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1. Introduction

@ Bayesian methods provide an alternative method of computation and
statistical inference to ML estimation.

» Some researchers use a fully Bayesian approach to inference.

> Other researchers use Bayesian computation methods (with a diffuse or
uninformative prior) as a tool to obtain the MLE and then interpret
results as they would classical ML results.

@ The slides give generally theory and probit example done three ways

> estimation using command bayesmh

» manual implementation of Metropolis-Hastings algorithm

> harder: manual implementation of Gibbs sampler with data
augmentation.

@ We focus on topics 1-5 below.
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2. Bayesian Probit Example

@ Generated data from probit model with
o Prly =1|x] = ®(0.5+1x x), x ~ N(0,1), N = 100.

.0*0GenerateldatadNO=010000Pr[y=1|x]0=0PHI(00+00.5%x)
.0clear

.Osetlobs0100
numberdofiobservationsd(_N)Owas00,Inowd100

.OsetOseed01234567
.0gen0Ox0=0rnormal(0,1)
.0gendystar0=00.50+01*x0+0rnormal (0,1)
.0gen0y0=0(ystar0>00)

.0genOconsO=01

.Osummarize

pooovariable |000000000bs00000000Mean0000Std.0Dev.0000000Min00000000Max

00000000000x (000000001000000.147706400001.0039310002.5836320002.350792
0oooooO0ystar |000000001000000.2901163000001.463730003.3727190003.316435
00000000000y (00000000100000000000.590000.49431110000000000000000000001
0000o0000cons |000000001000000000000010000000000000000000000100000000001
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PREEVCSENNE A S ET DI Maximum Likelihood Estimates

Maximum Likelihood Estimates

o MLE is (B, B,) = (0.481,1.138) compared to d.g.p. values of
(0.5,1.0).

.0*0EstimateOmodel0byOMLE
.OprobitoyOx

Iterationd0:0001og0likelihoodl= 067.685855
Iteration0l:000TogO0likelihoodd= 046.554132
Iteration0d2:0001og0likelihoodl= 046.350487
Iteration03:000Tog0likelihoodd= 046.350193
Iteration04:000TogO0likelihoodd= 046.350193

Probitiregression0000000000000000000000000000000Numbertofiobsi00n0= 0000000100
000000000000000000000000000000000000000000000000LROchi2(1)00000000= 0000042.67
000000000000000000000000000000000000000000000000Prob0>0chi20000000= 00000.0000
LogilikeTlihoodi= 046.350193000000000000000000000PseudolR2000000000= 00000.3152

00000000000y |000000Coef.000Std.OErr.000000Z0000P>|2z|00000[95%0Conf.0Interval]l

00000000000x |0001.137895000.2236915000005.090000.00000000.699467700001.576322
0000000_cons |000.4810185000.1591173000003.020000.00300000.16915430000.7928827
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PRREEVCO NN A SETI DI Bayesian Estimates

Bayesian Estimates

.0*0FoTlowingOtheOsameDasOversiondl50commandibayes,Orseed(10101) : Oprobitly0x
.Obayesmhiy0x,0Tikelihood(probit)dprior({y:0},0normal(0,10000))0rseed(10101)

BurnOing...
SimulationO...

ModelOsummary

Likelihood:
yO~Oprobit(xb_y)

Prior:
{y:x0_cons}0~0Onormal(0,10000)00000000000000000000000000000000000000000000(1)

(1)0Parametersiaredelementsfofithenlineardformoxb_y.

BayesianOprobitOregressioni0000000000000000000000MCMCO1terationsii= 000012,500
RandomOwalkOMetropolisOHastingsOsampling000000000Burniini000000000= 000002,500
MCMCOsamplelsized= 000010,000
0000000000000000000000000000000000000000000000000Numberiofiobsn0on= 0000000100
0000000000000000000000000000000000000000000000000ACceptancelratell= 00000.2081
0000000000000000000000000000000000000000000000000Efficiency:00min0= 0000.09261
avgO= 000000.104

LogOmarginaldlikelihoodo= 058.903331 max0= 00000.1154

000000000000000000000000000000000000000000000000Equalotailed
00000000000y |00000OMeand0OStd.ODev.0000OMCSEODODOMediani0[95%0Cred. 0Interval]

00000000000x |0001.17248000.2315757000.0068170001.155512000.76934110001.644085
0oooood_cons |00.4912772000.1649861000.005421000.4913285000.1694713000.8135924
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2. Bayesian Probit Example [ESHOIN I3

First Output

@ Bayesian analysis treats B as a parameter and combines

> knowledge on B gained from the data - the likelihood function
» prior knowledge on the distribution of B - the prior.

