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Abstract

To appear in G.S. Maddala and C.R. Rao ed., Handbook of Statistics:
Statistical Methods in Finance, North- Holland.
In some financial studies the dependent variable is a count, taking non-

negative integer values. Examples include the number of takeover bids
received by a target firm, the number of unpaid credit installments (use-
ful in credit scoring), the number of accidents or accident claims (useful
in determining insurance premia) and the number of mortgage loans pre-
paid (useful in pricing mortgage-backed securities). Models for count data,
such as Poisson and negative binomial are presented, with emphasis placed
on the underlying count process and links to dual data on durations. A
self-contained discussion of regression techniques for the standard models
is given, in the context of financial applications.
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1. Introduction

In count data regression, the main focus is the effect of covariates on the frequency
of an event, measured by non-negative integer values or counts. Count models,
such as Poisson and negative binomial, are similar to binary models, such as
probit and logit, and other limited dependent variable models, notably tobit, in
that the sample space of the dependent variable has restricted support. Count
models are used in a wide range of disciplines. For an early application and survey
in economics see Cameron and Trivedi (1986), for more recent developments see
Winkelmann (1994), and for a comprehensive survey of the current literature see
Gurmu and Trivedi (1994).
The benchmark model for count data is the Poisson. If the discrete random

variable Y is Poisson distributed with parameter λ, it has density e−λλy/y!, mean
λ and variance λ. Frequencies and sample means and variances for a number of
finance examples are given in Table 1. The data of Jaggia and Thosar (1993) on
the number of takeover bids received by a target firm after an initial bid illustrate
the preponderance of small counts in a typical application of the Poisson model.
The data of Greene (1994) on the number of major derogatory reports in the
credit history of individual credit card applicants illustrate overdispersion, i.e.
the sample variance is considerably greater than the sample mean, compared
to the Poisson which imposes equality of population mean and variance, and
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excess zeros since the observed proportion of zero counts of .804 is considerably
greater than the predicted probability of e−.456 = .633. The negative binomial
distribution, defined below, can potentially accommodate this overdispersion. In
fact, the negative binomial with mean .456 and variance 1.810 gives predicted
probability of zero counts of .809. A related example is the data of Guillen (1994)
who modeled the number of unpaid installments by creditors of a bank. The
data of Davutyan (1989) on the annual number of bank failures has the added
complication of being a time series. The data may be serially correlated, as the
five largest counts are the last five observations in the latter sample period.
In econometric applications with count data, analysis focuses on the role of

regressors X, introduced by specifying λ = exp(X 0β), where the parameter vector
β may be estimated by maximum likelihood. For example, the mean number of
takeover bids for a firm may be related to the size of the firm.
There are important connections between count regressions and duration (or

waiting time) models. These connections can be understood by studying the
underlying stochastic process for the waiting time between events, which involves
the three concepts of states, spells and events. A state is a classification of an
individual or a financial entity at a point in time; a spell is defined by the state, the
time of entry and time of exit; and an event is simply the instantaneous transition
from one state to another state.
A regression model for durations involves the relationship between the (non-

negative) length of the spell spent in a particular state and a set of covariates.
Duration models are often recast as models of the hazard rate, which is the instan-
taneous rate of transition from one state to another. A count regression involves
the relationship between the number of events of interest in a fixed time interval
and a set of covariates.
Which approach is adopted in empirical work will depend not only on the

research objectives but also on the form in which the data are available. Econo-
metric models of durations or transitions provide an appropriate framework for
modelling the duration in a given financial state; count data models provide a
framework for modelling the frequency of the event per unit time period. This
article differs from many treatments in emphasizing the connections between the
count regression and the underlying process, and the associated links with dura-
tion analysis.
To fix concepts consider the event of mortgage prepayment, which involves

exit from the state of holding a mortgage, and termination of the associated spell.
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If the available data provide sample information on the complete or incomplete
life of individual mortgages, for those that were either initiated or terminated at
some date, together with data on the characteristics of the mortgage holders and
mortgage contracts, a duration regression is a natural method of analyzing the
role of covariates.(1) Now, it is often the case that data may not be available on
individual duration intervals, but may be available on the frequency of a repeated
event per some unit of time; e.g. the number of mortgages that were pre-paid
within some calendar time period. Such aggregated data, together with informa-
tion on covariates, may form the basis of a count data regression. Yet another data
situation, which we do not pursue, is that in which one has sample information on
a binary outcome, viz., whether or not a mortgage was terminated within some
time interval. A binary regression such as logit or probit is the natural method
for analyzing such data.
Further examples of duration models are: duration between the initiation of a

hostile bid for the takeover of a firm and the resolution of the contest for corporate
control; the time spent in bankruptcy protection; the time to bank failure; the
time interval to the dissolution of a publicly traded fund; and the time interval to
the first default on repayment of a loan. Several examples of count data models
in empirical finance literature have already been given. We reiterate that for each
example it is easy to conceive of the data arising in the form of durations or
counts.
In section 2 we exposit the relation between econometric models of durations

and of counts. A self-contained discussion of regression techniques for count data
is given in section 3, in the context of financial applications. Concluding remarks
are made in section 4.

2. Stochastic Process Models for Count and Duration Data

Fundamentally, models of durations and models of counts are duals of each other.
This duality relationship is most transparent when the underlying data generating
process obeys the strict assumptions of a stationary (memoryless) Poisson process.
In this case it is readily shown that the frequency of events follows the Poisson
distribution and the duration of spells follows the exponential distribution. For
example, if takeover bids for firms follow a Poisson process, then the number of
bids for a firm in a given interval of time is Poisson distributed, while the elapsed
time between bids is exponentially distributed. In this special case econometric
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models of durations and counts are equivalent as far as the measurement of the
effect of covariates (exogenous variables) is concerned.
Stationarity is a strong assumption. Often the underlying renewal process

exhibits dependence or memory. The length of time spent in a state, e.g. the
time since the last takeover bid, may affect the chances of leaving that state; or
the frequency of the future occurrences of an event may depend upon the past
frequency of the same event. In such cases, the information content of duration
and count models may differ considerably. However, it can be shown that either
type of model can provide useful information about the role of covariates on the
event of interest. The main focus in the remainder of the paper is on count data
models.

2.1. Preliminaries

We observe data over an interval of length t. For nonstationary processes behavior
may also depend on the starting point of the interval, denoted s. The random
variables (r.v.’s) of particular interest are N(s, s+ t), which denotes the number
of events occurring in (s, s + t], and T (s), which denotes the duration of time to
occurrence of the next event given an event occurred at time s. The distribution
of the number of events is usually represented by the probability density function

Pr{N(s, s+ t) = r}, r = 0, 1, 2, ...

The distribution of the durations is represented in several ways, including

FT (s)(t) = Pr{T (s) < t}
ST (s)(t) = Pr{T (s) ≥ t}
fT (s)(t) = lim

dt→0
Pr{t ≤ T (s) < t+ dt}

hT (s)(t) = lim
dt→0

Pr{t ≤ T (s) < t+ dt | T (s) ≥ t}
HT (s)(t) =

R s+t
s hT (s)(u) du

where the functions F, S, f , h and H are called, respectively, the cumulative
distribution function, survivor function, density function, hazard function and
integrated hazard function.
For duration r.v.’s the distribution is often specified in terms of the survivor

and hazard functions, rather than the more customary c.d.f. or density function,
as they have a more natural physical interpretation. In particular, the hazard
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function gives the instantaneous rate (or probability in the discrete case) of tran-
sition from one state to another given that it has not occurred to date, and is
related to the density, distribution and survivor functions by

hT (s)(t) =
fT (s)(t)

FT (s)(t)
=

fT (s)(t)

1− ST (s)(t)
.

As an example, consider the length of time spent by firms under bankruptcy
protection. Of interest is how the hazard varies with time and with firm charac-
teristics. If the hazard function is decreasing in t, then the probability of leaving
bankruptcy decreases the longer the firm is in bankruptcy protection, while if the
hazard function increases with the interest burden of the firm, then firms with a
higher interest burden are more likely to leave bankruptcy than are firms with a
low interest burden.
Modeling of the hazard function should take into account the origin state

and the destination state. Two-state models are the most common, but multi-
state models may be empirically appropriate in some cases. For example, a firm
currently under bankruptcy protection may subsequently either be liquidated or
resume its original operations; these possibilities call for a three-state model.

