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1. Introduction

1. Introduction

@ Nonparametric methods place few restrictions on the data generating
process

> density estimation - use kernel density estimate
> regression curve estimation - use kernel-weighted local constant or local
linear regression

* but curse of dimensionality as # regressors increases
@ Semiparametric regression places some structure

» e.g. E[y|x] = g(x'B) where g(-) is unspecified
> reduces nonparametric component to one dimension.

@ Bootstrap

» most often used to get standard errors
» more refined bootstraps can give better finite sample inference.
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1. Introduction

Summary

@ Introduction

@ Nonparametric (kernel) density estimation
© Nonparametric (kernel) regression

© npregress command (Stata 15)

© Semiparametric regression

@ Stata commands
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2. Nonparametric (kernel) density estimation Summary

2. Nonparametric (kernel) density estimation

@ Parametric density estimate

> assume a density and use estimated parameters of this density
> e.g. normal density estimate: assume y; ~ N[y, o?] and use N[y, s?].

@ Nonparametric density estimate: a histogram

» break data into bins and use relative frequency within each bin
» Problem: a histogram is a step function, even if data are continuous

@ Smooth nonparametric density estimate: kernel density estimate.

» smooths a histogram in two ways:

* use overlapping bins so evaluate at many more points
* use bins of greater width with most weight at the middle of the bin.
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2. Nonparametric (kernel) density estimation Histogram

Histogram estimate

@ A histogram is a nonparametric estimate of the density of y

> break data into bins of width 2h
» form rectangles of area the relative frequency = freq/ N
> the height is freq/2Nh (check: area = (freq/2Nh) x 2h = freq/N).

o Use freq = YN 1 1(xo — h < x; < xo + h)

» where indicator function 1(A) equals 1 if event A happens and equals
0 otherwise

@ The histogram estimate of f(xp), the density of x evaluated at xp, is

2 N
frisT(x0) = ﬁz,-:ll(xo—h<xi<xo+h)
1 N1 Xi —X
= Nh i:1§X1( el <1).
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2. Nonparametric (kernel) density estimation Histogram example

@ Data example: histogram of Inwage for N = 175 observations

> Varies with the bin width (or equivalently the number of bins)
default is v/Nfor N < 861 and 10In(N)/ In(10) for N > 861
here specify 30 bins, each of width 2h ~ 0.20 so h ~ 0.10
histogram lnhwage, bin(30) scale(1.1)

v

v

v
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2. Nonparametric (kernel) density estimation Kernel density estimate

Kernel density estimate

Recall /)EH/ST(X()) = ﬁE,N:l % x1 (‘%’ < 1)

Replace 1 (A) by a kernel function

Kernel density estimate of f(xp), the density of x evaluated at xg, is

F(x0) = s Lo K (5722)

» K(-) is called a kernel function
> his called the bandwidth or window width or smoothing parameter h

@ Example is Epanechnikov kernel

» K(z) =0.75(1 — z?) x 1(|z| < 1) in Stata epan2 kernel
» more weight on data at center, less weight at end

@ More generally kernel function must satisfy conditions including

» Continuous, K(z) = K(—2), [K(z)dz=1, [ K(z)dz =1,
tails go to zero.
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2. Nonparametric (kernel) density estimation Kernel density example

@ Data example: kernel of Inwage for 175 observations

» Stata’s epanechnikov kernel K(z) = 0.75(1 — z2)/+/5 x 1(|z| < V/5)
» default h = 0.9m/N®2? where m = min(st.dev.(x),
interquartilerange, /1.349) yields h = 0.2093.
» h = 0.07 (oversmooths), 0.21 (default) or 0.63 (undersmooths)
> e.g. kdensity lnhwage, bw(0.21)

kdensity Inhwage

Defaut ~  ————-— Half defauit
............ Twice default
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2. Nonparametric (kernel) density estimation Implementation

Implementation

@ Key is choice of bandwidth
» The default can oversmooth: may need to decrease bw()
@ For kernel choice

» for given bandwidth get similar results across kernels if K(z) > 0 for
|z| <1and K(z) =0 for |z| > 1.
> this is most kernels aside from epanichnikov and gaussian.
@ Other smooth estimators exist

» most notably k-nearest neighbors
» but usually no reason to use anything but kernel.
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3. Kernel regression: Local average estimator

@ We want to estimate at various values xy the conditional mean
function
m(x) = E[y|x = x]
@ The functional form m(+) is not specified.