@ Here the likelihood is that for the probit model.
e And the prior is B; ~ N(0,100%) and B, ~ N(0,100?%).

ModelOsummary

Likelihood:
yO~0Oprobit(xb_y)

Prior:
{y:xD_cons}D~Dnorma'| (0,10000)00000000000000000000000000000000000000000000CL)

(1) opParametersiaredelementsiofithenlineariformixb_y.
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Sezd) Quipui
Second Output

@ This provides the Markov chain Monte Carlo details.

BayesianOprobitOregression00000000000000000000000MCMCOiterationsdii= 000012,500
RandomowaTkOMetropolisOHastingsOsamplingO00000000BUrndin0000000000= 000002,500
MCMCOsampleOsizeO= 000010,000
0000000000000000000000000000000000000000000000000Numbertofiobs0000= 0000000100
0000000000000000000000000000000000000000000000000ACCeptancelratedl= 00000.2081
0000000000000000000000000000000000000000000000000Efficiency:00min0= 0000.09261
avgl= 000000.104

LogOomarginalolikelihoodo= 058.903331 max0= 00000.1154

@ There were 12,500 MCMC draws

> the first 2,500 were discarded to let the chain hopefully converge
> and the next 10,000 were retained.

@ Not all draws led to an updated value of

» in fact only 2,081 did
> the 10,000 correlated draws were equivalent to 926 independent draws.
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PR EEVCSEN A A ST TSl Third Output

Third Output

@ This provides the posterior distribution of B, and j,

oooooooooooy

000000000000000000000000000000000000000000000000Equalitailed
000000Mean000Std. ODev. D000OMCSEDOOOOMedian00[95%0Cred.0Interval]

0oopooooooox
0000000—cons

0001.17248000.2315757000.0068170001.155512000.76934110001. 644085
00.4912772000.1649861000.005421000.4913285000.1694713000.8135924

@ The posterior distribution of B, has mean 1.172 (average of the
10,000 draws), standard deviation 0.232, and the 2.5 to 97.5
percentiles were (0.769, 1.644).

@ The results are similar to the MLE as the prior of N(0,100?) had very
large standard deviation so has little effect

» the likelihood dominates and the MLE uses this.

0ooooooooooy

000000Coef.000Std. OErr.00000020000P>|2z|00000[95%0Conf. 0Interval]

0oooooooooox
0oooopd_cons

0001.137895000.2236915000005.090000.00000000.699467700001.576322
000.4810185000.1591173000003.020000.00300000.16915430000.7928827
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S25 € EpproEd
3. Bayesian Methods: Basic Idea

@ Bayesian methods begin with

> Likelihood: L(y|6, X)
> Prioron 6: ()

@ This yields the posterior distribution for 6
y|6,X) x 7(6)
Fy|X)

p(0ly, ) = =

> where f(y|X) = [ L(y|0,X) x 71(8)d0 is called the marginal
likelihood.

@ This uses the result that
Pr[A|B] = Pr[ANB]|/Pr[B]
= {Pr[B|A] x Pr[A]}/ Pr[B]
p(Bly) = {L(y|6) x 7(8)}/f(y)).
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3. Bayesian Approach Basic approach

@ Bayesian analysis then bases inference on the posterior distribution.
o Estimate 0 by the mean or the mode of the posterior distribution.

@ A 95% credible interval (or “Bayesian confidence interval”) for 0 is
from the 2.5 to 97.5 percentiles of the posterior distribution

@ No need for asymptotic theory!

Aug 28 - Sep 1,2017 11/ 47
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3. Bayesian Approach Normal-normal example

Normal-normal example

Suppose y|6 ~ N[6,100] (02 is known from other studies)
And we have independent sample of size N = 50 with y = 10.
Classical analysis uses y|0 ~ N'[0,100/N] ~ N[0, 2]
Reinterpret as likelihood 6]y ~ N[6,2].

Then MLE 6 = y = 10.

