Microeconometrics: Methods and Applications  A. Colin Cameron and Pravin K. Trivedi
MICROECONOMETRICS: Methods and Applications


Cambridge University Press, New York
May 2005


PROGRAMS AND OUTPUT AND DATA FOR ENTIRE BOOK

[CHAPTERS 1-25 COMPLETE. CHAPTERS 26-27 TO BE COMPLETED IN JUNE]

For a zipped file with all programs and data and output click here
[This version October 24 2005. See included file readme.txt for explanations].

For some explanation of programs click here

For details on the data sets click here

PROGRAMS:  I. INTRODUCTION  (chapters 1-3)

No programs.

PROGRAMS:  II. CORE METHODS  (chapters 4-10)

Section
Pages
Example
Program and Output
Data  
[* means generated]
4.5.3
84-5
Robust Standard Errors for OLS, WLS and GLS
mma04p1wls.do
mma04p1wls.txt
* mma04p1wls.asc
4.6.4
88-90
Quantile and Median Regression
mma04p2qreg.do
mma04p2qreg.txt
qreg0902.dta or qreg0902.asc
4.8.8
102-3
Instrumental Variables Regression
mma04p3iv.do
mma04p3iv.txt
* mma04p3iv.asc
4.9.6
110-2
IV Application with Weak Instruments
mma04p4ivweak.do
mma04p4ivweak.txt
DATA66.dat and DATA66.dct





5.9.2-3
159-63
Exponential: MLE using ml command
mma05p1mle.do
mma05p1mle.txt
* mma05data.asc
5.9.2-3
159-63
Exponential: NLS using nl command
mma05p2nls.do
mma05p2nls.txt
* mma05data.asc
5.9.2-3
159-63
Exponential: NLS using ml command
mma05p3nlsbyml.do
mma05p3nlsbyml.txt
* mma05data.asc
5.9.4
159-63
Exponential: Computation of marginal effects
mma05p4margeffects.do
mma05p4margeffects.txt
* mma05data.asc





6.5.4
198-9
Nonlinear 2SLS: Using Limdep
mma06p1nl2sls.lim
mma06p1nl2sls.out
* mma06p1nl2sls.asc
6.5.4
198-9
Part of preceding using Stata
mma06p2twostage.do
mma06p2twostage.txt
* mma06p1nl2sls.asc





7.4
241-3
Likelihood-based Hypothesis Testts
mma07p1mltests.do
mma07p1mltests.txt
* mma07p1mltests.asc
7.6.3
248-9
Asymptotic Power of Wald Test
mma07p2power.do
mma07p2power.txt
No data
7.7.1-5
250-4
Monte Carlo Simulation of Wald Test
mma07p3montecarlo.do
mma07p3montecarlo.txt
Data for many simulations not saved
7.8
254-6
Bootstrap example
mma07p4boot.do
mma07p4boot.txt
* mma07p4boot.asc





8.2.9
269-71
Conditional moment tests example
mma08p1cmtests.do
mma08p1cmtests.txt
* mma08p1cmtests.asc
8.5.5
283-4
Nonnested models test example
mma08p2nonnested.do
mma08p2nonnested.txt
* mma08p2nonnested.asc
8.7.3
290-1
Model diagnostics example
mma08p3diagnostics.do
mma08p3diagnostics.txt
* mma08p3diagnostics.asc





9.2
295-7
300
Nonparametric density estimation and regression: appplication
mma09p1np.do
mma09p1np.txt

9.4-9.5
307-19
Nonparametric regression: more
mma09p2npmore.do
mma09p2npmore.txt
* mma09p2npmore.asc
9.3.3
300
Kernel functions plotted (extra not in book).
mma09p3kernels.do
mma09p3kernels.txt
* mma09p3kernels.asc





10.2.5
338-9
Gradient method example (Newton Raphson)
mma10p1gradient.do
mma10p1gradient.txt
No data

PROGRAMS:  III. Computationally-Intensive Methods  (chapters 11-13)

Section
Pages
Example
Program and Output
Data
11.3
366-8
Bootstrap example
mma11p1boot.do
mma11p1boot.txt
* mma11p1boot.asc





12.3.3
391-2
Integral Computation Example
mma12p1integration.do
mma12p1integration.txt
No data
12.4.5, 12.5.6
397-7, 403-4
Maximum Simulated Likelihood and Maximum Simulated Score Example
mma12p2mslmsm.do
mma12p2mslmsm.txt
* mma12p2mslmsm.asc
12.8.2
412-3
Illustration of Methods to Draw Random Variates
mma12p3draws.do
mma12p3draws.txt
No data





13.2.2
424
Bayes Theorem Illustration for Normal Distribution and Prior
mma13p1bayesthm.do
mma13p1bayesthm.txt
No data
13.6
452-4
MCMC Example: Gibbs Sampler for SUR
mma13p2bayesgibbs.sas
mma13p2bayesgibbs.lst
mma13p2bayesgibbs.log
Program generated

PROGRAMS:  IV. Models for Cross-Section Data  (chapters 14-20)

Section
Pages
Example
Program and Output
Data
14.2
464-5
Logit and Probit Application (fishing mode)
mma14p1binary.do
mma14p1binary.txt
Nldata.asc

14.7.5
486
Maximum score estimator for binary outcome
mma14p2maxscore.lim
mma14p2maxscore.out
mma14p1binary.asc





