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1. Introduction

A key component of empirical research is conducting accurate statistical inference. One challenge to

this is the possibility of errors being correlated within cluster. In this paper we propose a variance

estimator for commonly used estimators that provides cluster-robust inference when there is multi-

way non-nested clustering. The variance estimator extends the standard cluster-robust variance

estimator for one-way clustering, and relies on similar relatively weak distributional assumptions.

Our method is easily implemented in any statistical package that provides cluster-robust standard

errors with one-way clustering. An ado �le for multi-way clustering in Stata is available at the

website www.econ.ucdavis.edu/faculty/dlmiller/stata�les.

Controlling for clustering can be very important, as failure to do so can lead to massively under-

estimated standard errors and consequent over-rejection using standard hypothesis tests. Moulton

(1986, 1990) demonstrated that this problem arose in a much wider range of settings than had been

appreciated by microeconometricians. More recently Bertrand, Du�o and Mullainathan (2004) and

Kezdi (2004) emphasized that with state-year panel or repeated cross-section data, clustering can

be present even after including state and year e¤ects and valid inference requires controlling for

clustering within state. These papers, like most previous analyses, focus on one-way clustering.

For nested two-way or multi-way clustering one simply clusters at the highest level of aggre-

gation. For example, with individual-level data and clustering on both household and state one

should cluster on state. Pepper (2002) provides an example.

If instead multi-way clustering is non-nested, the existing approach is to specify a multi-way

error components model with iid errors. Moulton (1986) considered clustering due to grouping of

three regressors (schooling, age and weeks worked) in a cross-section log earnings regression. Davis

(2002) modelled �lm attendance data clustered by �lm, theater and time and provided a quite

general way to implement feasible GLS even with clustering in many dimensions. These models

impose strong assumptions, including homoskedasticity and errors equicorrelated within cluster.

In this paper we take a less parametric approach that generalizes one-way cluster-robust stan-
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dard errors to the non-nested multi-way clustering case. One-way �cluster-robust�standard errors

generalize those of White (1980) for independent heteroskedastic errors. Key references include

Pfe¤ermann and Nathan (1981) for clustered sampling, White (1984) for a multivariate dependent

variable, Liang and Zeger (1986) for estimation in a generalized estimating equations setting, and

Arellano (1987) and Hansen (2007) for linear panel models. Wooldridge (2003) provides a survey,

and Wooldridge (2002) and Cameron and Trivedi (2005) give textbook treatments.

Our multi-way robust variance estimator is easy to implement. In the two-way clustering case,

we obtain three di¤erent cluster-robust �variance�matrices for the estimator by one-way clustering

in, respectively, the �rst dimension, the second dimension, and by the intersection of the �rst

and second dimensions (sometimes referred to as �rst-by-second, as in �state-by-year�, clustering).

Then we add the �rst two variance matrices and subtract the third. In the three-way clustering

case there is an analogous formula, with seven one-way cluster robust variance matrices computed

and combined.

The method is useful in many applications, including:

1. In a cross-section study clustering may arise at several levels simultaneously. For exam-

ple a model may have errors that are correlated within region, within industry, and within

occupation. This leads to inference problems if there are region-level, industry-level, and

occupation-level regressors.

2. Clustering may arise due to discrete regressors. Moulton (1986) considered inference in this

case, modelling the error correlation using an error components model. More recently, Card

and Lee (2008) argue that in a regression discontinuity framework where the treatment-

determining variable is discrete, the observations should be clustered at the level of the

right-hand side variable. If additionally interest lies in a �primary�dimension of clustering

(e.g., state or village), then there is clustering in more than one dimension.

3. In datasets based on pair-wise observations, researchers may wish to allow for clustering at

each node of the pair. For example, Rose and Engel (2002) consider estimation of a gravity
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model for trade �ows using a single cross-section with data on many country-pairs, and are

unable to control for the likely two-way error correlation across both the �rst and second

country in the pair.

4. Matched employer-employee studies may wish to allow for clustering at both the employer

level as well as the employee level when there are repeated observations at the employee level.

5. Studies that employ the usual one-way cluster robust standard errors may wish to additionally

control for clustering due to sample design. For example, clustering may occur at the level of

a primary sampling unit in addition to the level of an industry-level regressor.

6. Panel studies that employ the usual one-way cluster robust standard errors may wish to

additionally control for panel survey design. For example, the Current Population Survey

(CPS) uses a rotating panel structure, with households resurveyed for a number of months.