@ A local average estimator is
o N
m(xo) =Y ., w(xi,xo, h)yi,

@ The weights w(x;, xo, h)
> sum over i to one
decrease as the distance between x; and xp increases
place more weight on observations with x; close to xg as bandwidth h
decreases
» most common: kernel weights, Lowess and k-nearest neighbors
(average the y!s for the k x/s closest to xp).

v

v

e Evaluate m(xp) at a variety of points xp gives a regression curve.
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SNCENEEEETNI  Kernel (local constant) regression

Kernel (local constant) regression
o Let
wixi o h) = K (52) / (D K (52)).

o Kernel regression with 95% confidence bands, default kernel
(Epanechnikov) and default bandwidth

> Ipoly Inhwage educatn, ci msize(medsmall)

Local polynomial smooth
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years of completed schooling 1992

95% CI * natural log of hwage ———-—— Ipoly smooth

kernel=epanechnikov,degree = 0,bandwidth = 1.53,pwidth = 2.3
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3. Kernel regression Different bandwidths

Local linear regression

@ A sample mean of y = OLS of y on an intercept.
@ A weighted sample mean of y = weighted OLS of y on an intercept.
@ So the kernel (local constant) estimator m(xg) = @y that minimizes

YLy w(xi, xo, h) (yi — &)

@ The local linear estimator generalizes to m(xp) = Xy that minimizes
Yy wixi, xo, h){yi — a0 — Bo(xi — x0)}.

> furthermore By = /' (xp), an estimate of OE[y|x]/dx|,, -

Advantage - better estimates at endpoints of the data.

In Stata 1poly lnhwage educatn,degree(l).

And can extend to higher order polynomials.
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3. Kernel regression Lowess

@ Lowess (locally weighted scatterplot smoothing) is a variation of local
linear with variable bandwidth, tricubic kernel and downweighting of
outliers.

o Kernel, local linear and lowess with default bandwidths

» graph twoway lpoly y x || lpoly y x, deg(l) || lowess y x
> kernel erroneously underestimates m(x) at the endpoint x = 17.

o 4

Kernel ‘
————— Local linear 7

- lowess /
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3. Kernel regression Implementation

Implementation

o Different methods work differently

> Local linear and local polynomial handle endpoints better than kernel.
e m(xp) is asymptotically normal

» this gives confidence bands that allow for heteroskedasticity
@ Bandwidth choice is crucial

> optimal bandwidth trades off bias (minimized with small bandwidth)
and variance (minimized with large bandwidth)

theory just says optimal bandwidth for kernel regression is O(N—92)
“plug-in" or default bandwidth estimates are often not the best

so also try e.g. half and two times the default.

cross validation minimizes the empirical mean square error

Y (yi — m_j(x;))?, where m_;(x;) is the “leave-one-out" estimate of
m(x;) formed with y; excluded

Yy vV VY

* empirical estimate of MSE[m(x;)] = Variance + Bias?.
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4. npregress command

4. npregress command

Stata 15 has new npregress command.

Does local constant and local linear regression.

@ Determines bandwidth by cross-validation

» whereas 1poly uses plug-in value

Evaluates at each x; value

» whereas 1poly default is to evaluate at 50 equally spaced values.

For local linear computes partial effects.

Can use margins and marginsplot for plots and average partial
effects.

@ Can have more than one regressor.
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4. npregress command

@ npregress with defaults

» LOOCV separate for bandwidth for m(xp) and m'(xg)

.0*0npregressicommandiiflocalolinear
.Onpregressikerneldlnhwagededucatn

ComputingOmeanOfunction

MinimizingOcrossOvalidationOfunction:

Iterationd0:000CrossOvalidationOcriterioni=
IterationOdl:000CrossOvalidationOcriteriond=
IterationOd2:000CrossOvalidationOcriterioni=
IterationOd3:000CrossOvalidationOcriterioni=
Iteration04:000CrossOvalidationicriterioni=
IterationOd5:000CrossOvalidationOcriterioni=
Iteration06:000CrossOvalidationicriterioni=
IterationOd7:000CrossOvalidationOcriterioni=
Iteration08:000CrossOvalidationicriterioni=

Computingloptimaliderivativeibandwidth

Iterationd0:000CrossOvalidationOcriterioni=
IterationOdl:000CrossOvalidationOcriterioni=
IterationOd2:000CrossOvalidationOcriterioni=
Iteration03:000CrossOvalidationicriterioni=
IterationOd4:000CrossOvalidationOcriterioni=
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.54003013
.55652254
.55725573
.55764199
0.

