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SUMMARY

Count data regression is as simple as estimation in the linear regression model, if there are no
additional complications such as endogeneity, panel data, etc. There is no reason to resort to ad
hoc alternatives such as taking the log of the count (with some adjustment for zero counts) and
doing OLS.
The following summarizes results given, for example, in chapter 3 of Cameron, A. C. and P.
K. Trivedi (1998, 2013), Regression Analysis of Count Data, 1st and 2nd editions, Cambridge
University Press.

THE POISSON MODEL

For count data yi taking integer values 0, 1, 2, 3, ... the obvious model from statistics is the
Poisson with parameter � (the mean number of occurrences). The usual regression model speci�es
for individual i, i = 1; :::; n;

E[yijxi] = �i = exp(x0i�) = exp(�1 + �2x2i + � � � �kxki):

The regressors etc. are chosen in a manner similar to a linear regression model.
Many statistical packages estimate this model, often as a log-linear model as part of a generalized
linear models module. The name log-linear model is also used as the model can be re-written as

lnE[yijxi] = ln�i = x0i� = �1 + �2x2i + � � � �kxki:

SIMPLE INTERPRETATION OF COEFFICIENTS

The interpretation of coe¢ cients is di¤erent from that in the OLSmodel, due to the exponentiation.
Some calculus and algebra show that

@E[yijxi]
@xji

= exp(�1 + �2x2i + � � � �kxki)� �j = E[yijxi]� �j:

Therefore, a one unit change in the jth regressor is associated with a change in the conditional
mean by the amount E[yijxi]� �j (whereas in the linear model we would have simply �j).
Another way of saying this is that a one unit change in jth regressor leads to
- a proportionate change in E[yijxi] of �j. (since

@E[yijxi]=E[yijxi]
@xji

= �j)
- a percentage change in E[yijxi] of 100� �j
For example, if �j = 0:05 then a one unit change in the jth regressor is associated with a 5%
change in the conditional mean.

In some cases a regressor may �rst be transformed by the natural logarithm.
Then �j is an elasticity (since, for example, E[yijx2i] = exp(�1 + �2 lnx2i) = exp(�1)x

�2
2i ).

For example, if �j = 0:08 then a one percent change in the jth regressor is associated with
0.08% change in the conditional mean.
If x2 is a measure of exposure (such as population or time or miles travelled) we expect �2 = 1.
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MARGINAL EFFECTS
Marginal e¤ects are di¤erent from that in the OLS model, due to the exponentiation.
The marginal e¤ect of changing the jth regressor is

MEji =
@E[yijxi]
@xji

= exp(�1 + �2x2i + � � � �kxki)� �j:

Unlike linear regression (where MEji = �j) this varies with regressor values.

The average marginal e¤ect is the average over the sample of the individual marginal e¤ects

AMEji =
1

n

Xn

i=1
MEji =

1

n

Xn

i=1
exp(b�1 + b�2x2i + � � � b�kxki)� b�j:

Alternative marginal e¤ects include the marginal e¤ect at the mean which computes the
marginal e¤ect at the sample average values of the regressors and the marginal e¤ect at repre-
sentative values of the regressors.
Additional complications arise if the model includes polynomials such as a quadratic (exp(�1 +
�2x2i + �3x

2
2i + � � � ) or interactions, such as (exp(�1 + �2x2i + �3x3i + �4x2ix3i + � � � ).

Marginal e¤ects in nonlinear models such as the Poisson are best computed using specialized
commands such as the margins command in Stata.

STATISTICAL INFERENCE

The Poisson MLE has robustness to distributional misspeci�cation similar to OLS in the linear
regression model under normality.
In particular, if E[yijxi] = exp(x0i�), so the conditional mean is correctly speci�ed, then the Poisson
MLE estimate is consistent even if yi is not Poisson distributed.
Furthermore the data yi need not be counts. Poisson regression can be used for continuous data
with yi � 0 and is well-suited to data which is right skewed and for which it is more natural to
think of changes in regressors leading to proportionate changes in yi rather than level changes in
yi.

However, the usual Poisson MLE standard errors and t-statistics need to be adjusted whenever the
data are not Poisson distributed. The Poisson model restricts the conditional variance to equal
the conditional mean, called equidispersion. The data are called overdispersed if the variance
exceeds the mean, and underdispersed if the variance is less than the mean. Unless count data
are equidispersed, the usual Poisson MLE standard errors are wrong. This is similar to the OLS
estimator being consistent if the errors are heteroskedastic, but an adjustment has to be made to
the standard errors.
It is absolutely essential that such standard error corrections must be made for Poisson regression,
as they can make a much bigger di¤erence than similar heteroskedasticity corrections for OLS.
Count data can be quite overdispersed, in which case uncorrected t�s are much larger than the
true corrected t-statistics.

