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1 Introduction

� GMM is generalization of method of moments

� Example is estimation of � for y i.i.d.

� Population moment condition

E[y � �] = 0:

� Sample moment condition:

1

N

NX
i=1

(yi � �) = 0:

� Solving yields MM estimator

b� = �y:



Introduction (continued)

� More generally
a population moment condition for �
leads to
a corresponding sample moment condition for �
which we solve for �.

� What if nonlinear in �? Nonlinear MM.

� What if more moment conditions than components
of �? GMM.

� What is the best moment condition to start with?
Optimal GMM.



2 GMM Examples: OLS

� Population conditional moment condition

E[uijxi] = E[yi � x0i�jxi] = 0:

� Population unconditional moment condition

E[
�
yi � x0i�

�
xi] = 0:

� Sample moment condition

1

N

NX
i=1

�
yi � x0i�

�
xi = 0:

� Solving yields OLS estimator

b�OLS =
0@X
i

xix
0
i

1A�1X
i

xiyi



Regression with Symmetric Errors

� Population conditional moment condition

E[uijxi] = E[yi � x0i�jxi] = 0

E[u3i jxi] = E[
�
yi � x0i�

�3 jxi] = 0:
� Population unconditional moment condition

E

24
�
yi � x0i�

�
xi�

yi � x0i�
�3
xi

35 = "
0
0

#
:

� There are 2K moment conditions and only K para-
meters, so cannot solve for �.

� Instead GMM minimizes quadratic form�
1
N

PN
i=1

�
yi � x0i�

�
x0i

1
N

PN
i=1

�
yi � x0i�

�3
x0i

�

�WN �

24 1
N

PN
i=1

�
yi � x0i�

�
xi

1
N

PN
i=1

�
yi � x0i�

�3
xi

35 :



Maximum Likelihood

� Population moment condition

E

"
@ ln f(yjx; �)

@�

#
= 0:

� Sample moment condition

1

N

NX
i=1

@ ln f(yijxi; �)
@�

= 0:

� Solving yields the MLE.



Instrumental Variables (IV)

� Population conditional moment condition

E[uijzi] = 0) E[yi � x0i�jzi] = 0:

� Population unconditional moment condition

E[
�
yi � x0i�

�
zi] = 0:

� Sample moment condition

1

N

NX
i=1

�
yi � x0i�

�
zi = 0:

� If dim(z)=dim(x) can solve to obtain IV estimator

b�IV =
0@X
i

zix
0
i

1A�1X
i

ziyi:



Two-Stage Least Squares

� If dim(z)>dim(x) cannot solve for �.

� Instead GMM minimizes quadratic form24 1
N

NX
i=1

�
yi � x0i�

�
z0i

35�WN�

24 1
N

NX
i=1

�
yi � x0i�

�
z0i

35 :

� The choice WN =
h
1
N

PN
i=1 ziz

0
i

i�1
is optimal if

errors are independent and homoskedastic.

� This is generalized IV or two-stage least squares (though
no "two-stage" motivation here).



Structural Models (Hansen)

� Maximize expected PDV of lifetime utility
E
hP1

t=0 �
tU(Ct) jI0

i
with budget constraint with

labor and asset income.

� Euler equation with constant RR aversion utility

E

"
�

 
Ct+1
Ct

!�
(Pt+1 +Dt+1)

Pt
� 1

����� It
#
= 0;

where It is information set at time t.

� GMM estimator using time series data24 1
T

TX
t=1

 
�

 
Ct+1
Ct

!�
(Pt+1 +Dt+1)

Pt
� 1

!
z0t

35
WT

24 1
T

TX
t=1

 
�

 
Ct+1
Ct

!�
(Pt+1 +Dt+1)

Pt
� 1

!
zt

35
where zt 2 It. e.g. Ct=Ct�1, (Pt +Dt)=Pt�1:



3 Theory

� Population unconditional moment condition

E[h(w; �0)] = 0;

where w = (y;x; z) is all observables.

� Sample moment condition

1

N

NX
i=1

h(wii;
b�) = 0:

� If dim(h)=dim(�) can solve (numerically if not ana-
lytically) to obtainmethod of moments estimator.

� If dim(h)>dim(�) then do GMM.