Researchers using data on households or individuals and concerned about within state-year

clustering (correlated errors within state-year along with important state-year variables or

instruments) should also account for household-level clustering across the two years of the

panel structure. Then they need to account for clustering across both dimensions. A related

example is Acemoglu and Pischke (2003), who study a panel of individuals who are a¤ected

by region-year policy variables.

7. In a state-year panel setting, we may want to cluster at the state level to permit valid

inference if there is within-state autocorrelation in the errors. If there is also geographic-

based correlation, a similar issue may be at play with respect to the within-year cross-state

errors (Conley 1999). In this case, researchers may wish to cluster at the year level as well

as at the state level.

8. More generally this situation arises when there is clustering at both a cross-section level and

temporal level. For example, �nance applications may call for clustering at the �rm level and

at the time (e.g., day) level.

4



There are many other situation-speci�c applications. Empirical papers that cite earlier drafts of

our paper include Baughman and Smith (2007), Beck, Demirguc-Kunt, Laeven, and Levine (2008),

Cascio and Schanzenbach (2007), Cujjpers and Peek (2008), Engelhardt and Kumar (2007), Foote

(2007), Gow, Ormazabal and Taylor (2008), Gurun, Booth and Zhang (2008), Loughran and Shive

(2007), Martin, Mayer and Thoenig (2008), Mitchener and Weidenmier, (2008), Olken and Barron

(2007), Peress (2007), Pierce and Snyder (2008), and Rountree, Weston and Allayannis (2008).

Our estimator is qualitatively similar to the ones presented in White and Domowitz (1984), for

time series data, and Conley (1999), for spatial data. It is based on a weighted double-sum over

all observations of the form
P
i

P
j w (i; j)xix

0
jb"ib"j . White and Domowitz (1984), considering time

series dependence, use a weight w (i; j) = 1 for observations �close� in time to one another, and

w (i; j) = 0 for other observations. Conley (1999) considers the case where observations have spatial

locations, and speci�es weights w (i; j) that decay to 0 as the distance between observations grows.

Our estimator can be expressed algebraically as a special case of the spatial HAC (Heteroscedasticity

and Autocorrelation Consistent) estimator presented in Conley (1999). Bester, Conley, and Hansen

(2009) explicitly consider a setting with spatial or temporal cross-cluster dependence that dies out.

These three papers use mixing conditions to ensure that dependence decays as observations as the

spatial or temporal distance beween observations grows. Such conditions are not applicable to

clustering due to common shocks, which have a factor structure rather than decaying dependence.

Thus, we rely on independence of observations that share no clusters in common.

The �fth example introduces consideration of sample design, in which case the most precise

statistical inference would control for strati�cation in addition to clustering. Bhattacharya (2005)

provides a comprehensive treatment in a GMM framework. He �nds that accounting for strati�ca-

tion tends to reduce reported standard errors, and that this e¤ect can be meaningfully large. In his

empirical examples, the strati�cation e¤ect is largest when estimating (unconditional) means and

Lorenz shares, and much smaller when estimating conditional means. Like most econometrics stud-

ies, we do not control for the e¤ects of strati�cation. In so doing there will be some over-estimation

of the estimator�s standard deviation, leading to conservative statistical inference.
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Since the initial draft of this paper, we have become aware of several independent applications

of the multi-way robust estimator. Acemoglu and Pischke (2003) estimate OLS standard errors

allowing for clustering at the individual level as well as the region-by-time level. Miglioretti and

Heagerty (2006) present results for multi-way clustering in the generalized estimating equations

setting, and provide simulation results and an application to a mammogram screeing epidemiological

study. Petersen (2009) compares a number of approaches for OLS estimation in a �nance panel

setting, using results by Thompson (2006) that provides some theory and Monte Carlo evidence for

the two-way OLS case with panel data on �rms. Fafchamps and Gubert (2006) analyze networks

among individuals, where a person-pair is the unit of observation. In this context they describe the

two-way robust estimator in the setting of dyadic models.

The methods and supporting theory for two-way and multi-way clustering and for both OLS

and quite general nonlinear estimators are presented in Section 2 and in the Appendix. Like the

one-way cluster-robust method, our methods assume that the number of clusters goes to in�nity.

