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1 Introduction

e GMM is generalization of method of moments
e Example is estimation of u for y i.i.d.

e Population moment condition

Ely —pu] =0.

e Sample moment condition:

1 N
N Z:(yi —p) =0.
1=1

e Solving yields MM estimator

AN

p=1y.



Introduction (continued)

e More generally
a population moment condition for 6
leads to
a corresponding sample moment condition for 0
which we solve for 6.

e What if nonlinear in 8?7 Nonlinear MM.

e What if more moment conditions than components
of 07 GMM.

e What is the best moment condition to start with?
Optimal GMM.



2 GMM Examples: OLS

e Population conditional moment condition

Efu;|x;] = Ely; — x38/x;] = 0.

e Population unconditional moment condition

E[(y; — x}8) x;] = 0.

e Sample moment condition

e Solving yields OLS estimator

—1
BOLS = (Z Xﬁﬁ;) Z X3Yq
7 1



Regression with Symmetric Errors

e Population conditional moment condition
Eluilx;] = Ely; —x;8/x;] =0
3 )3
Elullx] = El(yi—xiB) [x] =0.

e Population unconditional moment condition

E[ (yi_xmﬁi] _ [O].

(yz' - Xﬁﬂ) X 0

e There are 2K moment conditions and only K para-
meters, so cannot solve for 3.

e Instead GMM minimizes quadratic form

[%Zf\il( /5> % fv1( —Xlﬁ)
N Zizl (yz — Xé,@) X4 ] |

XWX 3
{ Ao (- xp) %



Maximum Likelihood

e Population moment condition

e lﬁln f(y|x, 9)] _o.
00

e Sample moment condition

1 X 9In f(y;lxi, 0) _

0.
N 00

1=1

e Solving yields the MLE.



Instrumental Variables (V)

e Population conditional moment condition

E[u;|z;] = 0 = E[y; — x;3|z;] = 0.

e Population unconditional moment condition

E[(y; — x}B) zi] = 0.
e Sample moment condition

1 Al : / .—0
NE(Z%_X@B)ZZ— :

e If dim(z)=dim(x) can solve to obtain IV estimator

—1
BIV — (Z Zixf/i) Z Z;Y;-
i i



Two-Stage Least Squares
e If dim(z)>dim(x) cannot solve for 3.

e Instead GMM minimizes quadratic form

1 N / / 1 N / /
|:N,LZ:1 (yz - Xzﬁ) Zi] ><VV]V>< [Zz:l (yz — X )Zz

e The choice Wy = [ ZZ 1 ZiZ ] is optimal if
errors are independent and homoskedastic.

e Thisis generalized IV or two-stage least squares (though
no "two-stage" motivation here).



Structural Models (Hansen)

e Maximize expected PDV of lifetime utility
E [Z?io BU(Cy) |Io} with budget constraint with
labor and asset income.

e Euler equation with constant RR aversion utility
Ciy1\ " (P, D
el g (it (Pr+1 + t+1)_1It _o,
C P

where Z; is information set at time t.

e GMM estimator using time series data

1 - Cis1\" (P41 + Dit1) /
EZ<B<Q> Py _1>Zt

t=1

1 i (5 (CH—l)a (Pey1+ Dy1) 1) 2
thl Cy Py
where z; € Zy. eg. Ct/Cy_1, (Pr+ D)/ P_1.

W




3 Theory

e Population unconditional moment condition
E[h(w, 8p)] = 0,

where w = (y, X, z) is all observables.
e Sample moment condition

1 N .
N;h(wii, ) =0.

e If dim(h)=dim(8) can solve (numerically if not ana-
lytically) to obtain method of moments estimator.

e If dim(h)>dim(0) then do GMM.