2.2. Poisson Process

Define the constant λ to be the rate of occurrence of the event. A (pure) Poisson
process of rate λ occurs if events occur independently with probability equal to λ
times the length of the interval. Formally, as t→ 0

Pr{N(s, s+ t) = 0} = 1− λt+ o(t)
Pr{N(s, s+ t) = 1} = λt+ o(t)

and N(s, s + t) is statistically independent of the number and position of events
in (0, s]. Note that in the limit the probability of 2 or more events occurring is
zero, while 0 and 1 events occur with probabilities of, respectively, (1 − λt) and
λt.
For this process it can be shown that the number of events occurring in the

interval (s, s + t], for nonlimit t, is Poisson distributed with mean λt and proba-
bility

Pr{N(s, s+ t) = r} = e−λt(λt)r

r!
r = 0, 1, 2, ...
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while the duration to the next occurrence of the event is exponentially distributed
with mean λ−1 and density

fT (s)(t) = λe−λt.

The corresponding hazard rate hT (s)(t) = λ is constant and does not depend on the
time since the last occurrence of the event, exhibiting the so-called memoryless
property of the Poisson process. Note also that the distributions of both the
counts and durations are independent of the starting time s.
Set s = 0, and consider a time interval of unit length. Then N , the mean

number of events in this interval, has mean given by

E[N ] = λ,

while the mean of T , the duration between events, is given by

E[T ] =
1

λ
.

Intuitively, a high frequency of events per period implies a short average inter-
event duration.
The conditional mean function for a regression model is obtained by param-

eterizing λ in terms of covariates X, e.g. λ = exp(X 0β). Estimation can be by
maximum likelihood, or by (nonlinear) regression which for more efficient estima-
tion uses V ar(N) = λ or V ar(T ) = (1/λ)2 for a Poisson process.
The Poisson process may not always be the appropriate model for data. For

example, the probability of one occurrence may increase the likelihood of further
occurrences. Then a Poisson distribution may overpredict the number of zeros,
underpredict the number of nonzero counts, and have variance in excess of the
mean.

2.3. Time-dependent Poisson Process

The time-dependent Poisson process, also called the non-homogeneous or non-
stationary Poisson process, is a nonstationary point process which generalizes the
(pure) Poisson process by specifying the rate of occurrence to depend upon the
elapsed time since the start of the process, i.e. we replace λ by λ(s+ t).(2)

The counts N(s, s+ t) are then distributed as Poisson with mean Λ(s, s+ t),
where

Λ(s, s+ t) =
Z s+t

s
λ(u)du
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The durations T (s) are distributed with survivor and density functions

ST (s)(t) = exp(−Λ(s, s+ t))

fT (s)(t) = λ(s+ t) exp(−Λ(s, s+ t)).

Hence hT (s)(t) = λ(s + t), so that λ(·) is the hazard function. Also HT (s)(t) =
Λ(s, s+ t), so that Λ(·) is the integrated hazard function.
One convenient choice of functional form is theWeibull, λ(s+t) = λγ(s+t)γ−1,

in which case Λ(s, s + t) = λ[s + t]γ − λsγ. In this case, the time-dependent
component of λ(·) enters multiplicatively with exponent γ − 1. The parameter
γ indicates duration dependence; γ > 1 indicates positive duration dependence,
which means the probability that the spell in the current state will terminate
increases with the length of the spell. Negative duration dependence is indicated
by γ < 1. The mean number of events in (s, s + t] also depends on s, increasing
or decreasing in s as γ > 1 or γ < 1 . This process is therefore nonstationary.
The case γ = 1 gives the pure Poisson process, in which case the Weibull reduces
to the exponential. The standard parametric model for econometric analysis of
durations is the Weibull. Regression models are formed by specifying λ to depend
on regressors, e.g. λ = exp(X 0β), while γ does not.
This is an example of the proportional hazards or proportional intensity fac-

torization:

λ(t,X, γ, β) = λ0(t, γ)g(X, β) (2.1)

where λ0(t, γ) is a baseline hazard function, and the only role of regressors is as a
scale factor for this baseline hazard. This factorization simplifies interpretation,
as the conditional probability of leaving the state for an observation with X =
X1 is

g(X1,β)
g(X2,β)

times that when X = X2. Estimation is also simpler, as the role of
regressors can be separated from the way in which the hazard function changes
with time. For single-spell duration data this is the basis of the partial likelihood
estimator of Cox (1972a). When the durations of multiple spells are observed
this leads to estimation methods where most information comes from the counts,
see Lawless (1987). Similar methods can be applied to grouped count data. For
example, Schwartz and Torous (1993) model the number of active mortgages that
are terminated in a given interval of time.
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2.4. Renewal Process

A renewal process is a stationary point process for which the durations between
occurrences of events are independently and identically distributed (i.i.d.). The
(pure) Poisson process is a renewal process, but the time-dependent process is not
since it is not stationary.
For a renewal process fT (s)(t) = fT (s0)(t),∀s, s0, and it is convenient to drop the

dependence on s. We define Nt as the number of events (renewals) occurring in
(0, t) which in earlier notation would beN(0, t) and will have the same distribution
as N(s, s+ t). Also define Tr as the time up to the r-th renewal.
Then

Pr{Nt = r} = Pr{Nt < r + 1}− Pr{Nt < r}
= Pr{Tr+1 > t}− Pr{Tr > t}
= Fr(t)− Fr+1(t)

where Fr is the cumulative distribution function of Tr.
The second line of the last equation array suggests an attractive approach to

the derivation of parametric distributions for Nt based on (or dual to) specified
distributions for durations. For example, one may want a count distribution that
is dual to the Weibull distribution since the latter can potentially accommodate
certain types of time dependence.(3) Unfortunately, the approach is often not
practically feasible.
Specifically, Tr is the sum of r i.i.d. duration times whose distribution is

most easily found using the (inverse) Laplace transform, a modification for non-
negative r.v.’s of the moment generating function.(4) Analytical results are most
easily found when the Laplace transform is simple and exists in a closed form.
When the durations are i.i.d. exponentially distributed, Nt is Poisson distributed
as expected. Analytical results can also be obtained when durations are i.i.d.
Erlangian distributed, where the Erlangian distribution is a special case of the
2-parameter gamma distribution that arises when the first parameter is restricted
to being a positive integer; see Feller (1966), Winkelmann (1993). For many stan-
dard duration time distributions, such as the Weibull, analytical expressions for
the distribution of Tr and henceNt do not exist. In principle a numerical approach
could be used, but currently there are no studies along these lines.
Some useful asymptotic results are available. If the i.i.d. durations between
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events have mean µ and variance σ2, then the r.v.

Z =
Nt − t/µ

σ
q
t/µ3

a∼ N(0, 1).

The expected number of renewals E[Nt], called the renewal function, satisfies

E[Nt] =
t

µ
+O(1)

as t→∞, so that a halving of the duration times will approximately double the
mean number of renewals. Thus if a renewal process is observed for a long period
of time, analysis of count data will be quite informative about the mean duration
time. For a Poisson process the relationship is exact.
Parametric analysis of a renewal process begins with the specification of the

distribution of the i.i.d. durations. Analysis is therefore straightforward if data on
the duration lengths are available. Most econometric analysis of renewal processes
focuses on the implications when spells are incomplete or censored. The observed
data may be the backward recurrence time, i.e. the length of time from the last
renewal to fixed time point t, or the forward recurrence time, i.e. the time from t
to the next renewal, but not the duration of the completed spell which is the sum
of the backward and forward recurrence times; see Lancaster (1990, p.94).