Theory (continued)

� GMM minimizes

QN(�) =

24 1
N

NX
i=1

h(wi; �)

350WN

24 1
N

NX
i=1

h(wi; �)

35

� Equivalently where r = dim(h)

rX
j=1

rX
k=1

WN;jk

0@ 1
N

NX
i=1

hj(wi; �)

1A0@ 1
N

NX
i=1

hj(wi; �)

1A

� Equivalently whenWN is an identity matrix0@ 1
N

NX
i=1

h1(wi; �)

1A2+� � �+
0@ 1
N

NX
i=1

hr(wi; �)

1A2 :



Theory (continued)

Similar issues as for weighted LS in the linear model.

� Model choice entails speci�cation of moment condi-
tions that are basis for estimation.

� Estimator choice entails speci�cation of a weighting
function.

� Statistical inference is based on robust standard er-
rors that do not assume the weighting function to be
the optimal weighting function.

� Leads to expression for variance of GMM estimator
qualitatively similar to that for the WLS estimator.



Asymptotic Distribution (continued)

� First-order conditions re-scaled24 1
N

NX
i=1

@hi(
b�)0

@�

�����b�
35WN

24 1p
N

NX
i=1

hi(
b�)
35 = 0:

� First-order Taylor series of third term

cG0WN

24 1p
N

NX
i=1

hi(�0) +G(�
+)0
p
N(b� � �0)

35 = 0:

� Solving
p
N(b� � �0)

=
hcG0WNG(�

+)
i�1cG0WN

1p
N

NX
i=1

hi(�0)

!
h
G00W0G0)

i�1
G00W0 � N [0;S0]



Asymptotic Distribution (continued)

� So
p
N(b�GMM � �0) d!

N [0; (G00W0G0)
�1(G00W0S0W0G0)(G

0
0W0G0)

�1

� whereW0 =plimWN and

G0 = lim
1

N

NX
i=1

E

24@hi
@�0

�����
�0

35
S0 = lim

1

N

NX
i=1

NX
j=1

E
�
hih

0
j

���
�0

�

� and to implement useWN and for i.i.d. case

cG =
1

N

NX
i=1

@hi
@�0

����� b�
bS =

1

N

NX
i=1

hi(
b�)hi(b�)0:



Optimal GMM

� (1) Optimal weighting matrix (for r > q).
For given choice of h(w; �0) use
WN = bS�1 where bS is consistent for S0. Then
p
N(b�GMM � �0) d! N [0; (G00W0G0)

�1]:

This is usually what people call optimal GMM.

� Result (1) is routinely used.
One step GMM usesWN = I.
Two step GMM usesWN = bS�1.
Often one-step does better - see Ziliak (1997).



Optimal GMM (continued)

� (2) Optimal moment condition.
The best choice of h(w; �0) is that corresponding
to the MLE so

h(w; �0) =
@ ln f(yjx; �)

@�
:

Requires speci�cation of conditional density.



Optimal GMM (continued)

� (3) Optimal moment condition for given choice of
conditional moment condition. For

E[�(y;x; �0)jz] = 0
the best unconditional moment is

E[D�(z; �0)�(y;x; �0)] = 0;

where

D�(z; �) = E

"
@�(y;x; �)0

@�
jz
#

n
E
h
�(y;x; �)�(y;x; �)0jz

io�1
:

Requires speci�cation of cond. variance of �(y;x; �0).

� Example is that e¢ cient LS based on
E[ujx] = 0 but with heteroskedastic error
is GLS with

E

24
�
yi � x0i�

�
xi

Var[yijxi]

35 = 0:



Test of Overidentifying Restrictions

� Test H0 :E[h(w; �0)] = 0:

� Obvious is to test if N�1Pi hi(wi; b�) ' 0.
� When r = q, estimation imposes N�1

P
i hi(

b�) =
0 and no test is possible.

� When r > q, if optimal weighting matrix bS�1 is used
then use

�N =

0@ 1p
N

X
i

hi

�b�opt�
1A0 bS�1

0@ 1p
N

X
i

hi

�b�opt�
1A ;

Reject H0 if �N > �2�(r � q).



4 Linear IV: GMM

� Leading GMM example where
# moment conditions > # parameters.
But algebra is very lengthy.

� For ui = yi � xi� minimize

QN(�) =

24 1
N

NX
i=1

uiz
0
i

35WN

24 1
N

NX
i=1

uizi

35

� In matrix algebra minimize

QN(�) = u0ZWNZ
0u

= (y �X�)0ZWNZ
0(y �X�):

� Can solve f.o.c. (not given) to get

b�GMM = h
X0ZWNZ

0X
i�1

X0ZWNZ
0y:



Linear IV: GMM (continued)

� Then

bV hb�GMMi = N
h
X0ZWNZ

0X
i�1

�X0ZWN
bSWNZ

0X

�
h
X0ZWNZ

0X
i�1

:

� For heteroskedastic error

bS = 1

N

NX
i=1

bu2i ziz0i
� For homoskedastic error

bS = 1

N
s2

NX
i=1

bu2i ziz0i = s2Z0Z=N:



Linear IV: 2SLS

� Two-stage least squares usesWN = (N�1Z0Z)�1.

