + error

» find best instruments for :Ict using Lasso

» p = 183 possible and find s = 1 (JEP) or s = 2 (Ecta)

» the JEP instrument is the square of the number of panels with one or
more members with JD from a public university.
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R CETTEETR IV N IR MV EY I RET T3l Consistent model selection

Aside: Consistent Model Selection

o Consistent parameter estimation

> means 6, LA Bjp as n — o0
> no problem asymptotically if include x; when irrelevant

> since 0; LN 0j0 = 0 if x; irrelevant.

@ Consistent model selection

>
>
>
>
>

means probability of choosing correct model — 1 as n — oo

now we want to drop x; if 60 = 0

problem with testing at 5% as 5% of time include irrelevant regressors
solution 1: let test size— 0 as n — o0

solution 2: use BIC (Bayesian information criteria).
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R CETTEETR IV N IR MV EY I RET T3l Consistent model selection

Consistent model selection

@ Biostatistics includes regressors (controls) if p < 0.05
> may include irrelevant regressors and also leads to pre-test bias

@ Economics instead uses economics theory and previous studies to
include regressors regardless of their statistical significance,

e Data mining / machine learning chooses regressors from a much
wider range of potential regressors

> but need to make sure all relevant regressors are included
> and that there is no pre-test bias
» examples are given next.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017

101 / 115



Partial linear model with many controls
Partial Linear Model with Many Controls

@ Partial linear model with many controls
> Model: y; = ad; + g(z;) +¢;
* where Ele;|d;, z]] =0

» Estimator: OLS given knowledge of g(z)
» Complication: g(z) is unknown

* and z is high dimensional so can’t use e.g. Robinson (1988)
differencing estimator.

@ Wrong Solution: have some method to pick subset of controls to
include

> will sometimes pick wrong controls (due to randomness)

* so OLS is inconsistent.
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8. Causal Inference with Machine Learning Partial linear model with many controls

@ Proposed solution: double selection
> initial rich set of controls

* p potential controls x; = (Xj1, ..., xip) = (f1(z;), .... fp(2))
* e.g. series expansions

> assume sparsity so that only s < n need be included
> use Lasso to choose controls that (1) predict y; and/or (2) predict d.

@ Combining:

» Structural model: y; = ad; +x/d +¢; and dj = X0 +v;
» Reduced form is

* (1) yi =B+ uj
* (2) d,':xf-5+v,-

v

Apply Lasso to (1) and (2) separately
Choose those x; to be union of x’s from (1) and (2)
Do OLS of y on d and these x’s.

v

v
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8. Causal Inference with Machine Learning Partial linear model with many controls

@ Application: Effect of abortion policy on crime (Donohue and Levitt)

yst = crime rate (Violent, property or murder)

Yst = adst + Xlst‘s + s+ vy +est

analyze first-differences with state FE's model
Ayst = DCAdst + Ax’sté" + Ys —+ ugt

Adst = Axlstﬁ + /\5 + Vst

vV v vy

> p = 284 possible variables in x (see paper) and find s = 10

* lagged prisoners, lagged policex t, initial income difference, initial

dst = abortion rate for state i at time t (n =50, T = 12)

income differencex t, initial beer consumption difference X t, average

income, average incomeX t, initial abortion rate.

» similar & to Donohue-Levitt who have many more controls but
standard errors one-third the size.
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SN EETTEE R N TR N BT I RETGITA  ATE with heterogeneous effects and many controls

ATE with heterogeneous effects and many controls

e Max Farrell (2015), “Robust Estimation of Average Treatment Effect
with Possibly more Covariates than Observations", Journal of
Econometrics, 189. 1-23.

@ Set up assumes unconfoundedness

> Multivalued treatment D € {0,1, ..., J}

> Generalized treatment score p;(x) = Pr[D = j|X = x]

» Conditional outcome mean function pi;(x) = E[Y[D = j, X = x|

> iid. sample {y;, di,x;}, i=1,...N

> assume selection on observables.

@ Method

> fit pj(x) and yj(x) using group lasso applied to multinomial logit and
least squares

> refit p;(x) and p;(x) using penalized Pr[D = j|X = x|

> estimate yi; = E[Y|D = j] by
By = 3Ly | )

» simulation and apply to Dehejia-Wahba data.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 105 / 115



ATE e LATE widh meny Cemizisls
LATE and ATE with many controls

@ Belloni, Chernozhukov, Fernandez-Val and Hansen (2015), “Program
Evaluation with High-Dimensional Data”

@ Binary treatment and heterogeneous effects with endogenous
treatment and valid instruments

> use lasso along the way
> allow for estimation of functions (such as local quantile treatment
effects over a range of quantiles)
o Key is to use moment condition that allows inference to be unaffected
by first-stage estimation
> First stage: @ solves Y7 ; h(w;, &) =0
» Second stage: B solves Y. ; g(w;, &, B) =0
* where g(-) chosen so that E[dg(w;, &, B)/dB = 0.
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SR CETTEETR IV MV ET IS RETO T3l ATE: Random Forests Example

ATE: Random Forests Example

@ Random forests predict very well. Susan Athey big on this.

@ Susan Athey and Stefan Wager (2017), "Estimation and Inference of

Heterogeneous Treatment Effects using Random Forests," JASA,
forthcoming.

» Standard binary treatment and heterogeneous effects with
unconfoundness assumption

» Use random forests to determine the controls

» Proves asymptotic normality and gives point-wise confidence intervals

* This is a big theoretical contribution.
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AUIE Renclo evesis [Bempls
Susan Athey

@ Susan Athey's website has several papers on machine learning in
economics.

@ Susan Athey (2017), "Beyond Prediction: Using Big Data for Policy
Problems,” Science 355, 483-485.