This assumption does become more binding with multi-way clustering. For example, in the two-

way case it is assumed that min (G;H) ! 1, where there are G clusters in dimension 1 and H

clusters in dimension 2. In Section 3 we present two di¤erent Monte Carlo experiments. The �rst is

based on a two-way random e¤ects model. The second follows the general approach of Bertrand et

al. (2004) in investigating a placebo law in an earnings regression, except that in our example the

induced error dependence is two-way (over both states and years) rather than one-way. Section 4

presents several empirical examples where we contrast results obtained using conventional one-way

clustering to those allowing for two-way clustering. Section 5 concludes.

2. Cluster-Robust Inference

This section emphasizes the OLS estimator, for simplicity. We begin with a review of one-way

clustering, before considering in turn two-way clustering and multi-way clustering. The section

concludes with extension from OLS to m-estimators, such as probit and logit, and GMM estimators.
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2.1. One-Way Clustering

The linear model with one-way clustering is yig = x0ig�+uig, where i denotes the i
th ofN individuals

in the sample, g denotes the gth of G clusters, E[uigjxig] = 0, and error independence across clusters

is assumed so that for i 6= j

E[uigujg0 jxig;xjg0 ] = 0, unless g = g0: (2.1)

Errors for individuals belonging to the same group may be correlated, with quite general het-

eroskedasticity and correlation.

Grouping observations by cluster, so yg = Xg� + ug, and stacking over clusters yields y =

X� + u, where y and u are N � 1 vectors, and X is an N �K matrix.

The OLS estimator is

b� = �X0X��1X0y =
0@ GX
g=1

X0gXg

1A�1
GX
g=1

X0gyg; (2.2)

where Xg has dimension Ng �K and yg has dimension Ng � 1, with Ng observations in cluster g.

Under commonly assumed restrictions on moments and heterogeneity of the data,
p
G(b� � �)

has a limit normal distribution with variance matrix0@ lim
G!1

1

G

GX
g=1

E
�
X0gXg

�1A�10@ lim
G!1

1

G

GX
g=1

E
�
X0gugu

0
gXg

�1A0@ lim
G!1

1

G

GX
g=1

E
�
X0gXg

�1A�1

: (2.3)

If the primary source of clustering is due to group-level common shocks, a useful approximation

is that for the jth regressor the default OLS variance estimate based on s2 (X0X)�1, where s is the

estimated standard deviation of the error, should be in�ated by � j ' 1 + �xj�u(
�Ng � 1), where

�xj is a measure of the within cluster correlation of xj , �u is the within cluster error correlation,

and �Ng is the average cluster size; see Kloek (1981), Scott and Holt (1982) and Greenwald (1983).

Moulton (1986, 1990) pointed out that in many settings the adjustment factor � j can be large even

if �u is small.
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The earliest work posited a model for the cluster error variance matrices 
g = V[ugjXg] =

E[ugu0gjXg], in which case E[X0gugu0gXg] = E[X0g
gXg] can be estimated given a consistent estimateb
g of 
g, and feasible GLS estimation is then additionally possible.
Current applied studies instead use the cluster-robust variance matrix estimate

bV[b�] = �X0X��1
0@ GX
g=1

X0gbugbu0gXg
1A�X0X��1 ; (2.4)

where bug = yg�Xgb�. This provides a consistent estimate of the variance matrix ifG�1PG
g=1X

0
gbugbu0gXg�

G�1
PG
g=1E[X

0
gugu

0
gXg]

p! 0 as G!1. White (1984, p.134-142) presented formal theorems for a

multivariate dependent variable, directly applicable to balanced clusters. Liang and Zeger (1986)

proposed this method for estimation in a generalized estimating equations setting, Arellano (1987)

for the �xed e¤ects estimator in linear panel models, and Rogers (1993) popularized this method in

applied econometrics by incorporating it in Stata. Most recently, Hansen (2007) provides asymp-

totic theory for panel data where T !1 (Ng !1 in the notation above) in addition to N !1

(G!1 in the notation above). Note that (2.4) does not require speci�cation of a model for 
g,

and thus it permits quite general forms of 
g.

A helpful informal presentation of (2.4) is that

bV[b�] = (X0X)�1 bB(X0X)�1; (2.5)

where the central matrix

bB =

GX
g=1

X0gbugbu0gXg (2.6)

= X0

266664
bu1bu01 0 � � � 0

0 bu2bu02 ...
...