Bayesian analysis introduces prior, say 6 ~ N[5, 3].

We combine likelihood and prior to get posterior.

We expect

» posterior mean: between prior mean 5 and sample mean 10
» posterior variance: less than 2 as prior info reduces noise
» posterior distribution: ? Generally intractable.

But here can show posterior for 6 is N/[8,1.2]
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3. Bayesian Approach Normal-normal example

Normal-normal example (continued)

o Classical inference: § = y = 10 ~ N10, 2]

» A 95% confidence interval for 6 is 10 +1.96 x /2 = (7.23,12.77)
> i.e. 95% of the time this conf. interval will include the unknown
constant 6.

e Bayesian inference: Posterior 6 ~ A[8,1.2]

» A 95% posterior interval for 6 is 8 £ 1.96 x /1.2 = (5.85,10.15)
> i.e. with probability 0.95 the random 6 lies in this interval

@ Not that with a “diffuse” prior Bayesian gives similar numerical result
to classical

> if prior is & ~ A/[5,100] then posterior is 8 ~ A[9.90,0.51]
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e Prior N[5, 3] and likelihood A/[10, 2] and yields posterior N'[8,1.2]

for 0

<l: -

(V)_ -

l\l_ .

F! .

o4

- 1 T T T
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X

* prior <+ likelihood
= posterior
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3. Bayesian Approach Rare Tractable results

Rare Tractable results

@ The tractable result for normal-normal (known variance) carries over
to exponential family using a conjugate prior

Likelihood Prior Posterior
Normal (mean p) Normal Normal
Normal (precision ) Gamma Gamma
Binomial (p) Beta Beta
Poisson () Gamma Gamma

» using conjugate prior is like augmenting data with a sample from the
same distribution
» for Normal with precision matrix £~ gamma generalizes to Wishart.

@ But in general tractable results not available

» so use numerical methods, notably MCMC.
> using tractable results in subcomponents of MCMC can speed up
computation.
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4. Markov chain Monte Carlo (MCMC)

@ The challenge is to compute the posterior p(0ly, X)

» analytical results are only available in special cases.
@ Instead use Markov chain Monte Carlo methods:

» Make sequential random draws 6(1), 6(2),
» where 6(°) depends in part on 51

* but not on 872 once we condition on 6(5~1) (Markov chain)
> in such a way that after an initial burn-in (discard these draws)
0(*) are (correlated) draws from the posterior p(6]y, X)

* the Markov chain converges to a stationary marginal distribution which
is the posterior.

e MCMC methods include

» Metropolis algorithm
» Metropolis-Hastings algorithm
> Gibbs sampler
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Checking Convergence of the Chain

Once the chain has converged the draws are draws from the posterior.
There is no way to be 100% sure that the chain has converged!

First thing is to throw out initial draws e.g. first 2,500.

But it has not converged if it fails some simple tests

» if sequential draws are highly correlated

» if sequential draws are very weakly correlated

» if the second half of the draws have quite different distribution from
the first draws

» for MH (but not Gibbs sampler) if few draws are accepted or if almost
all draws are accepted

> if posterior distributions are multimodal (unless there is reason to
expect this).
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4. Markov chain Monte Carlo (MCMC) methods

Diagnostics for Bayesian Probit Example

@ bayesgraph diagnostics {y:x} gives diagnostics for 3,

y:X
Trace Histogram
2 ~
15 a4
-
14
0
54
; ; ; ; ; ]
0 2000 4000 6000 8000 w00 @7 T T T
Ieration number 1 15 2
Autocorrelation Density
0.80- N
— all
0.60-
040
0.004 ... N
; : : ; ;
0 10 20 30 40 T T T T
Lag 5 1 15 2
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4. Markov chain Monte Carlo (MCMC) methods

Diagnostics (continued)

@ These diagnostics suggest that the chain has converged.

@ The trace shows the 10,000 draws of B, and shows that the value
changes.