2.5. Other Stochastic Processes

There are many other stochastic processes that could potentially be applied to
financial data. A standard reference for stochastic processes is Karlin and Taylor
(1975). Like many such references it does not consider estimation of statistical
models arising from this theory. A number of monographs by Cox do emphasize
statistical applications, including Cox and Lewis (1966) and Cox (1962). The
standard results for the Poisson process are derived in Lancaster (1990, pp. 86-
87). Some basic stochastic process theory is presented in Lancaster (1990, chapter
5), where renewal theory and its implications for duration analysis is emphasized,
and in Winkelmann (1994, chapter 2).
Markov chains are a subclass of stochastic processes that are especially useful

for modelling count data. A Markov chain is a Markov process, i.e. one whose
future behavior given complete knowledge of the current state is unaltered by
additional knowledge of past behavior, that takes only a finite or denumerable
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range of values, and can be characterized by the transition probabilities from one
state (discrete value) to another. If these discrete values are non-negative integers,
or can be rescaled to non-negative integer values, the Markov chain describes a
probabilistic model for counts. This opens up a wide range of models for counts, as
many stochastic processes are Markov chains. One example, a branching process,
is considered in section 3.6.

3. Econometric Models of Counts

The Poisson regression is the common starting point for count data analysis, and is
well motivated by assuming a Poisson process. Data frequently exhibit important
“non-Poisson” features, however, including:

1. Overdispersion: the conditional variance exceeds the conditional mean, whereas
the Poisson distribution imposes equality of the two.

2. Excess zeros: a higher frequency of zeros (or some other integer count) than
that predicted by the Poisson distribution with a given mean.

3. Truncation from the left: small counts (particularly zeros) are excluded.

4. Censoring from the right: counts larger than some specified integer are
grouped.

The use of Poisson regression in the presence of any of these features leads
to a loss of efficiency (and sometimes consistency), incorrect reported standard
errors, and a poor fit. These considerations motivate the use of distributions other
than the Poisson. These models for count data are usually specified with little
consideration of the underlying stochastic process.
For convenient reference, Table 2 gives some commonly used distributions

and their moment properties. Each sub-section considers a class of models for
count data, presented before consideration of applications and the stochastic data
generating process. Table 3 provides a summary of applications from the finance
literature and the models used, in the order discussed in the text.
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3.1. Preliminaries

Typical data for applied work consist of N observations, the i-th of which is
(yi ,Xi), i = 1, . . . , N, where the scalar dependent variable yi is the number of
occurrences of the event of interest, and Xi is the k × 1 vector of covariates that
are thought to determine yi. Except where noted we assume independence across
observations. Econometric models for the counts yi are nonlinear in parameters.
Maximum likelihood (ML) estimation has been especially popular, even though
closely related methods of estimation based on the first two moments of the data
distribution can also be used.
Interest focuses on how the mean number of events changes due to changes in

one or more of the regressors. The most common specification for the conditional
mean is

E[yi|Xi] = exp(X
0
iβ) (3.1)

where β is a k × 1 vector of unknown parameters. This specification ensures
the conditional mean is nonnegative and, using ∂E[yi|Xi]/∂Xij = exp(X 0

iβ)βj ,
strictly monotonic increasing (or decreasing) in Xij according to the sign of βj .
Furthermore, the parameters can be directly interpreted as semi-elasticities, with
βj giving the proportionate change in the conditional mean when Xij changes by
one unit. Finally, if one regression coefficient is twice as large as another, then
the effect of a one-unit change of the associated regressor is double that of the
other. Throughout we give results for this particular specification of the mean.
As an example, let yi be the number of bids after the initial bid received by

the i-th takeover target firm and Si denote firm size, measured by book value of
total assets of the firm in billions of dollars. Then Poisson regression of yi on
Si using the same sample as Jaggia and Thosar (1993) yields a conditional mean
E[yi|Si] = exp(0.499+0.037Si), so that a one billion dollar increase in total assets
leads to a 3.7 percent increase in the number of bids.
Sometimes regressors enter logarithmically in (3.1). For example, we may have

E[yi|Xi] = exp(β1 loge(X1i) +X 0
2iβ2)

= Xβ1
1i exp(X

0
2iβ2)

(3.2)

in which case β1 is an elasticity. This formulation is particularly appropriate
when X1i is a measure of exposure, such as number of miles driven if modelling
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the number of automobile accidents, in which case we expect β1 to be close to
unity.

3.2. Poisson, Negative Binomial and Inverse-Gaussian Models

3.2.1. Maximum Likelihood Estimation

The Poisson regression model assumes that yi given Xi is Poisson distributed
with density

f(yi|Xi) =
e−λiλyii
yi!

, yi = 0, 1, 2, . . . (3.3)

and mean parameter λi = exp(X
0
iβ) as in (3.1). Given independent observations,

the log-likelihood is

logL =
nX
i=1

{yiX 0
iβ − exp(X 0

iβ)− log yi!}. (3.4)

Estimation is straightforward. The log-likelihood function is globally concave,
many statistical packages have built-in Poisson ML procedures, or the Newton-
Raphson algorithm can be implemented by iteratively reweighted OLS. The first-
order conditions are

nX
i=1

(yi − exp(X 0
iβ))Xi = 0,

or that the unweighted residual (yi − exp(X 0
iβ)) is orthogonal to the regressors.

Applying the usual ML theory yields
ˆ

β asymptotically normal with mean β and

V ar(
ˆ

β) =

Ã
nX
i=1

exp(X 0
iβ)XiX

0
i

!−1
, (3.5)

using E
h
∂2 logL
∂β∂β0

i
= −Pn

i=1 exp(X
0
iβ)XiX

0
i .

The Poisson distribution imposes equality of the variance and mean. In fact
observed data are often overdispersed, i.e. the variance exceeds the mean. Then
the Poisson MLE is still consistent if the mean is correctly specified, i.e. (3.1)
holds, but it is inefficient and the reported standard errors are incorrect.(5)

More efficient parameter estimates can be obtained by ML estimation for a
specified density less restrictive than the Poisson. The standard two-parameter
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distribution for count data that can accommodate overdispersion is the negative
binomial, with mean λi , variance λi + αλ2i , and density

f(yi|Xi) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

Ã
α−1

α−1 + λi

!α−1 Ã
λi

α−1 + λi

!yi

. yi = 0, 1, 2, . . .

(3.6)
The log-likelihood for mean parameter λi = exp(X

0
iβ) as in (3.1) equals

logL =
nX
i=1

{log
Ã

Γ(yi + α−1)
Γ(yi + 1)Γ(α−1)

!
−(yi+α−1) log(1+α exp(X 0

iβ))+yi logα+yiX
0
iβ}

(3.7)
There are alternative parameterizations of the negative binomial, with different
variance functions. The one above is called the Negbin 2 model by Cameron and
Trivedi (1986), and is computed for example by LIMDEP. It nests as a special
case the Geometric, which sets α = 1. An alternative model, called Negbin 1,
has variance (1 + α)λi which is linear rather than quadratic in the mean. This
Negbin 1 model is seldom used and is not formally presented here. For both

models estimation is by maximum likelihood, with (
ˆ
α,

ˆ

β) asymptotic normal with
variance matrix the inverse of the information matrix. Both models reduce to the
Poisson in the special case where the overdispersion parameter α equals zero.
One motivation for the negative binomial model is to suppose that yi is Pois-

son with parameter λiυi rather than λi, where υi is unobserved individual het-
erogeneity. If the distribution of υi is i.i.d. gamma with mean 1 and variance
α, then while yi conditional on λi and υi is Poisson, conditional on λi alone it
is negative binomial with mean λi and variance λi + αλ2i (i.e. Negbin 2). This
unobserved heterogeneity derivation of the negative binomial assumes that the
underlying stochastic process is a Poisson process. An alternative derivation of
the negative binomial assumes a particular form of nonstationarity for the under-
lying stochastic process, with occurrence of an event increasing the probability of
further occurrences. Cross section data on counts are insufficient on their own to
discriminate between the two.
Clearly a wide range of models, called mixture models, can be generated by

specifying different distributions of υi. One such model is the Poisson-Inverse
Gaussian model of Dean et. al. (1989), which assumes υi has an inverse Gaussian
distribution. This leads to a distribution with heavier tails than the negative bino-
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mial. Little empirical evidence has been provided to suggest that such alternative
mixture models are superior to the negative binomial.
Mixture models cannot model underdispersion (variance less than mean), but

this is not too restrictive as most data is overdispersed. Parametric models for
underdispersed data include the Katz system, see King (1989), and the generalized
Poisson, see Consul and Famoye (1992).
When data are in the form of counts a sound practice is to estimate both