» Off-the shelf prediction methods assume a stable environment
* includes Kleinberg et al (2015) AER hip replacement

» This article considers causal prediction by

* adjust for confounders e.g. Belloni et al., Athey et al.
* designed experiments e.g. Blake et al.
* excellent references to the latest work.
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9. Big Data

Q@ Terminology

Estimating Prediction Error

Regression (Supervised learning for continuous y)
Nonlinear models

Regression trees

Classification (categorical y): logit, k-nn, LDA, SVM

Unsupervised learning (no y): PCA, cluster analysis

Causal inference with machine learning
Big data

Some R commands for machine learning

®©000000O0O0
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9. Big Data

9. Big Data

e Hal Varian (2014), “Big Data: New Tricks for Econometrics”, JEP,
Spring, 3-28.
@ Tools for handling big data
» file system for files split into large blocks across computers
* Google file system (Google), Hadoop file system

» database management system to handle large amounts of data across
many computers

* Bigtable (Google), Cassandra
» accessing and manipulating big data sets across many computers
* MapReduce (Google), Hadoop.
> language for Mapreduce / Hadoop
* Sawzall (Google), Pig
» Computer language for parallel processing
* Go (Google - open source)

v

simplified structured query language (SQL) for data enquiries
* Dremel, Big Query (Google), Hive, Drill, Impala.
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9. Big Data

@ Methods

» article discusses k-fold CV, trees, lasso, ....
» small discussion of causality and prediction
> (note that a classic fail is Google flu trends)
» for references mentions ESL and ISL.
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10. Some R Commands used in ISL

@ Basic regression

» OLS is Im fit
» cross-Validation for OLS uses cv.glm()
> bootstrap uses boot() function in boot library

@ Basic classification

> logistic: glm function
> discriminant analysis: Ida() and qda functions in MASS library
> k nearest neighbors: knn() function in class library

@ Variable selection

> best subset, forward stepwise and backward stepwise: regsubsets() in
leaps library

@ Penalized regression

> ridge regression: glmnet(,alpha=0) function in glmnet library
> lasso: glmnet(,alpha=1) function in glmnet library
» CV to get lambda for ridge/lasso: cv.glmnet() in glmnet library
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10. Some R Commands used in ISL

Some R Commands (continued)

@ Dimension reduction

> principal components: pcr() function in pls library

» CV for PCA: pcr(,validation="CV")

> partial least squares: plsr() function in pls library
@ Splines

> regression splines: bs(x,knots=c()) in Im() function
> natural spline: ns(x,knots=c()) in Im() function
» smoothing spline: function smooth.spline() in spline library

@ Local regression

> loess: function loess
> generalized additive models: function gam() in gam library
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Some R Commands (continued)

@ Tree-based methods

classification tree: function tree() in tree library
cross-validation: cv.tree() function

pruning: function prune.tree()

random forest: randomForest() in randomForest library
bagging: function randomForest()

boosting: gbm() function in library ghm

vV v vV VY VY

@ Support vector machines

> support vector classifier: svm(... kernel="linear") in e1071 library

> support vector machine: svm(... kernel="polynomial") or svm(...
kernel="radial") in €1071 library

> receiver operator characteristic curve: rocplot in ROCR library.

@ Unsupervised Learning

> principal components analysis: function prcomp()
> k-means clustering: function kmeans()
> hierarchical clustering: function hclust()
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11. References

11. References

e Undergraduate / Masters level book
» |SL: Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibsharani (2013), An Introduction to Statistical Learning: with
Applications in R, Springer.
> free legal pdf at http://www-bcf.usc.edu/~gareth/ISL/
> $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy
@ Masters / PhD level book
» ESL: Trevor Hastie, Robert Tibsharani and Jerome Friedman (2009),
The Elements of Statistical Learning: Data Mining, Inference and
Prediction, Springer.
> free legal pdf at
http://statweb.stanford.edu/~tibs/ElemStatLearn /index.html
» $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy
@ Interesting book: Cathy O'Neil, Weapons of Math Destruction: How
Big Data Increases Inequality and Threatens Democracy.

A. Colin Cameron Univ. of California- Davis Machine Learning April 12, 2017 115 / 115



	Introduction
	1. Terminology
	2. Estimating Prediction Error
	Cross-validation
	Penalty measures
	Variance-bias trade-off
	Stata example

	3. Regression Methods
	Subset Selection of Regressors
	Shrinkage methods
	Ridge Regression
	Lasso
	Lasso versus Ridge
	Least Angle Regression
	Dimension Reduction
	Principal Components Analysis
	Partial Least Squares
	High-Dimensional Models
	Stata Example

	4. Nonlinear Models
	Basis Functions
	Splines
	Cubic Regression Splines
	Other Splines
	Local Polynomial Regression
	Multiple Predictors
	Generalized Additive Models
	Project Pursuit Regression
	Neural Networks

	5. Regression Trees
	Bagging
	Random Forests
	Boosting

	6. Classification
	Classification Methods
	Loss Function
	Test Error Rate
	Logit and k-NN
	Linear Discriminant Analysis
	Quadratic Discriminant Analysis
	LDA versus Logit
	Linear and Quadratic boundaries
	Support Vector Classifier
	Support Vector Machines

	7. Unsupervised Learning
	Principal Components
	K-Means Clustering
	Hierarchical Clustering

	8. Causal Inference with Machine Learning
	Instrumental variables estimation with many instruments
	Consistent model selection
	Partial linear model with many controls
	ATE with heterogeneous effects and many controls
	ATE and LATE with many Controls
	ATE: Random Forests Example

	9. Big Data
	10. Some R Commands used in ISL
	11. References