@ The histogram is unimodal, fairly symmetric, and appears normally
distributed

> this is not always be the case, especially in small samples.
@ The sequential draws of 8, are correlated (like AR(1) with p ~ 0.8).
@ The first 5,000 draws have similar density to the second 5,000 draws.
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Wiasrepsits Algaiiin
Metropolis-Hastings Algorithm: Metropolis Algorithm

e We want to draw from posterior p(-) but cannot directly do so.
o Metropolis draws from a candidate distribution g(8()|0(s=1))
> these draws are sometimes accepted and some times not
> like accept-reject method but do not require p(-) < kg(-)
@ Metropolis algorithm at the s round
> draw candidate 0* from candidate distribution g(-)
> the candidate distribution g(8®)[0(s~1)) needs to be symmetric
* so g(67|6°) = g(6°|6%)

> set 80°) = 0% if u < p([;((?ii)) where u is draw from uniform[0, 1]

* note: normalizing constants in p(-) cancel out
* equivalently set 8(5) = 0% if Inu < Inp(6*) —In p(6~1)

» otherwise set 8(5) = g(s—1)

o Random walk Metropolis uses 8°) ~ N[0~ V] for fixed V
> ideally V such that 25-50% of candidate draws are accepted.
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Wiearopalfs i psiings Algpiiin
Metropolis-Hastings Algorithm

@ Metropolis-Hastings is a generalization

» the candidate distribution g(8(9)|0(5~1)) need not be symmetric
p(6") (671" 1)

p(6 1) xg(0t1)|6%)

» Metropolis algorithm itself is often called Metropolis-Hastings.

> the acceptance rule is then u <

@ Independence chain MH uses g(G(S) not depending on 81 where

g(+) is a good approximation to p(-

~—

» e.g. Do ML for p(8) and then g(8) is multivariate T with mean 6,
variance V[6].
» multivariate rather than normal as has fatter tails.

@ M and MH called Markov chain Monte Carlo

» because 05) given 8571 is a first-order Markov chain
> Markov chain theory proves convergence to draws from p(-) as s — co
» poor choice of candidate distribution leads to chain stuck in place.

A. Colin Cameron Univ. of Calif. - Davis ... Bayesian Methods Aug 28 - Sep 1, 2017 21 / 47



5. Metropolis-Hastings Algorithm Probit with random walk Metropolis

Probit with random walk Metropolis
o Consider probit model Pr[y; = 1|x;, ] = ®(x.B).
@ The likelihood is
L(y|B.X) = (x;B) (1~ @(x;B))' ™
@ Use an uninformative prior (aII values of B equally likely)

() o« 1

» even though prior is improper the posterior will be proper

@ The posterior is
p(Bly, X) o Ly|B.X) x (B)
o TV ()" (1 - @(xjB))! ™ x 1
0TI, @(xiB)” (1 - B(xiB))

> Note: we know p(Bly, X) only up to a scale factor

@ We use Metropolis algorithm to make draws from this posterior.
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5. Metropolis-Hastings Algorithm Random walk Metropolis draws

Random walk Metropolis draws

@ The random walk MH uses a draw from N[ﬂ(s_l), cl] where c is set.
» So we draw B* = BV 4 v where v is draw from N[0, cl]

@ For u ~ uniform|[0, 1] draw and acceptance probability

paccept = P(.B*)/P(ﬁ(s*l))

> set [3(5) = B* if u < paccept
» set B15) = BV if u > paccept
e Taking logs, equivalent to ﬂ(s) = B" if Inu < In(paccept) where
> In(paccept) = [L; yi In®(x;*) + (1 — y;) In(1 — ®(x."))]
~[ZiyiIn @B Y) 4 (1 - i) In(1 — @ (xp))]
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5. Metropolis-Hastings Algorithm Numerical Example

Numerical example

@ Do Bayesian
> uninformative prior so 77(B) =1
* an improper prior here is okay.

> random walk MH with g* = g1 +v
where v is draw from A[0, 0.251]

* ¢ = 0.25 chosen after some trial and error

» First 10,000 MH draws were discarded (burn-in)
» Next 10,000 draws were kept.
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5. Metropolis-Hastings Algorithm Mata code

Mata code

for (irep=1; irep<=20000; irep++) {
bcandidate = bdraw + 0.25*rnormal(k,1,0,1)  // bdraw is previous value of b
phixb = normal(X*bcandidate)
Ipostcandidate = e'( y:*In(phixb) + (e-y):*In(e-phixb) // e = J(n,1,1)
laccprob = Ipostcandidate - Ipostdraw  // Ipostdraw post. prob. from last round
if ( In(runiform(1,1)) < laccprob ) {
Ipostdraw = Ipostcandidate
bdraw = bcandidate
}
// Store the draws after burn-in of b
if (irep>10000) {

j = irep-10000
b_all[.,j] = bdraw // These are the posterior draws
}
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5. Metropolis-Hastings Algorithm BEIEERE:RIENE

Correlated draws

@ The first 100 draws (after burn-in) from the posterior density of B,
@ Flat sections are where the candidate draw was not accepted.