Poisson and negative binomial models. The Poisson is the special case of the
negative binomial with α = 0. This can be tested by a likelihood ratio test, with
-2 times the difference in the fitted log-likelihoods of the two models distributed as
χ2(1) under the null hypothesis of no overdispersion. Alternatively a Wald test can
by performed, using the reported “t-statistic” for the estimated α in the negative
binomial model, which is asymptotically normal under the null hypothesis of no
overdispersion. A third method, particularly attractive if a package program
for negative binomial regression is unavailable, is to estimate the Poisson model,

construct
ˆ

λi= exp(X 0
i

ˆ

β), and perform the auxiliary OLS regression (without
constant)

{(yi−
ˆ

λi)
2 − yi}/

ˆ

λi= α
ˆ

λi +ui. (3.8)

The reported t-statistic for α is asymptotically normal under the null hypothesis
of no overdispersion against the alternative of overdispersion of the Negbin 2
form. This last test coincides with the score or LM test for Poisson against
negative binomial, but is more general as its motivation is one based on using only
the specified mean and variance. It is valid against any alternative distribution
with overdispersion of the Negbin 2 form, and it can also be used for testing
underdispersion; see Cameron and Trivedi (1990). To test overdispersion of the
Negbin 1 form, replace (3.8) with

{(yi−
ˆ

λi)
2 − yi}/

ˆ

λi= α+ ui. (3.9)

3.2.2. Estimation Based on First Moment

To date we have considered fully parametric approaches. An alternative is to use
regression methods that use information on the first moment, or the first and
second moments, following Gourieroux, Montfort and Trognon (1984), Cameron
and Trivedi (1986) and McCullagh and Nelder (1989). The simplest approach
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is to assume that (3.1) holds, estimate β by the inefficient but nonetheless con-

sistent Poisson MLE, denoted
ˆ

β, and calculate correct standard errors. This is
particularly easy if it is assumed that the variance is a multiple τ of the mean

V ar(yi|Xi) = τ exp(X 0
iβ) (3.10)

which is overdispersion of the Negbin 1 form. Then for the Poisson MLE

V ar(
ˆ

β) = τ

Ã
nX
i=1

exp(X 0
iβ)XiX

0
i

!−1
, (3.11)

so that correct standard errors (or t-statistics) can be obtained from those reported

by a standard Poisson package by multiplying (or dividing) by

q
ˆ
τ , where

ˆ
τ=

1

n− k

nX
i=1

(yi − exp(X 0
i

ˆ

β))2

exp(X 0
i

ˆ

β)

. (3.12)

This can often be directly calculated from computer output, as it is simply the

Pearson statistic (3.19) divided by the degrees of freedom. If
ˆ
τ= 4, for example,

the reported t-statistics need to be deflated by a factor of two.
If instead the variance is quadratic in the mean, i.e.

V ar(yi|Xi) = exp(X
0
iβ) + α(exp(X 0

iβ))
2 (3.13)

use

V ar(
ˆ

β) =

Ã
nX
i=1

exp(X 0
iβ)XiX

0
i

!−1 Ã nX
i=1

{exp(X 0
iβ) + α(exp(X 0

iβ))
2}XiX

0
i

!
(3.14)

Ã
nX
i=1

exp(X 0
iβ)XiX

0
i

!−1
,

evaluated at a consistent estimate of α such as

ˆ
α=

nX
i=1

exp(X 0
i

ˆ

β))2{(yi − exp(X 0
i

ˆ

β))2 − exp(X 0
i

ˆ

β)}/
nX
i=1

(exp(X 0
i

ˆ

β))4. (3.15)
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Finally, a less restrictive approach is to use the Eicker-White robust estimator

V ar(
ˆ

β) =

Ã
nX
i=1

exp(X 0
iβ)XiX

0
i

!−1 Ã nX
i=1

(yi − exp(X 0
iβ))

2XiX
0
i

!Ã
nX
i=1

exp(X 0
iβ)XiX

0
i

!−1
)

(3.16)
which does not assume a particular model for the conditional variance.
Failure to make such corrections when data are overdispersed leads to over-

statement of the statistical significance of regressors.

3.2.3. Estimation Based on First Two Moments

The previous sub-section used information on the second moment only in cal-
culating the standard errors. Directly using this information in the method of
estimation of β can improve efficiency.
When the variance is a multiple of the mean, the most efficient estimator

using only (3.1) and (3.10) can be shown to equal the Poisson MLE, with correct
standard errors calculated using (3.11) and (3.12).
When the variance is quadratic in the mean, the most efficient estimator using

only (3.1) and (3.13) solves the first-order conditions

nX
i=1

(yi − exp(X 0
iβ))

exp(X 0
iβ)+

ˆ
α (exp(X 0

iβ))
2
exp(X 0

iβ))Xi = 0, (3.17)

where the estimator
ˆ
α is given in (3.15), and has asymptotic variance

V ar(
ˆ

β) =

Ã
nX
i=1

{exp(X 0
iβ) + α(exp(X 0

iβ))
2}−1(exp(X 0

iβ))
2XiX

0
i

!−1
. (3.18)

Such estimators, based on the first two moments, are called quasi-likelihood estima-
tors in the statistics literature and quasi-generalized pseudo-maximum likelihoods
estimators by Gourieroux, Montfort and Trognon (1984).
Finally, we note that an adaptive semi-parametric estimator which requires

specification of only the first moment, but is as efficient as any estimator based
on knowledge of the first two moments, is given by Delgado and Kniesner (1990).
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3.2.4. Model Evaluation

An indication of the likely magnitude of underdispersion and overdispersion can
be obtained by comparing the sample mean and variance of the dependent count
variable, as subsequent Poisson regression will decrease the conditional variance
of the dependent variable somewhat but leave the average of the conditional mean
unchanged (the average of the fitted means equals the sample mean as Poisson
residuals sum to zero if a constant term is included). If the sample variance is less
than the sample mean, the data will be even more underdispersed once regressors
are included, while if the sample variance is more than twice the sample mean the
data are almost certain to still be overdispersed upon inclusion of regressors.
Formal tests for overdispersion and underdispersion, and for discrimination

between Poisson and negative binomial, have been given in section 3.2.1. The
choice between negative binomial models with different specification of the vari-
ance function, e.g. Negbin 1 and Negbin 2, can be made on the basis of the highest
likelihood. The choice between different non-nested mixture models can also be
made on the basis of highest likelihood, or using Akaike’s information criterion if
models have different numbers of parameters.
A more substantive choice is whether to use a fully parametric approach,

such as negative binomial, or whether to use estimators that use information on
only the first and second moments. In theory, fully parametric estimators have
the advantage of efficiency but the disadvantage of being less robust to model
departures, as even if the mean is correctly specified the MLE for count data
models (aside from the Poisson and Negbin 2) will be inconsistent if other aspects
of the distribution are misspecified. In practice, studies such as Cameron and
Trivedi (1986) and Dean et. al. (1989) find little difference between ML estimators
and estimators based on weaker assumptions. Such potential differences can be
used as the basis for a Hausman test; see, for example, Dionne and Vanasse (1992).
And for some analysis, such as predicting count probabilities rather than just the
mean, specification of the distribution is necessary. There are a number of ways
to evaluate the performance of the model. A standard procedure is to compare
the Pearson Statistic

P =
nX
i=1

(yi − exp(X 0
i

ˆ

β))2

v(Xi,
ˆ

β,
ˆ
α)1/2

, (3.19)

where v(Xi, β, α) = V ar(yi|Xi), to (n−k), the number of degrees of freedom. This
is useful for testing the adequacy of the Poisson, where v(Xi, β, α) = exp(X

0
iβ) .
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But its usefulness for other models is more limited. In particular, if one specifies
v(Xi, β, α) = α exp(X 0

iβ), and estimates α by (3.12), then P always equals (n−k).
Cameron and Windmeijer (1995) propose various R-squareds for count data

models. For the Poisson model their preferred deviance-based R-squared measure
is

R2DEV,P =

Pn
i=1 yi log(exp(X

0
i

ˆ

β)/ y)Pn
i=1 yi log(yi/ y)