. . . 0
0 � � � � � � buGbu0G

377775X
= X0

�bubu0: � SG�X;
where :� denotes element-by-element multiplication and SG is an N � N indicator, or selection,

matrix with ijth entry equal to one if the ith and jth observation belong to the same cluster and
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equal to zero otherwise. The (a; b)-th element of bB is
PN
i=1

PN
j=1 xiaxjbbuibuj1[i; j in same cluster],

where bui = yi � x0ib�:
An intuitive explanation of the asymptotic theory is that the indicator matrix SG must zero

out a large amount of bubu0, or, asymptotically equivalently, uu0. Here there are N2 = (
PG
g=1Ng)

2

terms in bubu0 and all but PG
g=1N

2
g of these are zeroed out. For �xed Ng, (

PG
g=1N

2
g =N

2) ! 0 as

G!1. In particular, for balanced clusters Ng = N=G, so (
PG
g=1N

2
g )=N

2 = 1=G! 0 as G!1.

2.2. Two-Way Clustering

Now consider situations where each observation may belong to more than one �dimension� of

groups. For instance, if there are two dimensions of grouping, each individual will belong to a

group g 2 f1; 2; :::; Gg, as well as to a group h 2 f1; 2; :::;Hg, and we have yigh = x0igh�+ u, where

we assume that for i 6= j

E[uighujg0h0 jxigh;xjg0h0 ] = 0, unless g = g0 or h = h0: (2.7)

If errors belong to the same group (along either dimension), they may have an arbitrary correlation.

The intuition for the variance estimator in this case is a simple extension of (2.6) for one-way

clustering. We keep those elements of bubu0 where the ith and jth observations share a cluster in any
dimension. Then bB = X0(bubu0: � SGH)X; (2.8)

where SGH is an N � N indicator matrix with ijth entry equal to one if the ith and jth ob-

servation share any cluster, and equal to zero otherwise. Now, the (a; b)-th element of bB isPN
i=1

PN
j=1 xiaxjbbuibuj1[i; j share any cluster].bB and hence bV[b�] can be calculated directly. However, bV[b�] can also be represented as the sum of

one-way cluster-robust matricies. This is done by de�ning three N�N indicator matrices: SG with

ijth entry equal to one if the ith and jth observation belong to the same cluster g 2 f1; 2; :::; Gg, SH

with ijth entry equal to one if the ith and jth observation belong to the same cluster h 2 f1; 2; :::;Hg,

and SG\H with ijth entry equal to one if the ith and jth observation belong to both the same cluster
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g 2 f1; 2; :::; Gg and the same cluster h 2 f1; 2; :::;Hg. Then SGH = SG + SH � SG\H so

bB = X0(bubu0: � SG)X+X0(bubu0: � SH)X�X0(bubu0: � SG\H)X: (2.9)

Substituting (2.9) into (2.5) yields

bV[b�] = (X0X)�1X0(bubu0: � SG)X(X0X)�1 (2.10)

+(X0X)�1X0(bubu0: � SH)X(X0X)�1
�(X0X)�1X0(bubu0: � SG\H)X(X0X)�1;

or bV[b�] = bVG[b�] + bVH [b�]� bVG\H [b�]: (2.11)

The three components can be separately computed by OLS regression of y on X with variance

matrix estimates based on: (1) clustering on g 2 f1; 2; :::; Gg; (2) clustering on h 2 f1; 2; :::;Hg;

and (3) clustering on (g; h) 2 f(1; 1); :::; (G;H)g. bV[b�] is the sum of the �rst and second components,
minus the third component.

2.3. Practical considerations

In much the same way that robust inference in the presence of one-way clustering requires empirical

researchers to know which �way� is the one where clustering may be important, our discussion

presumes that the researcher knows what �ways�will be potentially important for clustering in her

application.

It would be useful to have an objective way to determine which, and how many, dimensions

require allowance for clustering. We are presently unaware of a systematic, data-driven approach

to this issue. From the discussion after (2.3) a necessary condition for a dimension to exhibit

clustering is that there be correlation in the errors within that dimension of the data. This e¤ect

is exacerbated by regressors that also exhibit correlation in that dimension.

In principle, we believe that one could formulate tests based on conditional moments, similar to

the White (1980) test for heteroskedasticity. Such an approach would likely involve using sample
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covariances of X0bu terms within dimensions to test the null hypothesis that the average of such
covariances is zero. Rejecting this null would be su¢ cient, though not necessary, to reject the null

hypothesis of no clustering in a dimension.