T
0 20 40 60 80 100
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5. Metropolis-Hastings Algorithm

Correlated draws

o Correlations of the 10,000 draws of B, die out reasonably quickly

» This varies a lot with choice of c in B* = B~ + N[0, cl]

@ The acceptance rate for 10,000 draws was 0.4286 - very high.

.0*0GiveOtheOcorrleationsiandOthelacceptancelratedinithelrandomdwalkdchainiOMH
.Ocorrgramib,0lags(10)

0000000000000000000000000000000000000000000100000000000000010010000000000000001
OLAGOO00000ACOOO0000PACOO0000QUINND0Prob>Qu0[Autocorrelation]ion[PartiallAutocor]

RPOoNOOUVAWNRE

00oo.
0ooo.
0ooo0.
00oo.
0ooo0.
00oo.
0ooo.
0ooo0.
0ooo.
0 0ooo.

83300000.
69560000.
58480000.
48890000.
40890000.
33690000.
27980000.
22870000.
18960000.
15580000.

83310006940.9000.
0056000011781000.
0140000015203000.
0089000017595000.
0010000019268000.
0172000020404000.
0075000021188000.
0132000021712000.
0104000022071000.
0054000022314000.

.OquietlyOsummarizelaccept

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

.Odisplayl"MHOacceptancelrated=0"0r(mean)o"
MHOacceptancelrate(=0.4286
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5. Metropolis-Hastings Algorithm Posterior density

Posterior density

@ Kernel density estimate of the 10,000 draws of S,

» centered around approx. 0.4 with standard deviation of 0.1-0.2.

Kemel density estimate

5 1 15 2 25
b

— Kerneldensity estimate
Normal density

kemel = epanechnikov, bandwith = 0.0323
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5. Metropolis-Hastings Algorithm Posterior density

@ More precisely

> Posterior mean of f, is 1.171 and standard deviation is 0.226
> A 95% percent Bayesian credible interval for B, is (0.754, 1.633).

.Osummarizelb

Doo0variable |000000000bs00000000Mean0000Std. O0Dev.0000000Min00000000Max

0o0ooooooooob |0000010,00000001.1714790000.22633320000.3967350002.341014

.Ocentiledb,0centile(2.5,097.5)

—~0OBinom.0Interp. —
pgooovariable |0000000ObsOOPercentileddnoCentilennnnnoon[95%0Conf.0Interval]

00000000000b |000010,000000000002.50000.754087200000000.74512040000.7699984
0000000000000000097.500001.633189000000001.62245600001.652172

@ Whereas probit MLE was 1.137 with standard error 0.226
» and 95% confidence interval (0.699, 1.576).
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Gilitis et
6. Gibbs sampler and Data Augmentation: Gibbs Sampler

@ Gibbs sampler

> case where posterior is partitioned e.g. p(0) = p(01, 0>)
> and make alternating draws from p(61|6>) and p(6,|61)
> gives draws from p(61, 63) even though

p(601,02) = p(01]62) x p(62) # p(61]62) x p(62]61).
@ Gibbs is special case of MH

» usually quicker than usual MH

> if need MH to draw from p(61]62) and/or p(62]61) called MH within
Gibbs.

> extends to e.g. p(01, 62, 03) make sequential draws from p(61|63, 03),
p(62|61, 63) and p(63]6,,62)

> requires knowledge of all of the full conditionals.

e M, MH and Gibbs yield correlated draws of 8(°)

> but still give correct estimate of marginal posterior distribution of 6
(once discard burn-in draws)

> e.g. estimate posterior mean by %255:1 0s),
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6. Gibbs sampler and Data Augmentation Data augmentation

Data Augmentation: Summary

@ Latent variable models (probit, Tobit, ...) observe yi, ..., yny based on
latent variables y{, ..., yy.