For independent observations, the standard correction is to generalize theWhite-heteroskedastic
consistent estimate of standard errors from OLS to the Poisson. This places less structure on the
form of heteroskedasticity than the model above, but in practice usually yields similar results. In
Stata, for example, heteroskedastic-robust standard errors are obtained using the Poisson
command with the vce(robust) option. In R one uses the sandwich package.
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STATISTICAL INFERENCE (continued)

An additional complication arises if observations are not independent but are instead clustered,
with individual-level observations correlated within cluster and independent across clusters. For
cross-section data, examples are individuals in families with correlation within family and indepen-
dence across families, and individuals in regions (such as village or state) with correlation within
region and independence across region. For panel data we may have observations correlated over
time for a given individual but uncorrelated across individuals. The standard correction is to use
cluster-robust standard errors that cluster on the cluster unit. In Stata, for example, one
uses the Poisson command with the vce(cluster) option. In R one uses the sandwich package.
Cluster-robust standard errors are also heteroskedastic-robust.

ALTERNATIVE COUNT MODELS

A commonly-used more general model is the negative binomial model. This model can be
used if data are overdispersed (but not if they are underdispersed). It is then more e¢ cient than
Poisson.

In practice the e¢ ciency bene�ts over Poisson are small. And the Poisson model is much better
able to handle complications such as endogenous regressors and panel data. The negative binomial
model should be used, however, if one wishes to predict probabilities and not just model the mean.
The most commonly-used negative binomial model is the NB2 model.

Another common more general model is the hurdle model. This treats the process for zeros
di¤erently from that for the non-zero counts. In this case the mean of yi is no longer exp(x0i�), so
the Poisson estimator is inconsistent and the hurdle model should be used. This model can handle
both overdispersion and underdispersion. Several econometrics packages include the hurdle model,
which is presented, for example, in chapter 4 of Cameron and Trivedi.

PANEL DATA

An understanding of �xed e¤ects and/or random e¤ects models for the linear regression models
transfers over fairly simply to the count data case.

For panel data we have data (yit;xit) where i denotes the individual and t denotes time. In the
simplest case of a balanced panel each individual i, i = 1; ::; n, is observed in all time periods
t = 1; :::; T .

The simplest approach is the population-averaged model that estimates the same model as for
cross-section data, with

E[yitjxit] = exp(x0it�):
Then one can use a standard Poisson command but inference needs to be based on cluster-robust
standard errors with cluster unit the individual.

A random e¤ects model additionally introduces within-individual correlation, with

E[yitjxit] = exp(�i + x0it�); �i � (0,�2�):

The random e¤ects estimator requires use of more specialized Poisson commands. In practice
it is best to base inference on cluster-robust standard errors with cluster unit the individual.
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PANEL DATA (continued)

A �xed e¤ects model again introduces �i, but does not specify a distribution for �i. Instead �i
is viewed as an unobservable that is possibly correlated with xit. Then

E[yitjxit; �i] = exp(�i + x0it�):

Given correlation between �i and xit Poisson regression of yit on xit will yield inconsistent estimates
of �.

Instead the �xed e¤ects estimator of � is obtained by estimation of a transformed model that
has eliminated �i. Then one needs more specialized Poisson commands. In practice it is best to
base inference on cluster-robust standard errors with cluster unit the individual.

The �xed e¤ects estimator is generally less precise as it uses only within individual variation. Also
while coe¢ cients �j can be again interpreted as semi-elasticities estimation of marginal e¤ects
is problematic as they depend on �i which is not estimated. The �xed e¤ects estimator should
be only used if some regressors are felt to be endogenous, being correlated with an unobserved
time-invariant individual-speci�c e¤ect �i.

OTHER COMPLICATIONS

Most other common complications, such as endogeneity, time series, measurement error and sample
selection, require considerable skill for implementation in the count data case. These are presented
in later chapters of the Cameron and Trivedi book.

OLS FOR NATURAL LOGARITHM OF y

A popular alternative is OLS regression of ln y on x, so E[ln yjx] = x0�, compared to count models
that set E[yjx] = exp(x0�).
While the log transformation for y Poisson can give something reasonably close to the normal
distribution it is not as desirable, just as it is better to use logit or probit rather than OLS given
binary data.
Furthermore there are two potential problems:
1. If y = 0 then ad hoc solutions are needed such as model ln(y + 1), or model ln y except use
ln 0:5 when y = 0.
2. For prediction we want to predict E[y], but exp(E[ln yjx]) 6= E[yjx] even though exp(ln y) = y.
One occasion for which using linear regression for ln y can be helpful is in exploratory data analysis
to handle complications such as endogenous regressors because count data software may not be
readily available.
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