55764199

00.5577778
00.5578764
00.5578764
00.5578764

Oooooo

.00293233
.00293233
.00293233
.00291228
.00291228
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4. npregress command

— ~ —

® npregress reports averages & = ~ Y, a(x;) and B = £ YN, B(x)

Bandwidth

0ooo0OMeanononoeffect

Mean
ooooDeducatn | 002.94261 104.004823

Localolineariregressioni0000000000000000000Numbertofiobs000N00= 0000000000177
Kernelooo: epanechnikov OE(Kerneldobs)000000= 0000000000177
Bandwidth: crossivalidationnn00000000000000ROsquaredd000N00000= 00000000.1943

oooooInhwage |ODO0DEstimate

Mean
o0ooooTnhwage |0002.223502

effect
Oooo0educatn |000.1492393

Note:DEffectlestimateslareiaveragesiofiderivatives.
Note:OYouOmaylcomputelstandardierrorsiusinglvce(bootstrap)ior reps().

o Versus OLS @ = 0.897 and B = 0.10
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4. npregress command

@ Get bootstrap standard errors

.0*0npregressOwithObootstraplistandardierrors
.Onpregressikerneldlnhwagededucatn, 0vce(bootstrap,iseed(10101)0reps(50))
(runninginpregressioniestimationdsample)

Bootstraplreplicationsi(50)
| 1 | 2 !
.................................................. nooo50

Bandwidth

poooooMeannooooeffect

Mean
oooooeducatn 002.94261 04.004823

LocalOlinearOregression00000000000000000000Numberdofiobs000000= 0000000000177
Kernelooo: epanechnikov OE(Kerneldobs)000000= 0000000000177
Bandwidth: crossiOvalidation0000000000000000ROSquaredi0D0000000= 00000000.1943

000ObservedionBootstrapiino0000000000000000000000Percentile
oooooTnhwage |0D00Estimatennostd.OErr.000000z0000P>]z|00000[95%0Conf.0Interval]

Mean
00000 Tnhwage |0002.223502000.0635099000035.010000.000000002.1211830000002.3635

Effect
nooooeducatn |000.1492393000.0242175000006.160000.000000000.1141710000.1941928

Note:DEffectlestimateslarenaveragesfofiderivatives.

o~

@ Versus OLS se(@) = 0.302 and se() = 0.023.
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4. npregress comman

@ Predict at selected values of education

.Omargins,0at(educatni=0(10(1)16))0vce(bootstrap,iseed(10101)0reps(50))
(runningOmarginsiontestimationdsample)

Bootstrapireplicationsn(50)
+—01 +—102 +—103 +—104 +—105
.................................................. 000050

Adjustedipredictions1000000000000000000000000000Numberdofiobsnnn00= 0000000177
000000000000000000000000000000000000000000000000Replications000000= 0000000050

Expression000: meanOfunction,Opredict()

1._at0o00o0ooooo:Deducatn =000000000010
2._atoooooonn:Deducatn =000000000011
3._atoooooooo:Deducatn =000000000012
4._ati0oonooon:deducatn =000000000013
5._atooopooon:oeducatn =000000000014
6._atooonoonn:Deducatn =000000000015
7._atooonoonn:Oeducatn =000000000016

000ObservedinOBootstrapll000000000000000000000000Percentile
ooonoMargininostd.0Err.000000Z0000P>|z|00000[95%0Conf.0Interval]

0opoooooo_at
00000000001 0001.784381000.1152519000015.480000.000000001.54597900001.961678
00000000002 0001.881796000.0917833000020.500000.000000001.708159000002.03875
00000000003 0002.025275000.0719339000028.150000.000000001.90192900002.165223
00000000004 0002.195183000.0627936000034.960000.000000002.10490300002.309129
0ooooooooos 0002.381722000.0663851000035.880000.000000002.26100500002.492229
00000000006  |0002.566578000.0796751000032.210000.000000002.42024200002.702775
00000000007 |0002.744897000.0975604000028.140000.000000002.59746400002.920562
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4. npregress command

@ marginsplot, legend(off) scale(1.1) ///
addplot(scatter Inhwage educatn if Inhwage<50000, msize(tiny))