15.2.1-3
491-5
Multinomial Logit and Conditional Logit Application (fishing mode)
mma15p1mnl.do
mma15p1mnl.txt
Nldata.asc
15.6.3
511
Nested Logit (or GEV) estimation
mma15p2gev.do
mma15p2gev.txt
Nldata.asc
15.2.2
493-4
Limdep multinomial logit
mma15p3mnl.lim
mma15p3mnl.out
Nldata.asc
15.2.1-3
491-5
Limdep and addon Nlogit for conditional and nested logit
mma15p4gev.lim
mma15p4gev.out
mma15p4gev.asc





16.2.1
530-1, 565
Classic Tobit MLE and CLAD
mma16p1tobit.do
mma16p1tobit.txt
mma16p1tobit.asc
16.3.4
540
Inverse Mills ratio plotted
[corrected 11/6/2006]
mma16p2mills.do
mma16p2mills.txt
No data
16.6
553-5
Selection Model Application (medical expenditures)
mma16p3selection.do
mma16p3selection.txt
randdata.dta or
mma16p3selection.asc





17.2
17.5.1
574-5
581-3
Nonparametric estimation (KM for NA) for survival data (strike duration)
mma17p1km.do
mma17p1km.txt
strkdur.dta or
strkdur.asc
17.5.1
581-2
Nonparametric estimation (KM and NA) for survival data (artificial)
mma17p2kmextra.do
mma17p2kmextra.txt
Data in program
17.6.1
584-6
Weibull distribution functions plotted
mma17p3weib.do
mma17p3weib.txt
No data
17.11
603-8
Duration regression models (unemployment duration)
mma17p4duration.do
mma17p4duration.txt
ema1996.dta
or ema1996.asc





18.8
632-6
Duration regression with unobserved heterogeneity (unemployment duration)
mma18p1heterogeneity.do
mma18p1heterogeneity.txt
ema1996.dta
or ema1996.asc





19.5
658-3
Competing risks model (unemployment duration)
mma19p1comprisks.do
mma19p1comprisks.txt
ema1996.dta
or ema1996.asc





20.2
20.7
671-4
690
Count regression (doctor contacts)
[Table 20.6 added 11/6/2006]
mma20p1count.do
mma20p1count.txt
randdata.dta
mma20p1count.asc

PROGRAMS:  V. Models for Panel Data  (chapters 21-23)

Section
Pages
Example
Program and Output
Data
21.3.1-3
708-13
Linear Panel Fixed and Random Effects Application (hours and wages)
mma21p1panfeandre.do
mma21p1panfeandre.txt
MOM.dat
21.3.2
21.3.4
710
719
Linear Panel Estimators manually obtained by OLS on transformed equation (hours and wages)
mma21p2panmanual.do
mma21p2panmanual.txt
MOM.dat
21.3.4
713-5
Linear Panel Residual Analysis (hours and wages)
mma21p3panresiduals.do
mma21p3panresiduals.txt
MOM.dat
21.5.5
725
Linear Panel pooled OLS and GLS estimation (hours and wages)
mma21p4pangls.do
mma21p4pangls.txt
MOM.dat





22.3
754-6
Linear Panel GMM Application (hours and wages)
mma22p1gmmpanel.do
mma22p1gmmpanel.txt
MOMprecise.dat





23.3
792-5
Nonlinear Panel Application (patents and R&D)
mma23p1pannonlin.do
mma23p1pannonlin.txt
patr7079.asc

PROGRAMS:  VI. Further Methods  (chapters 24-27)

Section
Pages
Example
Program and Output
Data
24.7
848-53
Clustered Linear Regression (household medical expenditure clustered on commune)
mma24p1olscluster.do
mma24p1olscluster.txt
vietnam_ex1.dta
or vietnam_ex1.asc


Clustered Poisson Regression (individual pharmacy visits clustered on commune)
mma24p2poiscluster.do
mma24p2poiscluster.txt
vietnam_ex2.dta
or vietnam_ex2.asc





25.8.1-4
889-93
Treatment Evaluation: Simple calculations (training on earnings)
mma25p1treatment.do
mma25p1treatment.txt
nswpsid.da1
or nswpsid.dta
25.8.5
893-6
Treatment Evaluation: Propensity score matching (training on earnings): 
mma25p2matching.do
mma25p2matching.txt
nswpsid.da1
or nswpsid.dta
25.8
889-96
Treatment Evaluation: Additional analysis not in book using additional data sets (NSW experimental controls and CPS controls)
mma25p3extra.do
mma25p3extra.txt

nswre74_treated.dta and
nswre74_control.dta
or nswre74_all.asc
propensity_cps.dta
or propensity_cps.asc





26.5
919
Measurement Error Bias Logit
mma26p1melogit.do
mma26p1melogit.txt
Generated data





27.8.1
936-7
Missing Data Multiple Imputation Linear
mma27p1milinear.do
mma27p1milinear.txt
mma27p2milinear.sas
mma27p2milinear.lst
mma27p2milinear.log
mma27linear1.asc
mma27linear2.asc
mma27linear3.asc
mma27linear4.asc
27.8.2
937-9
Missing Data Multiple Imputation Logit
mma27p3milogit.do
mma27p3milogit.txt
mma27p4milogit.sas
mma27p4milogit.lst
mma27p4milogit.log
mma27logit1.asc
mma27logit2.asc
mma27logit3.asc
mma27logit4.asc

Back to Main Page