(3.20)

where y log y = 0 when y = 0 . If a package reports the log-likelihood for the
fitted model, this can be computed as (lfit − l0)/(ly − l0) where lfit is the log-
likelihood for the fitted model, l0 is the log-likelihood in the intercept-only model,
and ly is the log-likelihood for the model with mean equal to the actual value,
i.e. ly =

Pn
i=1 yi log(yi) − yi − log(yi!) which is easily calculated separately. This

same measure is applicable to estimation of the model with overdispersion of the
form (3.10). For ML estimation of the negative binomial with overdispersion of
the form (3.13), i.e. Negbin 2, the corresponding R-squared measure is

R2DEV,NB2 = 1−
Pn

i=1 yi log(yi/
ˆ

λi)− (yi+ ˆ
α
−1
) log((yi+

ˆ
α
−1
)/(

ˆ

λi +
ˆ
α
−1
))Pn

i=1 yi log(yi/ y))− (yi+
ˆ
α
−1
) log((yi+

ˆ
α
−1
)/(y +

ˆ
α
−1
))
(3.21)

where
ˆ

λi= exp(X
0
i

ˆ

β).
A crude diagnostic is to calculate a fitted frequency distribution as the aver-

age over observations of the predicted probabilities fitted for each count, and to
compare this to the observed frequency distribution. Poor performance on this
measure is reason for rejecting a model, though good performance is not neces-
sarily a reason for acceptance. As an extreme example, if only counts 0 and 1
are observed and a logit model with constant term is estimated by ML, it can be
shown that the average fitted frequencies exactly equal the observed frequencies.

3.2.5. Some Applications to Financial Data

Examples 1-4 illustrate, respectively, Poisson (twice), negative binomial and mixed
Poisson-inverse Gaussian.
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Example 1: Jaggia and Thosar (1993) model the number of bids received by
126 U.S. firms that were targets of tender offers during the period 1978-1985
and were actually taken over within 52 weeks of the initial offer. The dependent
count variable yi is the number of bids after the initial bid received by the target
firm, and takes values given in Table 1. Jaggia and Thosar find that the number
of bids increases with defensive actions taken by target firm management (legal
defense via lawsuit and invitation of bid by friendly third party), decreases with
the bid premium (bid price divided by price 14 working days before bid), initially
increases and then decreases in firm size (quadratic in size), and is unaffected by
intervention by federal regulators. No overdispersion is found using (3.8).
Example 2: Davutyan (1989) estimates a Poisson model for data summarized

in Table 1 on the annual number of bank failures in the U.S. over the period 1947
to 1981. This reveals that bank failures decrease with increases in overall bank
profitability, corporate profitability, and bank borrowings from the Federal Re-
serve Bank. No formal test for the Poisson is undertaken. The sample mean and
variance of bank failures are, respectively, 6.343 and 11.820, so that moderate
overdispersion may still be present after regression and t-statistics accordingly
somewhat upwardly biased. More problematic is the time series nature of the
data. Davutyan tests for serial correlation by applying the Durbin-Watson test
for autocorrelation in the Poisson residuals, but this test is inappropriate when the
dependent variable is heteroskedastic. A better test for first-order serial correla-
tion is based on the first-order serial correlation coefficient, r1, of the standardized

residual (yt−
ˆ

λt)/

r
ˆ

λt : Tr
2
1 is asymptotically χ2(1) under the null hypothesis of

no serial correlation in yt, where T is the sample size; see Cameron and Trivedi
(1993). Time series regression models for count data are in their infancy; see
Gurmu and Trivedi (1994) for a brief discussion.(5)

Example 3: Dionne and Vanasse (1992) use data on the number of accidents
with damage in excess of $250 reported to police during August 1982 - July 1983
by 19013 drivers in Quebec. The frequencies are very low, with sample mean of
0.070. The sample variance of 0.078 is close to the mean, but the Negbin 2 model is
preferred to Poisson as the dispersion parameter is statistically significant, and the
chisquare goodness-of-fit statistic is much better. The main contribution of this
paper is to then use these cross-section negative binomial parameter estimates
to derive predicted claims frequencies, and hence insurance premia, from data
on different individuals with different characteristics and records. It is assumed
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that the number of claims (yi1, . . . , yiT ) by individual i over time periods 1, . . . , T
are independent Poisson with means (λi1υi, . . . , λiTυi) where λit = exp(X

0
itβ) and

υi is a time invariant unobserved component that is gamma distributed with mean
1 and variance α.(6) Then the optimal predictor at time T + 1 of the number of
claims of the i-th individual, given knowledge of past claims, current and past

characteristics (but not the unobserved component υi) is exp(X
0
i,T+1β)

·
1/α+Yi

1/α+λi

¸
,

where Yi=
1
T

PT
t=1 yit and λi=

1
T

PT
t=1 exp(X

0
itβ). This is evaluated at the cross-

section negative binomial estimates (
ˆ
α,

ˆ

β). This is especially easy to implement
when the regressors are variables such as age, sex and marital status whose changes
over time are easily measured.
Example 4: Dean et. al. (1989) analyze data published in Andrews and

Herzberg (1985) on the number of accident claims on third party motor insurance
policies in Sweden during 1977 in each of 315 risk groups. The counts take a
wide range of values - the median is 10 while the maximum is 2127 - so there
is clearly a need to control for the size of risk group. This is done by defining
the mean to equal Ti exp(X

0
iβ), where Ti is the number of insured automobile-

years for the group, which is equivalent to including log Ti as a regressor and
constraining its coefficient to equal unity, see (3.2). Even after including this
and other regressors, the data are overdispersed. For Poisson ML estimates the
Pearson statistic is 485.1 with 296 degrees of freedom, which for overdispersion

of form (3.10) implies using, (3.12), that
ˆ
τ= 1.638, considerably greater than 1.

Dean et. al. control for overdispersion by estimating by ML a mixed Poisson-
inverse Gaussian model, with overdispersion of form (3.13). These ML estimates
are found to be within one percent of estimates from solving (3.17) that use only
the first two moments. No attempt is made to compare the estimates with those
from a more conventional negative binomial model.

3.3. Truncated, Censored and Modified Count Models

In some cases only individuals who experience the event of interest are sampled,
in which case the data are left-truncated at zero and only positive counts are
observed. Let f(yi|Xi) denote the untruncated parent density, usually the Poisson
or Negbin 2 defined in (3.3) or (3.6). Then the truncated density, which normalizes
by 1− f(0|Xi), the probability of the conditioning event that yi exceeds zero, is
f(yi|Xi)
1−f(0|Xi)

, yi = 1, 2, 3, . . . , and the log-likelihood function is
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logL =
X
i:yi>0

log f(yi|Xi)− log(1− f(0|Xi)). (3.22)

Estimation is by maximum likelihood. For the Poisson model, f(0|Xi) = exp(− exp(X 0
iβ)),

while for the Negbin 2 model, f(0|Xi) = −α−1 log(1 + α exp(X 0
iβ)).One could in

principle estimate the model by nonlinear regression on the truncated mean, but
there is little computational advantage to doing this rather than maximum likeli-
hood. Other straightforward variations, such as left-truncation at a point greater
than zero and right-truncation, are discussed in Grogger and Carson (1991) and
Gurmu and Trivedi (1992).
More common than right-truncation is right-censoring, when counts above a

maximum value, say m, are recorded only as a category m or more. Then the
log-likelihood function is

logL =
X

i:yi<m

log f(yi|Xi) +
X

i:yi≥m
log(1−

mX
j=0

f(j|Xi)). (3.23)