Adjusted Predictions with 95% Cls

3
1

2
1

Mean Function

T T T T T T T T
0 5 10 11 12 13 14 15 16 20
years of completed schooling 1992
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4. npregress command

@ Now consider partial effects at selected values of education

@ * Partial effects of changing hours
margins, at(educatn = (10(1)16)) contrast(atcontrast(ar)) ///
vce(bootstrap, seed(10101) reps(50))

@ Output includes

oooobservedidOBootstraplOoOoood0OPercentile
pjo0Contrast0O0Std.0Err.00000[95%0Conf.0Interval]

000000000_at
000(20vs01)
000(30vs02)
0oo(4ovsn3)
goo(S5ovsng)
poo(6eovsos)
0oo(7ovso6)

ooo.
ooo.
ooo.
ooo.
ooo.
ooo.

09741550000.034265000000.04628810000.
1434789000.0346023000000.09102920000.
1699081000.0303118000000.12907790000.
18653890000.0286680000000.1456190000.
1848565000.0276149000000.14153230000.
1783189000.0297354000000.12265770000.

1657016
1937705
2136698
2280139
2275936
2296861
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4. npregress command

@ marginsplot, legend(off)

Contrasts of Adjusted Predictions with 95% Cls

2
!

Contrasts of Mean Function
1 15
1 1

13 14
years of completed schooling 1992
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5. Semiparametric estimation

5. Semiparametric estimation

@ Nonparametric regression is problematic when more than one regressor

> in theory can do multivariate kernel regression
> in practice the local averages are over sparse cells
» called the “curse of dimensionality”

@ Semiparametric methods place some structure on the problem

» parametric component for part of the model
> nonparametric component that is often one dimensional

o ldeally \/N(E - B) <, N[0, V] despite the nonparametric component.

@ Three leading examples

» partial linear
> single-index
> generalized additive model.
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LASTITETETWS TSN EI Il OLS estimates

OLS estimates

@ Consider log hourly wage regressed on years of education and annual
hours worked

.OregressiTnhwagededucatnihours,Ovce(robust)

LinearOregression0000000000000000000000000000000Numberfofiobs00000= 0000000177
F(2,0174)000000000= 000010.12
Prob0>0F0000000000= 00000.0001
ROsquared000oooooo= 00000.1389
RootOMSEOOOOOODOOO= 0.77289

000000000000000Robust
0ooooInhwage |[000000Coef.000Std.OErr.000000t0000P>|t|00000[95%0Conf.0Interval]

Dop00educatn |000.1071543000.0239147000004.480000.00000000.05995420000.1543545
0oooodthours [000.0001365000.0001023000001.330000.18400000.00006550000.0003384
0000000_cons |000.6437424000.3946326000001.630000.10500000.135140600001.422626
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5. Semiparametric estimation Partial linear model

Partial linear model

e Model: E[yj|x;, zj] = x/B + A(z;) where A(-) not specified.
@ Robinson differencing estimator

> kernel regress y on z and get residual y — y
> kernel regress x on z and get residual x — X
> OLS regress y —y on x — X

.0*0PartialilinearOmodeld00Robinsonndifferencingiestimator
.Osemipardlnhwageleducatn, Ononpar(hours)Orobusticiotitle("Partialilinear™)

0000000000000000000000000000000000000000000000000000000Numbertofiobsi=00000176
0000000000000000000000000000000000000000000000000000000ROsquareddidnd=000.1298
0000000000000000000000000000000000000000000000000000000AdjOR0squaredd=000.1248
0000000000000000000000000000000000000000000000000000000ROOtOMSEDNDDNONO=000.6365

00000Tnhwage |000000Coef.000Std.OErr.000000t0000P>|t|00000[95%0Conf.0Interval]

00000educatn |000.1023295000.0256881000003.980000.00000000.05163120000.1530278
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5. Semiparametric estimation Partial linear model

@ Plot of A(z) against z where z is annual hours worked.

Partial linear
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5. Semiparametric estimation Single-index model

Single-index model

Model: E[y;|x;] = g(x}B) where g(-) not specified

Ichimura semiparametric least squares B and g minimize
Ty wxi){yi — 8(xiB)}?

» where w(x;)is a trimming function that drops outlying x values.