Theory (continued)

e GMM minimizes

! N
Qn(0) = { > h(Wz,9)] Wy Li, > h(Wz‘,H)]
i—1

1=1

e Equivalently where r = dim(h)

r r N



Theory (continued)

Similar issues as for weighted LS in the linear model.

e Model choice entails specification of moment condi-
tions that are basis for estimation.

e Estimator choice entails specification of a weighting

function.

e Statistical inference is based on robust standard er-
rors that do not assume the weighting function to be
the optimal weighting function.

e leads to expression for variance of GMM estimator
qualitatively similar to that for the WLS estimator.



Asymptotic Distribution (continued)

e First-order conditions re-scaled

1 Y, 8hy(0) 1 Yoo
{ @] WN {\/szlhz(e)] —

N2 o6
e First-order Taylor series of third term

1=1

N
G'Wy L/lﬁ Y hy(8g) + G(61)'VN(O - 90)] = 0.
1=1

e Solving
VN0 — ;)

_ G’WNG(9+)] ’WN\/_Zh(HO)

— :G6WOG0)}_ GOWO x N [0, SO]



Asymptotic Distribution (continued)

- So

VN (Ogum — 00) >
N0, (GoWGo) H(GoWSoWoGo)(GoWoGo) *

e where Wy =plimW j; and

1 & | 6h;
Go = fim 13" { | ]
N@':l 89/ 0o
LSS E |
Sy = lim— E[hih- ]
NiZii= 7160

e and to implement use Wy and for i.i.d. case

G _ 1= 0h;
T /
N = 06

6

)

1 N o o
- N;hi(e)hi(e).



Optimal GMM

e (1) Optimal weighting matrix (for r > q).
For glven ch0|ce of h(W Op) use
Wy = S—1 where S is consistent for Sp. Then

VN (Bemm — 00) % N0, (GHWGo) 1.

This is usually what people call optimal GMM.

e Result (1) is routinely used.
One step GMM uses Wy = L
Two step GMM uses Wy = S—1

Often one-step does better - see Ziliak (1997).



Optimal GMM (continued)

e (2) Optimal moment condition.
The best choice of h(w, 8g) is that corresponding
to the MLE so

dln f(y|x,0)
00 '

Requires specification of conditional density.

h(w,0q) =




Optimal GMM (continued)

e (3) Optimal moment condition for given choice of
conditional moment condition. For

E[p(y, x,00)|z] =0
the best unconditional moment is

E[D*(z, 60)p(y, x,00)] = 0,

where

D*(z,0) = E [ap (ya’;" 2 |z]

[E [p(y,x,0)p(y,x,0)]2]} .

Requires specification of cond. variance of p(y, x, 8g).

e Example is that efficient LS based on
E[u|x] = O but with heteroskedastic error

is GLS with
(vi — x,8) Xi] o

Var[y;|x;]




Test of Overidentifying Restrictions
o Test Hy :E[h(w,8j)] = 0.
e Obvious is to test if N=15. h,;(w;, 0) ~ 0.

e When r = ¢, estimation imposes N~15., h;(6) =
0 and no test is possible.

e When r > g, if optimal weighting matrix S—1is used
then use

- (;Nzh (aopt)) 51 (;ﬁzh (aopt)) |

Reject Hy if 7y > x2(r — q).



4 Linear IV: GMM

e Leading GMM example where
# moment conditions > # parameters.
But algebra is very lengthy.

e For u; = y; — x;3 minimize

1 N
Q(B) = {N > uiz| W
1=1

1 N ]
— D> Uz
N =1

e In matrix algebra minimize

Qn(B) = UWZWnNZ'u
= (y — XB)'ZWnNZ'(y — XB).

e Can solve f.o.c. (not given) to get

~ —1
Bomm = |[X'ZWNZ'X|  X'ZWNZ'y.



Linear IV: GMM (continued)

e Then
V[Bown| = N[X'ZWNZ'X]
x X'ZW NSWNZ'X
< [X'ZWNZ'X] .

e For heteroskedastic error

~ 1 9
S — N Z u; ZiZ%

e For homoskedastic error

1 SN
S = st > ﬂ%zizg — s°Z'Z/N.
1=1



Linear 1V: 2SLS

Two-stage least squares uses W = (N~1Z/Z) 1.