Even if the counts are completely recorded, it may be the case that not all
values for counts come from the same process. In particular, the process for zero
counts may differ from the process for positive counts, due to some threshold for
zero counts. An example for continuous data is the sample selectivity model used
in labor supply, where the process determining whether or not someone works, i.e.
whether or not hours are positive, differs from the process determining positive
hours. Similarly for count data, the process for determining whether or not a
credit installment is unpaid may differ from the process determining the number
of unpaid installments by defaulters. Modified count models allow for such different
processes. We consider modification of zero counts only, though the methods can
be extended to other counts.
One modified model is the hurdle model of Mullahy (1986). Assume zeros

come from the density f1(yi|Xi), e.g. Negbin 2 with regressorsX1i and parameters
α1 and β1, while positives come from the density f2(yi|Xi), e.g. Negbin 2 with
regressors X2i and parameters α2 and β2. Then the probability of a zero value is
clearly f1(0|Xi), while to ensure that probabilities sum to 1, the probability of a

positive count is 1−f1(0|Xi)
1−f2(0|Xi)

f2(yi|Xi), yi = 1, 2, . . . The log-likelihood function is

logL =
X
i:yi=0

log f1(0|Xi)+
X
i:yi>0

{log(1−f1(0|Xi))−log(1−f2(0|Xi))+log(f2(yi|Xi))}.
(3.24)
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An alternative modification is the with zeros model, which combines binary
and count processes in the following way. If the binary process takes value 0,
an event that occurs with probability f1(0|Xi), say, then yi = 0. If the binary
process takes value 1, an event that occurs with probability 1 − f1(0|Xi), then
yi can take count values 0, 1, 2, . . . with probabilities f2(yi|Xi) determined by a
density such as Poisson or negative binomial. Then the probability of a zero value
is f1(0|Xi) + (1 − f1(0|Xi))f2(0|Xi), while the probability of a positive count is
(1− f1(0|Xi))f2(yi|Xi), yi = 1, 2, . . . The log-likelihood is

logL =
X
i:yi=0

log{f1(0|Xi) + (1− f1(0|Xi))f2(0|Xi)} (3.25)

+
X
i:yi>0

{log(1− f1(0|Xi)) + log f2(yi|Xi)}. (3.26)

This model is also called the zero inflated counts model, though it is possible
that it can also explain too few zero counts. This model was proposed by Mullahy
(1986), who set f1(0|Xi) equal to a constant, say β1, while Lambert (1992) and
Greene (1994) use a logit model, in which case f1(0|Xi) = (1 + exp(−X 0

1iβ1))
−1.

Problems of too few or too many zeros (or other values) can be easily missed by
reporting only the mean and variance of the dependent variable. It is good practice
to also report frequencies, and to compare these with the fitted frequencies.
Example 5: Guillen (1994) analyzes the number of unpaid installments for a

sample of 4691 individuals granted credit by a Spanish bank. The raw data exhibit
considerable overdispersion, with a mean of 1.581 and variance of 10.018. This
overdispersion is still present after inclusion of regressors on age, marital status,
number of children, net monthly income, housing ownership, monthly installment,
credit card availability, and the amount of credit requested. For the Negbin 2

model
ˆ
α= 1.340. Interest lies in determining bad credit risks, and a truncated

Negbin 2 model (3.22) is separately estimated. If the process determining zero
counts is the same as that determining positive counts, then estimating just the
positive counts leads to a loss of efficiency. If instead the process determining
zero counts differs from that determining positive counts, then estimating the
truncated model is equivalent to maximizing a subcomponent of the hurdle log-
likelihood (3.24) with no efficiency loss.(7)

Example 6: Greene (1994) analyzes the number of major derogatory reports
(MDR), a delinquency of sixty days or more on a credit account, of 1319 individual
applicants for a major credit card. MDR’s are found to decrease with increases
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in the expenditure-income ratio (average monthly expenditure divided by yearly
income), while age, income, average monthly credit card expenditure and whether
the individual holds another credit card are statistically insignificant. The data
are overdispersed, and the Negbin 2 model is strongly preferred to the Poisson.
Greene also estimates the Negbin 2 with zeros model, using logit and probit models
for the zeros with regressors on age, income, home ownership, self-employment,
number of dependents, and average income of dependents. A with zeros model
may not be necessary, as the standard Negbin 2 model predicts 1070 zeros, close
to the observed 1060 zeros. The log-likelihood of the Negbin 2 with zeros model of
-1020.6, with 7 additional parameters, is not much larger than that of the Negbin
2 model of -1028.3, with the former model preferable on the basis of Akaike’s
information criterion. Greene additionally estimates a count data variant of the
standard sample selection model for continuous data.

3.4. Exponential and Weibull for Duration Data

The simplest model for duration data is the exponential, the duration distribution
implied by the pure Poisson process, with density λe−λt and constant hazard rate
λ . If data are completely observed, and the exponential is estimated when a dif-
ferent model such as Weibull is correct, then the exponential MLE is consistent
if the mean is still correctly specified, but inefficient, and usual ML output gives
incorrect standard errors. This is similar to using Poisson when negative bino-
mial is correct. A more important reason for favoring more general models than
the exponential, however, is that data are often incompletely observed, in which
case incorrect distributional choice can lead to inconsistent parameter estimates.
For example, observation for a limited period of time may mean that the longer
spells are not observed to their completion. The restriction of a constant hazard
rate is generally not appropriate for econometric data, and we move immediately
to analysis of the Weibull, which nests the exponential as a special case. Our
treatment is brief, as the focus of this paper is on counts rather than durations.
Standard references include Kalbfleisch and Prentice (1980), Kiefer (1988) and
Lancaster (1990).
The Weibull is most readily defined by its hazard rate λ(t), or h(t) in earlier

notation, which equals λγtγ−1. A regression model is formed by specifying λ to
depend on regressors, viz. λ = exp(X 0β), while γ does not. The hazard for
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observation i is therefore

λi(ti|Xi) = γtγ−1i exp(X 0
iβ), (3.27)

with corresponding density

fi(ti|Xi) = γtγ−1i exp(X 0
iβ) exp(−tγi exp(X 0

iβ)). (3.28)

The conditional mean for this process is somewhat complicated

E(ti|Xi) = (exp(X
0
iβ))

−1/γΓ(1 + 1/γ). (3.29)

Studies usually consider the impact of regressors on the hazard rate rather than
the conditional mean. If βj > 0 then an increase in Xij leads to an increase in
the hazard and a decrease in the mean duration, while the hazard increases (or
decreases) with duration if γ > 1 (or γ < 1).
In many applications durations are only observed to some upper bound. If

the event does not occur before this time the spell is said to be incomplete, more
specifically right-censored. The contribution to the likelihood is the probability of
observing a spell of at least ti, or the survivor function

Si(ti|Xi) = exp(−tγi exp(X 0
iβ)). (3.30)

Combining, the log-likelihood when some data is incomplete is

logL =
X

i:complete

{log γ + (γ − 1) log ti +X 0
iβ − tγi exp(X

0
iβ)} (3.31)

+
X

i:incomplete

−tγi exp(X 0
iβ), (3.32)

and γ and β are estimated by ML.
With incomplete data, the Weibull MLE is inconsistent if the model is not

correctly specified. One possible misspecification is that while ti is Weibull, the
parameters are γ and λiυi rather than γ and λi, where υi is unobserved individual
heterogeneity. If the distribution of υi is i.i.d. gamma with mean 1 and variance
α, this leads to the Weibull-gamma model with survivor function,

Si(ti|Xi) = [1 + tγi exp(X
0
iβ)]

−1/α , (3.33)
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from which the density and log-likelihood function can be obtained in the usual
manner.
The standard general model for duration data is the proportional hazards or

proportional intensity model, introduced in (2.1). This factorizes the hazard rate
as

λi(ti,Xi, γ, β) = λ0(ti, γ) exp(X
0
iβ), (3.34)

where λ0(ti, γ) is a baseline hazard function. Different choices of λ0(ti, γ) corre-
spond to different models, e.g. the Weibull is λ0(ti, γ) = γtγ−1i and the exponential
is λ0(ti, γ) = 1. The only role of regressors is as a scale factor for this baseline
hazard. The factorization of the hazard rate also leads to a factorization of the
log-likelihood, with a subcomponent not depending on the baseline hazard, which
is especially useful for right-censored data. Define R(ti) = {j|tj ≥ ti} to be the
risk set of all spells which have not yet been completed at time ti. Then Cox
(1972a) proposed the estimator which maximizes the partial likelihood

logL =
nX
i=1

X 0
iβ − log

 X
j∈R(ti)

exp(X 0
jβ)

 . (3.35)