Small-sample modi�cations of (2.4) for one-way clustering are typically used, since without

modi�cation the cluster-robust standard errors are biased downwards. Cameron, Gelbach, and

Miller (2008) review various small-sample corrections that have been proposed in the literature,

for both standard errors and for inference using resultant Wald statistics. For example, Stata uses
p
cbug in (2.4) rather than bug, with c = G

G�1
N�1
N�K ' G

G�1 . Similar corrections may be used for two-

way clustering. One method is to use the Stata formula throughout, in which case the errors in the

three components are multiplied by, respectively, c1 = G
G�1

N�1
N�K , c2 =

H
H�1

N�1
N�K and c3 = I

I�1
N�1
N�K

where I equals the number of unique clusters formed by the intersection of the H groups and the

G groups. A second is to use a constant c = J
J�1

N�1
N�K where J = min(G;H). We use the �rst of

these methods in our simulations and applications.

A practical matter that can arise when implementing the two-way robust estimator is that the

resulting variance estimate bV[b�] may have negative elements on the diagonal. In some applications
with �xed e¤ects, bV[b�] may be non positive-de�nite, but the subcomponent of bV[b�] associated with
the regressors of interest may be positive-de�nite. In some statistical package programs this may

lead to a reported error, even though inference is appropriate for the parameters of interest. Our

informal observation is that this issue is most likely to arise when clustering is done over the same

groups as the �xed e¤ects. In that case eliminating the �xed e¤ects by di¤erencing, rather than

directly estimating them, leads to a positive de�nite matrix for the remaining coe¢ cients.

In some applications and simulations it can still be the case that the variance-covariance matrix

is not positive-semide�nite. A positive-semide�nite matrix can be created by employing a technique

used in the time series HAC literature, such as in Politis (2007). This uses the eigendecomposition

of the estimated variance matrix and converts any negative eigenvalue(s) to zero. Speci�cally,

decompose the variance matrix into the product of its eigenvectors and eigenvalues: bV[b�] = U�U 0,
with U containing the eigenvectors of bV, and � = Diag[�1; :::; �d] containing the eigenvalues of
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bV. Then create �+ = Diag[�+1 ; :::; �
+
d ], with �

+
j = max (0; �j), and use bV+[b�] = U�+U 0 as the

variance estimate. In some of our simulations with a small number of clusters (G;H = 10) we very

occasionally obtained a non positive-semide�nite variance matrix and dropped that draw from our

Monte Carlo analysis. When we instead use the above method we �nd that in the problematic draws

the negative eigenvalue is small, bV+[b�] always yields a positive de�nite variance matrix estimate,
and keeping all draws (using bV+[b�] where necessary) leads to results very similar to those reported
in the Monte Carlos below.

Most empirical studies with clustered data estimate by OLS, ignoring potential e¢ ciency gains

due to modeling heteroskedasticity and/or clustering and estimating by feasible GLS. The method

outlined in this paper can be adapted to weighted least squares that accounts for heteroskedasticity,

as the resulting residuals bu�igh from the transformed model will asymptotically retain the same broad
correlation pattern over g and h. It can also be adapted to robustify a one-way random e¤ects

feasible GLS estimator that clusters over g, say, when there is also correlation over h. Then the

random e¤ects transformation will induce some correlation across h and h0 between transformed

errors u�igh and u
�
ig0h0 , but this correlation is negligible as G!1 and H !1.

In some applications researchers will wish to include �xed e¤ects in one or both dimensions.

We do not formally address this complication. However, we note that given our assumption that

G!1 and H !1, each �xed e¤ect is estimated using many observations. We think that this is

likely to mitigate the incidental parameters problem in nonlinear models such as the probit model.

We �nd in practice that the main consequence of including �xed e¤ects is a reduction in within

cluster correlation.

2.4. Multi-Way Clustering

Our approach generalizes to clustering in more than two dimensions. Suppose there are D di-

mensions of clustering. Let Gd denote the number of clusters in dimension d. Let the D-vector

�i = �(i), where the function � : f1; 2; :::; Ng ! �Dd=1f1; 2; :::; Gdg lists the cluster membership

in each dimension for each observation. Thus 1[i; j share a cluster] = 1 , �id = �jd for some
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d 2 f1; 2; :::; Dg, where �id denotes the dth element of �i.