@ Bayesian data augmentation introduces y;, ..., yy as additional
parameters

> then posterior is p(y;, ..., ¥y, 0).
@ Use Gibbs sampler

> alternating draws between p(8|y;, ..., y5) and p(y{, ..., yy0).

o Draws of 0|y;, ...., yj; can use known results for linear regression
> since regular regression once y{, ...., yy, are known
o Draws from p(y;, ...., y;;|0) are called data augmentation

> since we augment observed y1, ..., yy with unobserved y{', ..., yy.
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6. Gibbs sampler and Data Augmentation Probit example: algorithm

Probit example: algorithm

o Likelihood: Probit model with latent variable formulation
> y,-* = X;-ﬁ—|—8,', g ~ N[O, 1].
|1 yr>o0
@ Prior: uniform prior (all values equally likely)

~ m(f) =1

e Bly* : Tractable result for y*|B, X ~ N'[XB, 1] and uniform prior on B

» p(Bly*, X) is N[B, (X'X)~1] where B = (X'X)~1X'y*.
o y*|B : Data augmentation draws y;', ..., yy as parameters.
> p(yi, y,’\‘l|ﬁy X) is truncated normal so
* If y; = 1 draw from N[x!B, 1] left truncated at 0
* If y; = 0 draw from N[xB, 1] right truncated at 0

@ So draw ,B(S) from P(.B‘}’f(s_l), _”,y*(s—l) y. X)

then draw yl*(s), ...,y;}(s) from p(y;, . ,yN]ﬁ .y, X).
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6. Gibbs sampler and Data Augmentation Numerical example

Numerical example

Consider the same probit example as used for random walk MH

Code is given in file bayes2017.do

All draws are accepted for the Gibbs sampler.

Correlations of the 10,000 draws of B, die out quite quickly

.0corrgramib,07lags(10)

000op00oooo0oooo0ooo000000000000000000000000100000000000000010010000000000000001
OLAGDOD000DACOODD000PACOOODODNQODODNOProb>QU0[Autocorrelation]ii[PartiallAutocor]

HOONOUVTAWNR

A. Colin Cameron Univ.

oooo.
oooo.
oooo.
oooo.
0ooo.
0ooo.
oooo.
0ooo.
oooo.
oooo.

79800000.
63870000.
50740000.
40160000.
31470000.
24750000.
19120000.
14700000.

11610000

09050000.

of Calif. - Davis ...

79840006369.5000.
0055000010450000.
0105000013026000.
0042000014640000.
0088000015631000.
0032000016244000.
0085000016610000.
0022000016827000.
.0092000016961000.
0030000017043000.

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
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6. Gibbs sampler and Data Augmentation Numerical example

Posterior distribution

@ Similar to other methods.

.Osummarizelb

pooovariable |000000000bsO0000000Mean0000Std.ODev.0000000Min00000000Max

0oooooooooob |0000010,00000001.1637220000.222786300000.433230002.311867

.0Ocentiledb,0centile(2.5,097.5)

—~0OBinom.0Interp. —
godovariable |0ooooooobsOOPercentilennnoCentilennononon[95%0Conf.0Interval]

00poooooooob |000010,000000000002.50000.762504400000000.74943160000.7674681
0000000000000000097.500001.623944000000001.60873200001.639934
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More complicated example: Multinomial Probit
More complicated example: Multinomial probit

o Likelihood: Multinomial probit model (MLE has high-dimensional
integral)
> U,-J*- = xf-j,B-i-S,j, g ~ N0, %]
> yUZIifUij->U;;(a”k7éj

Prior for B and ;1 may be normal and Wishart

Data augmentation

> Latent utilities U; = (U1, ..., Ui are introduced as auxiliary variables
> Let U = (Ul, e UN) and y = (yl, ...,yN)

Gibbs sampler for joint posterior p(B, U, Z,|y, X) cycles between

» 1. Conditional posterior for B|U, X¢, y, X
» 2. Conditional posterior for |8, U, y, X, and
» 3. Conditional posterior for U;|ﬂ,2€,y,X.