This estimator is not fully efficient, but has the advantage of being consistent
with correct standard errors those reported by a ML package, regardless of the
true functional form of the baseline hazard.
Example 7: Bandopadhyaya (1993) analyzes data on 74 U.S. firms that were

under chapter 11 bankruptcy protection in the period 1979-90. 31 firms were still
under bankruptcy protection, in which case data is incomplete, and ML estimates
of the censored Weibull model (3.31) are obtained. The dependent variable is
the number of days in bankruptcy protection, with mean duration (computed for
complete and incomplete spells) of 714 days. The coefficient of interest amount
outstanding is positive, implying an increase in the hazard and decrease in mean
duration of bankruptcy protection. The other statistically significant variable is
a capacity utilization measure, also with positive effect on the hazard. The esti-

mated
ˆ
α= 1.629 exceeds unity, so that firms are more likely to leave bankruptcy

protection the longer they are in protection. The associated standard error, 0.385,
leads to a “t-statistic” for testing the null hypothesis of exponential, α = 1, equal
to 1.63 which is borderline insignificant for a one-sided test at 5 percent. The
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Weibull model is preferred to the exponential and the log-logistic on grounds that
it provided the “best fit”.
Example 8: Jaggia and Thosar (1995) analyze data on 161 U.S. firms that

were the targets of tender offers contested by management during 1978-85. In
26 instances the tender offer was still outstanding, and the data censored. The
dependent variable is the length of time in weeks from public announcement of
offer to the requisite number of shares being tended, with mean duration (com-
puted for complete and incomplete spells) of 18.1 weeks. The paper estimates and
performs specification tests on a range of models. Different models give similar
results for the relative statistical significance of different regressors, but different
results for how the hazard rate varies with time since the tender offer. Actions
by management to contest the tender offer, mounting a legal defense and propos-
ing a change in financial structure, are successful in decreasing the hazard and
increasing the mean duration time to acceptance of the bid, while competing bids
increase the hazard and decrease the mean. The preferred model is the Censored
Weibull-gamma (3.33). The estimated hazard, evaluated at Xi =X, initially in-
creases rapidly and then decreases slowly with t, whereas the Weibull gives a
monotone increasing hazard rate. A criticism of models such as Weibull-gamma
is that they assume that all spells will eventually be complete, whereas here some
firms may never be taken over. Jaggia and Thosar give a brief discussion of esti-
mation and rejection of the split-population model of Schmidt and Witte (1989)
which allows for positive probability of no takeover. This study is a good model
for other similar studies, and uses techniques readily available in LIMDEP.

3.5. Poisson for Grouped Duration Data

A leading example of state transitions in financial data is the transition from the
state of having a mortgage to mortgage termination either by pre-payment of the
mortgage debt or by default. Practically this is important in pricing mortgage-
backed securities. Econometrically this involves modeling the time interval be-
tween a mortgage loan origination and its pre-payment or default. Specific inter-
est attaches to the shape of the hazard as a function of the age of the mortgage
and the role of covariates. The Cox proportional hazards (PH) model for dura-
tions has been widely used in this context (Green and Shoven (1986), Lane et al
(1986), Baek and Bandopadhyaya (1994)). One can alternatively analyze grouped
duration data as counts (Schwartz and Torous (1993)).
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Example 9: Green and Shoven (1986) analyze terminations between 1975 and
1982 of 3,938 Californian 30-year fixed rate mortgages issued between 1947 and
1976. 2,037 mortgages were paid-off. Interest lies in estimating the sensitivity of
mortgage prepayments to the differential between the prevailing market interest
rate and the fixed rate on a given mortgage, the so-called “lock-in magnitude”.
The available data are quite limited, and an imputed value of this lock-in magni-
tude is the only regressor, so that other individual specific factors such as changes
in family size or income are ignored. (The only individual level data that the
authors had was the length of tenure in the house and an imputed measure of
the market value of the house.) The transition probability for a mortgage of
age ai, where ai = ti − t0i and t0i denotes mortgage origination date, is given
by λi(ai,X, β) = λ0(ai, γi) exp(X

0β). The authors used the Cox partial likelihood
estimator to estimate (β, γi, i = 1, .., 30); the (nonparametric) estimate of the
sequence {γi, i = 1, 2, ..}, somewhat akin to estimates of coefficients of categorical
variables corresponding to each mortgage age, yields the baseline hazard function.
The periods 1975-78 and 1978-82 are treated separately to allow for a possible
structural change in the β coefficient following a 1978 court ruling which prohib-
ited the use of due-on-sale clauses for the sole purpose of raising mortgage rates.
The authors were able to show the sensitivity of average mortgage prepayment
period to interest rate changes.
Example 10: Schwartz and Torous (1993) offer an interesting alternative to

the Green-Shoven approach, combining the Poisson regression approach with
the proportional hazard structure. Their Freddie Mac data on 30-year fixed
rate mortgages over the period 1975 to 1990, has over 39,000 pre-payments and
over 8,500 defaults. They use monthly grouped data on mortgage pre-payments
and defaults, the two being modelled separately. Let nj denote the number of
known outstanding mortgages at the beginning of the quarter j, yj the num-
ber of prepayments in that quarter, and X(j) the set of time-varying covariates.
Let λ(a,X(j), β) = λ0(a, γ) exp(X(j)

0β) denote the average monthly prepayment
rate expressed as a function of exogenous variables X(j), and a baseline hazard
function λ0(a, γ). Then the expected number of quarterly prepayments will be
nj · λ0(a, γ) exp(X(j)0β), and ML estimation is based on the Poisson density

f(yj | nj, X(j)) = [nj · λ0(a, γ) exp(X(j)0β)]yj exp(−nj · λ0(a, γ) exp(X(j)0β)
yj !

(3.36)
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The authors use dummy variables for region, quarter, and the age of mortgage
in years at the time of pre-payment. Other variables include loan to value ra-
tio at origination, refinancing opportunities and regional housing returns. Their
results indicate significant regional differences and a major role for refinancing
opportunities.

3.6. Other Count Models

U.S. stock prices are measured in units of one-eighth dollar (or tick), and for
short time periods should be explicitly modelled as integer. For the six stocks
studied in detail by Hausman, Lo and MacKinlay (1994), 60 percent of same-
stock consecutive trades had no price change and a further 35 percent changed
by only one tick. Even daily closing prices can experience changes of only a few
ticks. This discreteness in stock prices is generally ignored, though some studies
using continuous pricing models have allowed for it (Gottlieb and Kalay (1985)
and Ball (1988)).
One possible approach is to model the price level (measured in number of

ticks) as a count. But this count will be highly serially correlated, and time series
regression models for counts are not yet well developed. More fruiful is to model
the price change (again measured in number of ticks) as a count, though the
standard count models are not appropriate as some counts will be negative.
A model that permits negative counts is the ordered probit model, presented for

example in Maddala (1983). Let y∗i denote a latent (unobserved) r.v. measuring
the propensity for price to change, where y∗i = X 0

iβ+εi, εi is N(0, σ
2
i ) distributed,

and usually σ2i = 1. Higher values of y
∗
i are associated with higher values j of the

actual discrete price change yi in the following way: yi = j if αj < y∗i ≤ αj+1.
Then some algebra yields

Pr{yi = j} = Pr{αj −X 0
iβ < εi ≤ αj+1 −X 0

iβ}
= Φ(

αj+1−X0
iβ

σi
)− Φ(

αj−X0
iβ

σi
)

(3.37)