� This is optimal weighting matrix if errors are ho-
moskedastic.

� Best to be robust and assume heteroskedastic errors.

� But if assume homoskedastic variance simpli�es to
familiar

bV[b�2SLS] = s2 hX0Z(Z0Z)�1Z0Xi�1 :
� Test for endogenity using over-identifying restrictions
test.



Linear IV: 2SLS (continued)

The 2SLS estimator can be motivated in several ways.

1. Optimal GMM if errors are homoskedastic.

2. GLS estimation in transformed regression

Z0y = Z0X+ Z0u if errors are homoskedastic.

3. OLS regression of y on cX = PZX rather than of y
on X.
The two-stage interpretation. Does not generalize
to nonlinear.

4. IV estimation of y on X with instrument bZ = PZX
rather than Z.



5 IV in Practice

� Simple single equation linear model

y = x0� + u;

where part of x is endogenous.

� Estimate by IV where instrument z is such that

1. Valid: z uncorrelated with error u:

2. Relevant: z correlated with regressor x:

3. Strong: z strongly correlated, rather than weakly cor-
related, with the regressor x:



Weak Instrument

� For scalar regressor and instrument, a weak instru-
ment is one for which Cor[x; z] is small.

� Equivalently R2x;z (from regress x on z) is small.

� Large standard errors as

V[b�IV] = V[b�OLS]=Cor2[z;x]:
� IV could be more inconsistent than OLS as

plim b�IV � �
plim b�OLS � � =

Cor[z;u]

Cor[x;u]
� 1

Cor[z;x]
:

� Poor �nite sample performance as b�IV not centered
around �: [Note that E[b�IV] does not exist in just-
identi�ed case].

� Alternative estimators such as split-sample IV.



6 Nonlinear IV

� Nonlinear regression model with additive error term

y = g(x;�)+u

� In matrix notation

y = g + u:

� Assume existence of instruments that satisfy
E[ujZ] = 0, so E[Z0u] = 0, or

E[Z0(y � g)] = 0:

� The GMM estimator minimizes

QN(�) = (y � g)0ZWNZ
0(y � g):



Nonlinear 2SLS

� Nonlinear 2SLS minimizes

QN(�) = (y � g)0Z(Z0Z)�1Z0(y � g):

� Optimal choice if error is homoskedastic.

� Amemiya (1976) called this NL2SLS as handles en-
dogeneity.

� But not really two-stage. In particular if regress x
on z to get bx and then do GLS of y on g(bx;�) will
generally get inconsistent estimator.



7 Two-Step Estimators

� Sequential two-step estimator (�1; �2) jointly solves
the equations

N�1
NX
i=1

h1i(yi;xi;
b�1) = 0

N�1
NX
i=1

h2i(yi;xi;
b�1; b�2) = 0:

� De�ning � = (�01 �02)
0 and hi = (h01i h02i)

0 this
is just GMM with f.o.c. in case where dim(hi) =
dim(�)

N�1
NX
i=1

hi(yi;xi;
b�) = 0:

� Apply general result. Simpli�cation occurs as @h1i=@�2 =
0. But still messy (like delta method).



8 Empirical Likelihood

� Maximize empirical likelihood function N�1Pi ln pi
subject to constraint

P
i pi = 1

and additional constraint from E[h(yi;xi; �)] = 0

that X
i

pih(yi;xi; �) = 0:

� Thus maximize the Lagrangian

L(p; �;�) =
1

N

NX
i=1

ln pi � �

0@ NX
i=1

pi � 1

1A
��0

X
i

pih(yi;xi; �);

w.r.t. p1; :::; pN and the Lagrangian multipliers �
and �.

� Same asymptotic distribution as GMM.
But di¤erent in �nite samples.



9 Linear Sets of Equations

� Systems OLS same as equation by equation OLS

� Systems GLS more e¢ cient usually.

� Examples:

� Seemingly unrelated regressions

� Three-stage least squares

� panel data



10 Nonlinear Sets of Equations

� Stack equations to give vector h(wi; �):

� Systems GMM
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