Albert and Chib (1993) provide a quite general treatment.
McCulloch and Rossi (1994) provide a substantive MNP application.
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7. Further discussion Specification of prior

7. Further discussion: Specification of prior

@ As N — oo data dominates the prior 77(0)
and then posterior 0y N N[@ML, l(/B\ML)fl]

> but in finite samples prior can make a difference.
@ Noninformative and improper prior

> has little effect on posterior
> uniform prior (all values equally likely) is obvious choice

* improper prior if 8 unbounded usually causes no problem
* not invariant to transformation (e.g. 8 — e)

> Jeffreys prior sets 7r(0) oc det[/(8)1], 1(8) = 02 In L/20d6’

* invariant to transformation
* for linear regression under normality this is uniform prior for
* also an improper prior.
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7. Further discussion Specification of prior

@ Proper prior (informative or uninformative)

» informative becomes uninformative as prior variance becomes large.
> use conjugate prior if available as it is tractable
> hierarchical (multi-level) priors are often used

* Bayesian analog of random coefficients
* let 71(6) depend on unknown parameters T which in turn have a
completely specified distribution

* p(0, Tly) o L(y|8) x 7(8]T) x 7t(T) so p(Bly) « [ p(6, T|ly)dT

@ Poisson example with y; Poisson[y; = exp(x;, B)]
> p(B.m. |y, X) o L(ylu) x mt(u|B) x 7(B)

> where 77(p;|B) is gamma with mean exp(x’p)

> and 7(B) is B~ N[B, V].
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CeEEEes 97 EIE
Convergence of MCMC

@ Theory says chain converges as s — 00

> could still have a problem with one million draws.
@ Checks for convergence of the chain (after discarding burn-in)

» graphical: plot 88) to see that () is moving around
» correlations: of 6(5) and 6°%) should — 0 as k gets large

> plot posterior density: multimodality could indicate problem

> break into pieces: expect each 1,000 draws to have similar properties
> run several independent chains with different starting values.

@ But it is not possible to be 100% sure that chain has converged.
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Sa17EEER moid selton
Bayesian model selection

@ Bayesians use the marginal likelihood

~ F(yIX) = [ L(3]0,X) x 7(6)dB
> this weights the likelihood (used in ML analysis) by the prior.

@ Bayes factor is analog of likelihood ratio

5— fi(y|X) _ marginal likelihood model 1
~ f(y|X)  marginal likelihood model 2

» one rule of thumb is that the evidence against model 2 is

* weak if 1 < B < 3 (or approximately 0 < 2In B < 2)

* positive if 1 < B < 3 (or approximately 2 < 2In B < 6)

* strong if 20 < B < 150 (or approximately 6 < 2In B < 10)
* very strong if B > 150 (or approximately 2In B > 10).

@ Can use to “test” Hy: 0 = 01 against H, : 0 = 0,.

@ The posterior odds ratio weights B by priors on models 1 and 2.
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7. Further discussion Bayesian model selection

@ Problem: MCMC methods to obtain the posterior avoid computing
the marginal likelihood

» computing the marginal likelihood can be difficult
> see Chib (1995), JASA, and Chib and Jeliazkov (2001), JASA.

@ An asymptotic approximation to the Bayes factor is

812 _ Ll(y|6'x) N(kQ—k])/2

> This is the Bayesian information criterion (BIC) or Schwarz criterion.
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VAN EITE ST EETESN - What does it mean to be Bayesian?

What does it mean to be a Bayesian?

@ Bayesian inference is a different inference method

> treats 0 as intrinsically random
» whereas classical inference treats 0 as fixed and 0 as random.

@ Modern Bayesian methods (Markov chain Monte Carlo)

» make it much easier to compute the posterior distribution than to
maximize the log-likelihood.

@ So classical statisticians:

» use Bayesian methods to compute the posterior
> use an uninformative prior so p(8|y, X) ~ L(y|6, X)
» so 0 that maximizes the posterior is also the MLE.