Let dij be a dummy variable equal to one if yi = j and zero if yi 6= j. The
log-likelihood function can be expressed as

logL =
nX
i=1

X
j

dij log[Φ(
αj+1 −X 0

iβ

σi
)− Φ(

αj −X 0
iβ

σi
)] (3.38)
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This model can be applied to nonnegative count data, in which case j = 0, 1, 2, . . . ,max(yi).
Cameron and Trivedi (1986) obtained qualitatively similar results regarding the
importance and significance of regressors in their application when ordered probit
was used rather than Poisson or negative binomial. For discrete price change data
that may be negative, Hausman et. al. (1992) use the ordered probit model, with
j = −m,−m + 1, . . . , 0, 1, 2, . . . ,m, where the value m is actually m or more,
and −m is actually −m or less. Parameters to be estimated are then parameters
in the model for σ2i , the regression parameters β, and the threshold parameters
α−m+1, . . . , αm, while α−m = −∞ and αm+1 =∞.
Example 11: Hausman et. al. (1992) use 1988 data on time-stamped (to

nearest second) trades on the New York and American Stock Exchanges for one
hundred stocks, with results reported in detail for six of the stocks. Each stock
is modelled separately, with one stock (IBM) having as many as 206,794 trades.
The dependent variable is the price change (measured in units of $1/8) between
consecutive trades. The ordered probit model is estimated, with m = 4 for most
stocks. Regressors include the time elapsed since the previous trade, the bid/ask
spread at the time of the previous trade, three lags of the price change and three
lags of the dollar volume of the trade, while the variance σ2i is a linear function of
the time elapsed since the previous trade and the bid/ask spread at the time of
the previous trade. This specification is not based on stochastic process theory,
though arithmetic Brownian motion is used as a guide. Hausman et. al. conclude
that the sequence of trades affects price changes and that larger trades have a
bigger impact on price.
Example 12: Epps (1993) directly models the discrete stock price level (rather

than change) as a stochastic process. It is assumed that the stock price at discrete
time t, Pt, is the realization of a Galton-Watson process, a standard branching
process, with the complication that the number of generations is also random.
The conditional density (or transition probabilities) of Pt given Pt−1 is easy to
represent analytically, but difficult to compute as it involves convolutions. This
makes estimation difficult if not impossible. Epps instead uses an approximation
to model the (continuous) normalized price change yt = (Pt−Pt−1)/

√
Pt−1 which

can be shown to be a realization of the Poisson compound-events distribution.
Epps (1993) analyses daily individual stock closing price data from 1962 to 1987,
with separate analysis for each of 50 corporations and estimation by a method
of moments procedure. Advantages of the model include its prediction of a thick
tail distribution for the conditional distribution of returns.
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4. Concluding Remarks

The basic Poisson and negative binomial count models (and other Poisson mix-
ture models) are straightforward to estimate with readily available software, and
in many situations are appropriate. Estimation of a Poisson regression model
should be followed by a formal test of underdispersion or overdispersion, using
the auxiliary regressions (3.8) or (3.9). If these tests reject equidispersion, then
standard errors should be calculated using (3.11), (3.14) or (3.16). If the data are
overdispersed it is better to instead obtain ML estimates of the Negbin 2 model
(3.6). However, it should be noted that overdispersion tests have power against
other forms of model misspecification, for example the failure to account for excess
zeros.
A common situation in which these models are inadequate is when the process

determining zero counts differs from that determining positive counts. This may
be diagnosed by comparison of fitted and observed frequencies. Modified count
models, such as the hurdles or with zeros model, or models with truncation and
censoring are then appropriate.
This study has emphasized the common basis of count and duration models.

When data on both durations and counts are available, modelling the latter can
be more informative about the role of regressors, especially when data on multiple
spells for a given individual are available or when data are grouped. Grouping by
a uniform time interval is convenient but sometimes the data on counts will not
pertain to the same interval. One may obtain time series data on the number of
events for different time intervals. Such complications can be accommodated by
the use of proportional intensity Poisson process data regression models (Lawless
(1987)).
The assumptions of the simplest stochastic processes are sometimes inadequate

for handling financial data. An example is the number of transactions or financial
trades that may be executed per small unit of time. Independence of events
will not be a convincing assumption in such a case, so renewal theory is not
appropriate. One approach to incorporating interdependence is use of modulated
renewal processes (Cox (1972b)). For time series data on durations, rather than
counts, Engle and Russell (1994) introduce the autoregressive conditional duration
model which is the duration data analog of the GARCH model. This model is
successful in explaining the autocorrelation in data on the number of seconds
between consecutive trades of IBM stock on the New York Stock Exchange.
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Time series count regression models are relatively undeveloped, except the pure
time series case which is very limited. In fact, techniques for handling most of the
standard complications considered by econometricians, such as simultaneity and
selection bias, are much less developed for count data than they are for continuous
data. A useful starting point is the survey by Gurmu and Trivedi (1994).
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Footnotes
(1) A spell may be in progress (incomplete) at the time of sampling. Inclusion

of such censored observations in regression analysis is a key feature of duration
models.

(2) The process begins at time 0, while the observed time interval starts at
time s.

(3) The rate of occurrence for a renewal Weibull process is determined by the
time since the previous event, when it is “renewed”. For a time-dependent Weibull
process it is instead determined by the time since the start of the process.

(4) If F (t) is the distribution function of a random variable T , T > 0, then the
Laplace transform of F is L(s) =

R∞
0 e−stdF (t) = E(e−sT ). If T = t1+ t2+ ...+ tn,

then the Laplace transform of T is L(s) =
Qn

i=1 Li(s). Laplace transforms have
a property of uniqueness in the sense that to any transform there corresponds a
unique probability distribution.

(5) This is entirely analogous to the consequences of estimating the linear
regression model by MLE under the assumption of normality and homoskedastic
error, when in fact the error is non-normal and heteroskedastic but still has mean
zero so that the conditional mean is correctly specified.

(6) This implies that in each time period the claims are Negbin 2 distributed.
(7) The hurdle log-likelihood (3.24) is additive in f1 and f2, the f2 subcompo-

nent equals (3.22) and the information matrix is diagonal if there are no common
parameters in f1 and f2.

36



Table 1: Frequencies for Some Count Variables

Author Jaggia-Thosar Greene Guillen Davutyan

Count Variable Takeover Bids Derogatory Credit Bank
after first Credit Reports Defaults Failures

Sample Size 126 1319 4691 40
Mean 1.738 0.456 1.581 6.343
Variance 2.051 1.810 10.018 11.820
Counts. . .
0 9 1060 3002 0
1 63 137 502 0
2 31 50 187 2
3 12 24 138 7
4 6 17 233 4
5 1 11 160 4
6 2 5 107 4
7 1 6 80 1
8 0 0 59 3
9 0 2 53 5
10 1 4 41 3
11 0 4 28 0
12 0 1 34 0
13 0 0 10 0
14 0 1 13 1
15 0 0 11 0
16 0 0 4 0
17 0 0 5 1
>17 0 0 24a 5b

a/ The large counts are 17 (5 times), 18 (8), 19 (6), 20 (3), 22 (1), 24 (1), 28
(1), 29 (1), 30 (1), 34 (1).

b/ The large counts are 42 (1), 48 (1) 79 (1), 120 (1), 138 (1).

37



Table 2: Standard Parametric Count Distributions and Their Moments

Family Density Count Mean; Variance

Poisson f(y) = exp(−λ)·λy
y!

y = 0, 1, ... λ;λ

Negative Binomial f(y) = Γ(y+v)
Γ(v)Γ(y+1)

³
v

λ+v

´v ³
λ

λ+v

´y
y = 0, 1, ... λ; λ+ 1

v
λ2

Positive Counts f(y | y ≥ 0) = f(y)
1−F (0) y = 1, 2, .... Vary with f

Hurdles f(y) = f1(0), y = 0 y = 0 Vary with f1, f2
= 1−f1(0)

1−f2(0) · f2(y) y = 1, 2, ...

With Zeroes f(y) = f1(0) + (1− f1(0)) · f2(y) y = 0 Vary with f1, f2
= (1− f1(0)) · f2(y) y = 1, 2, ...
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Table 3: Finance Applications

Example Dependent Variable Model

1. Jaggia and Thosar Bids received by target firm Poisson
2. Davutyan Bank Failures per year Poisson
3. Dionne and Vanasse Accidents per person Negative Binomial
4. Dean et. al. Accident claims Inverse Gaussian - Poisson
5. Guillen Unpaid instalments Truncated Negative Binomial
6. Greene Derogatory credit reports With Zeros Negative Binomial
7. Bandopadyaya Time in bankruptcy protection Censored Weibull
8. Jaggia and Thosar Time to tender offer accepted Censored Weibull-gamma
9. Green and Shoven Mortgage prepayments Proportional hazards
10. Schwartz and Torous Mortgage prepayment or default Grouped proportional hazards
11. Hausman et. al. Stock price change Ordered probit
12. Epps Normalized stock price change Poisson Compound-events
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