This is optimal weighting matrix if errors are ho-
moskedastic.

Best to be robust and assume heteroskedastic errors.

But if assume homoskedastic variance simplifies to
familiar

V[Bysis] = 52 [X'2(2'2) ' Z'X]

Test for endogenity using over-identifying restrictions
test.



Linear IV: 2SLS (continued)

The 2SLS estimator can be motivated in several ways.
1. Optimal GMM if errors are homoskedastic.

2. GLS estimation in transformed regression

7'y = Z'X + Z'u if errors are homoskedastic.

3. OLS regression of y on X = Pz X rather than of y
on X.
The two-stage interpretation. Does not generalize

to nonlinear.

4. IV estimation of y on X with instrument Z = PzX
rather than Z.



5

IV in Practice

Simple single equation linear model

y =%+ u,

where part of x is endogenous.

Estimate by IV where instrument z is such that

. Valid: z uncorrelated with error w.

Relevant: z correlated with regressor x.

. Strong: z strongly correlated, rather than weakly cor-

related, with the regressor x.



Weak Instrument

e For scalar regressor and instrument, a weak instru-
ment is one for which Cor[z, z] is small.

e Equivalently R%,Z (from regress x on z) is small.

e Large standard errors as

V[Bv] = V[BoLs]/Cor’[z, x].

e |V could be more inconsistent than OLS as

plim BIV — B Cor[z,u] y 1
plimBos — B8  Cor[x,u] = Cor[z,x]

e Poor finite sample performance as BIV not centered
around 3. [Note that E[5)y] does not exist in just-
identified case].

e Alternative estimators such as split-sample IV.



6 Nonlinear IV

e Nonlinear regression model with additive error term

y = g(x, B)+u

e In matrix notation

y=g+u

e Assume existence of instruments that satisfy
E[u|Z] = 0, so E[Z'u] = 0, or

E[Z'(y —g)] = 0.

e The GMM estimator minimizes

QN(B) =(y —8)ZWNZ'(y — g).



Nonlinear 2SLS

e Nonlinear 2SLS minimizes

Qn(B) =(y —8)Z(Z'Z2)'Z (y — g).
e Optimal choice if error is homoskedastic.

e Amemiya (1976) called this NL2SLS as handles en-
dogeneity.

e But not really two-stage. In particular if regress x
on z to get X and then do GLS of y on g(X, 3) will
generally get inconsistent estimator.



7 Two-Step Estimators

e Sequential two-step estimator (81, 85) jointly solves
the equations

N
N7EY " hy(yi,x;,01) = 0
1=1

N
NS hoi(yi, x;,601,02) = 0.
i=1

o Defining @ = (07 605)" and h; = (h), h’.) this
is just GMM with f.o.c. in case where dim(h;) =
dim(0)

N
N_l Z hz(yu X5 9) = 0.
1=1

e Apply general result. Simplification occurs as 0hy;/005 =
0. But still messy (like delta method).



8 Empirical Likelihood

e Maximize empirical likelihood function N1 > ilnp;

subject to constraint > ; p; =1
and additional constraint from E[h(y;,x;,0)] = 0

that
> pih(y;,x;,0) =0.
i

e T[hus maximize the Lagrangian

1 N N
L(p,n,A) = Nzlnm—n > pi—1
1=1 1=1
_)‘/ szh(ym X35 9)7
')

w.r.t. pi,...,pn and the Lagrangian multipliers n
and A.

e Same asymptotic distribution as GMM.
But different in finite samples.



9 Linear Sets of Equations

e Systems OLS same as equation by equation OLS
e Systems GLS more efficient usually.

e Examples:
— Seemingly unrelated regressions
— Three-stage least squares

— panel data



10 Nonlinear Sets of Equations

e Stack equations to give vector h(w,, 0).

e Systems GMM
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