Can only estimate B up to scale in this model

> Still useful as ratio of coefficients equals ratio of marginal effects in a
single-index models

@ From next slide one more year of education has same effect on log
hourly wage as working 1,048 more hours

» versus OLS 0.1071453/0.0001365 = 785.
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BERSTVITETET SIS NEI I Single-index model

.0*0SinglenindexOmodeln00Ichimuradsemiparametricileastisquares
.0s1s01nhwagethoursieducatn,0trim(1,99)
initial:o00o0o000ssq(b)0= 0120.10723

alternative:000ssq(b)0= 00120.1062

rescale:0000000SSq(b)0= 098.292016

SLS00:000SSq(b) 0=
sLsol:000ssq(b) o=
SLS02:000SSq(b) 0=
sLs03:000ssq(b) o=
SLS04:000SSq(b) 0=
pilotObandwidth
001052.001876
SLS00:000Ssq(b) o=
sLs0l:000ssq(b)o=
SLs02:000Ssq(b) o=
SLS03:000Sssq(b) o=
SLS04:000SSq(b) 0=

098.
098.
098.
098.
098.

099.
097.
097.
097.
097.

292016
195246
007825
007526
007526

25207800(notOconcave)
285143
202952
201992
201988

000000000000000000000000000000000000000000000000000000Numbernofiobsi= 00000177
000000000000000000000000000000000000000000000000000000ro0tIMSENNONOO= 0.741056

00000Tnhwage |000000Coef.000Std.0Err.00000020000P>]|z|00000[95%0Conf.0Interval]

Index

oobo0educatn |0001048.102000276.0092000003.800000.00000000507.1341000001589.07
0000000hours |0000000000100(offset)
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CIRSTVITETENSTICSHNEI N Generalized additive model

Generalized additive model

o Model: Ely;|x;] = g1(x1;) + - - + gk (xi) where g;(-) are
unspecified.
o Estimate by backfitting and here by smoothing spline for each gj(+)

.0*0GeneralizedoadditiveOmodel
.0gam0Inhwagededucatnihours, 0df(3)

1770recordsimerged.
GeneralizedOAdditiveOModelowithOofamilyogauss,0linkoident.

Modelodfooooo= 00007.003 No.0OofOobs0i= 000000177
Deviance00000= 0093.1255 DispersionO= 00.547807

oooooTnhwage |D00dfOo00Lin. 0Coef.00Std.0Err.000000200000000Gain000OP>Gain

Do0000educatn |003.001000.1032296000.0197596000005.224000016.38400000.0003
hours |003.0020000.000146000.0000804000001.816000003.22800000.1994
_cons 000100002.19816000.0556323000039.512000000000.000000000.

TotalOgaino(nonlinearityOchisquare)i= 00019.6120(4.0030df),0pP0= 0.0006
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CIRSTVITETENSTICSHNEI N Generalized additive model

e Plot each gj(-) function

> looks like education linear or quadratic; hours linear

GAM 3 df smoath for educatn, GAM 3 df smooth for hours,
adjusted for covariates adjusted for covariates

4
!

3
.

2
1

-2
|

4
‘

T T T T T T T
0 5 10 15 20 0 1000 2000 3000
years of completed schooling 1992 annual work hours 1992

Component & partial residuals for Inhwage
0
!

Component & partial residuals for Inhwage
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6. Stata Commands

6. Stata commands

Command kernel does kernel density estimate.

Command 1poly does several nonparametric regressions

> kernel is default
> local linear is option degree(1)
> local polynomial of degree p is option degree (p)

Command lowess does Lowess.

Stata 15 command npregress does local constant and local linear
for one or more regressors with bandwidth chosen by leave-on-out
cross validation.

For semiparametric use add-ons semipar, sls, gam

> gam requires MS Windows.
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6. Stata Commands

6. References

@ A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics:
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@ A. Colin Cameron and Pravin K. Trivedi (2009), Microeconometrics
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A. Colin Cameron Univ. of Calif. - Davis ...

Nonparametrics Aug 28 - Sep 2, 2017 32 /32



	1. Introduction
	2. Nonparametric (kernel) density estimation
	Summary
	Histogram
	Histogram example
	Kernel density estimate
	Kernel density example
	Implementation

	3. Kernel regression
	Local average estimator
	Kernel (local constant) regression
	Different bandwidths
	Lowess
	Implementation

	4. npregress command
	5. Semiparametric estimation
	OLS estimates
	Partial linear model
	Single-index model
	Generalized additive model

	6. Stata Commands

