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SUMMARY

Count data regression is as simple as estimation in the linear regression model, if there are no
additional complications such as endogeneity, panel data, etc. There is no reason to resort to
adhoc alternatives such as taking the log of the count (with some adjustment for zero counts) and
doing OLS.
The following summarizes results given, for example, in chapter 3 of Cameron, A. C. and P. K.
Trivedi (1998), Regression Analysis of Count Data, Cambridge University Press.

THE POISSON MODEL

For count data yi taking integer values 0, 1, 2, 3, ... the obvious model from statistics is the Poisson
with parameter � (the mean number of occurrences). The usual regression model sets

E[yijxi] = �i = exp(x0i�) = exp(�1 + �2x2i + � � � �kxki):

The regressors etc. are chosen in a manner similar to a linear regression model.
Many statistical packages estimate this model, often as a log-linear model as part of a generalized
linear models module. The name log-linear model is also used as the model can be re-written as

lnE[yijxi] = ln�i = x0i� = �1 + �2x2i + � � � �kxki:

INTERPRETATION OF COEFFICIENTS

The interpretation of coe¢ cients is di¤erent from that in the OLSmodel, due to the exponentiation.
Some calculus and algebra show that

@E[yijxi]
@xji

= exp(�1 + �2x2i + � � � �kxki)� �j = E[yijxi]� �j:

Therefore, a one unit change in the jth regressor leads to a change in the conditional mean by the
amount E[yijxi]� �j (whereas in the linear model we would have simply �j).
Another way of saying this is that a one unit change in jth regressor leads to a proportionate
change in E[yijxi] of �j. (Since

@E[yijxi]=E[yijxi]
@xji

= �j).
In some cases a regressor may �rst be transformed by the natural logarithm. Then �j is an
elasticity. For example, exp(�1 + �2 lnx2i) = exp(�1)x

�2
2i . If x2 is a measure of exposure (such as

population or time or miles travelled) we expect �2 = 1.

STATISTICAL INFERENCE

The Poisson MLE has robustness to distributional misspeci�cation similar to OLS in the linear
regression model under normality: if E[yijxi] = exp(x0i�), so the conditional mean is correctly
speci�ed, then the Poisson MLE estimate is consistent even if yi is not Poisson distributed.
However, the usual Poisson MLE standard errors and t-statistics need to be adjusted. The Poisson
model restricts the conditional variance to equal the conditional mean, called equidispersion. The
data are called overdispersed if the variance exceeds the mean, and underdispersed if the
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variance is less than the mean. Unless count data are equidispersed, teh usual Poisson MLE
standard errors are wrong. This is similar to the OLS estimator being consistent if the errors are
heteroskedastic, but an adjustment has to be made to the standard errors.
In statistics the standard correction (based on the generalized linear models framework) is as
follows. Assume that the variance is an unknown multiple of the mean, so that Var[yijxi] =
�� �i = �� exp(x0i�), and data are equidispersed if � = 1. Then the usual Poisson ML standard
errors need to be multiplied by

p
� and t-statistics divided by

p
�. An estimate of � is obtained

after estimation of �. Usually b� = (n� k)�1 �Pn
i=1(yi � byi)2=byi where byi = exp(x0ib�).

In econometrics the standard correction is to generalize the White-heteroskedastic consistent es-
timate of standard errors from OLS to the Poisson. This places less structure on the form of
heteroskedasticity than the model above, but in practice usually yields similar results. In Stata,
for example, one uses the Poisson command with the robust option.
Such standard error corrections must be made for Poisson regression, as they can make a much
bigger di¤erence than similar heteroskedasticity corrections for OLS. Count data can be quite
overdispersed, in which case uncorrected t�s are much larger than the true corrected t-statistics.

ALTERNATIVE COUNT MODELS

A common more general model is the negative binomial model. This model can be used if data
are overdispersed. It is then more e¢ cient than Poisson, but in practice the e¢ ciency bene�ts over
Poisson are small. The negative binomial model should be used, however, if one wishes to predict
probabilities and not just model the mean. The negative binomial model cannot be estimated if
data are underdispersed.

Another more common general model is the hurdle model. This treats the process for zeros
di¤erently from that for the non-zero counts. In this case the mean of yi is no longer exp(x0i�), so
the Poisson estimator is inconsistent and the hurdle model should be used. This model can handle
both overdispersion and underdispersion. Several econometrics packages include the hurdle model,
which is presented, for example, in chapter 4.7 of Cameron and Trivedi.

COMPLICATIONS

Many programs handle panel data on counts. An understanding of �xed e¤ects and/or random
e¤ects models for the linear regression models transfers over fairly simply to the count data case.
Most other common complications, such as endogeneity, time series, measurement error and sample
selection, require considerable skill for implementation in the count data case. These are presented
in later chapters of Cameron and Trivedi.

OLS FOR NATURAL LOGARITHM OF y

A popular alternative is OLS regression of ln y on x, so E[ln yjx] = x0�, compared to count models
that set E[yjx] = exp(x0�).
While the log transformation for y Poisson can give something reasonably close to the normal
distribution it is not as desirable, just as it is better to use logit or probit rather than OLS given
binary data. And there are two problems:
1. If y = 0 then adhoc solutions are needed such as model ln(y+1), or model ln y except use ln 0:5
when y = 0.
2. For prediction we want to predict E[y], but exp(E[ln y]) 6=E[y] even though exp(ln y) = y.
One time when using ln y can be helpful is in exploratory data analysis to handle complications
such as endogenous regressors for which count data software may not be readily available.
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