@ Others go all the way and be Bayesian:

» give Bayesian interpretation to e.g. use credible intervals
> if possible use an informative prior that embodies previous knowledge.
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8. Appendix: Analytically obtaining the posterior ERNIENESEICIS

8. Appendix: Analytically obtaining the Posterior

@ Bayesian methods

> Combine likelihood: L(y|6, X)
> and prior on 0 : 7T(0)
> to yield the posterior p(0]y, X)

@ Suppress X for simplicity

> p(6ly) = p(6.y)/p(y) using Pr[A|B] = Pr[AN B]/ Pr[B]
> and p(0,y) = p(y|6) x 7t(0) using Pr[AN B] = Pr[B|A] x Pr[A]
> So p(6ly) = p(y|6) x 7(6)/p(y)

@ This yields the posterior distribution for 6
L(y|6,X) x 7t(0)

» f(y|X) = [ L(y|6,X) x 7r(8)d6 is a normalizing constant called the
marginal likelihood.
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ERVAVS T ENT PEVE AT YRGS T R CRCIOS e AT Scalar Normal with known variance and normal prior

Example: Scalar normal (known variance) and normal prior

e yi|0 ~ N[0, 0?] where 02 is known.
o Likelihood: y = (y1, ..., yn) for independent data has likelihood
N
L(ylo) = Hi:ﬂﬁ exp{—z—(lrg(y,- —6)*}
= (2m0®) " exp{— 5 TiLs (vi — 0)*}
o exp{—5m L1 (yi — 0)%}

e Prior: 6 ~ N[y, T%] where p and 72 are specified

n(6) = L ep{- k(0 - p)?)
o exp{—5 (0 1)}

@ Note: o means "is proportional to"

» We can drop a normalizing constant that does not depend on 6.
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ERVAVS T ENT PEVE AT YRGS T R CRCIOS e AT Scalar Normal with known variance and normal prior

@ Normal-normal posterior

C Lyle) x (o)
PO = TT0y16) % n(0)dy

o< L(yl|6) x 7(6)

o exp{— ,722: 1(yi = 0)%} x exp{—5(0 — 1)’}
o exp{— 02 L (i —0)? = 512 (0 — V)}

o exp{ =552 (0 —7)* — 52 (0 — 1)*} (*)

o exp{~ §[< >+€,2/N>]}

o exp{— %[ ]} completing the square

~ N[b, 2%

v

a? = [(%)_1 +(t?)7 L and b= a% x [(%)_15/—1— (t2)~1y]
step (*) uses Y (yi —0)? = Yi(y; — )% + N(¥ — 6)? and can ignore
first sum as does not depend on 6

C1(Z— 31)2 +C2(Z_ 32)2 — (Z_ c1(81+C232 )2 + (Cffgz)(al _ 32)2_

v

v

ca+e)
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ERVAVS T ENT PEVE AT YRGS T R CRCIOS e AT Scalar Normal with known variance and normal prior

@ Posterior density = normal.
@ Posterior variance = inverse of the sum of the precisions

> precision is the inverse of the variance

Posterior variance: a®> = [(”—,i)_l + ()71

= [sample precision of y + prior precision of 6}71
@ Posterior mean = weighted sum of y and prior mean u

» where the weights are the precisions

Posterior mean: b = 32[(%)71}7 + (Tz)flm

@ Bayesian analysis works with the precision and not the variance.
@ More generally ¢ is unknown

» then use a gamma prior for the precision 1/02.
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8. Appendix: Analytically obtaining the posterior Linear regression under normality with normal prior

Linear regression under normality with normal prior

@ Result for i.i.d. case extends to linear regression with Var[y] = ¢

and 02 known

» Likelihood: y|B, X ~ N[XB, 2]

> Prior: B ~ N[B, V]

> Posterior: [3|y,_X ~ N[B. V] where

* V = [sample preC|S|on of [AH- prior precision of /3]*1
* V= [(c?(X X) vt

= [H(X X)" - +Vj}
* B=V[(?(X'X)"1) By s+ VB

=V[H(Xy) +V 8]

@ When 02 is unknown use a gamma prior for the precision 1/c2.
e When Var[y] = X and X is unknown use a Wishart prior for 1.
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9. Some References

9. Some References

@ The material is covered in
» CT(2005) MMA chapter 13

@ Bayesian books by econometricians that feature MCMC are

> Geweke, J. (2003), Contemporary Bayesian Econometrics and
Statistics, Wiley.

> Koop, G., Poirier, D.J., and J.L. Tobias (2007), Bayesian Econometric
Methods, Cambridge University Press.

» Koop, G. (2003), Bayesian Econometrics, Wiley.

> Lancaster, T. (2004), Introduction to Modern Bayesian Econometrics,
Wiley.

@ Most useful (for me) book by statisticians

> Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin (2003), Bayesian
Data Analysis, Second Edition, Chapman & Hall/CRC.
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