Let r be a D-vector, with dth coordinate equal to rd, and de�ne the set R � fr: rd 2 f0; 1g,

d = 1; 2; :::; D; r 6= 0g. Elements of the set R can be used to index all cases in which two observations

share a cluster in at least one dimension. To see how, de�ne the indicator function Ir(i; j) �

1[rd�id = rd�jd;8 d]. This function tells us whether observations i and j have identical cluster

membership for all dimensions d such that rd = 1. De�ne I(i; j) = 1 if and only if Ir(i; j) = 1 for

some r 2 R. Thus, I(i; j) = 1 if and only if the two observations share at least one dimension.

Finally, de�ne the 2D � 1 matrices

eBr � NX
i=1

NX
j=1

xix
0
jbuibujIr(i; j); r 2 R: (2.12)

Our proposed estimator may then be written as bV[b�] = (X0X)�1 eB(X0X)�1, where
eB � X

krk=k, r2R
(�1)k+1 eBr: (2.13)

Cases in which the matrix eBr involves clustering on an odd number of dimensions are added, while
those involving clustering on an even number are subtracted (note that k r k� D for all r 2 R).

As an example, when D = 3, eB may be written as�eB(1;0;0) + eB(0;1;0) + eB(0;0;1)�� �eB(1;1;0) + eB(1;0;1) + eB(0;1;1)�+ eB(1;1;1): (2.14)

To prove that eB = bB identically, where bB is the D�dimensional analog of (2.8), it is su¢ -

cient to show that (i) no observation pair with I(i; j) = 0 is included, and (ii) the covariance

term corresponding to each observation pair with I(i; j) = 1 is included exactly once in eB. The
�rst result is immediate, since I(i; j) = 0 if and only if Ir(i; j) = 0 for all r (see above). The

second result follows because it is straightforward to show by induction that when I(i; j) = 1,P
krk=k, r2R(�1)k+1Ir(i; j) = 1. This fact, which is an application of the inclusion-exclusion prin-

ciple for set cardinality, ensures that eB and bB are identical in every sample.

One potential concern is the possibility of a curse of dimensionality with multi-way clustering.

This could arise in a setting with many dimensions of clustering, and in which one or more di-

mensions have few clusters. The square design (where each dimension has the same number of
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clusters) with orthogonal dimensions (for example, 30 states by 30 years by 30 industries) has the

least independence of observations. In this setting on average a fraction D
G observations will be

potentially related to one another. While this has a multiplier of D, it always decays at a rate

G (since D is �xed). We suggest an ad-hoc rule of thumb for approximating su¢ cient numbers

of clusters - if G1 would be a su¢ cient number with one-way clustering, then DG1 should be a

su¢ cient number with D-way clustering. In the rectangular case (e.g. with 20 years and 50 states

and 200 industries) the curse of dimensionality is lessened.

2.5. Multi�way Clustering for m-estimators and GMM Estimators

The preceding analysis considered the OLS estimator. More generally we consider multi-way clus-

tering for other (nonlinear) regression estimators commonly used in econometrics. These procedures

are qualitatively the same as for OLS. In the two-way clustering case, analogous to (2.11) we obtain

three di¤erent cluster-robust variance matrices and add the �rst two variance matrices and subtract

the third.

We begin with an m-estimator that solves
PN
i=1 hi(

b�) = 0. Examples include nonlinear least

squares estimation, maximum likelihood estimation, and instrumental variables estimation in the

just-identi�ed case. For the probit MLE hi(�) = (yi � �(x0i�))�(x0i�)xi=[�(x0i�)(1 � �(x0i�))],

where �(�) and �(�) are the standard normal cdf and density.

Under standard assumptions, b� is asymptotically normal with estimated variance matrix
bV[b�] = bA�1 bBbA0�1; (2.15)

where bA =
P
i
@hi
@�0

���b� , and bB is an estimate of V[
P
i hi].

For one-way clustering bB =PG
g=1

bhgbh0g where bhg =PNg
i=1

bhig. Clustering may or may not lead
to parameter inconsistency, depending on whether E[hi(�)] = 0 in the presence of clustering. As

an example consider a probit model with one-way clustering. One approach, called a population-

averaged approach in the statistics literature is to assume that E[yigjxig] = �(x0ig�), even in the

presence of clustering. An alternative approach is a random e¤ects approach. Let yig = 1 if y�ig > 0
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where y�ig = x
0
ig� + "g + "ig, the idiosyncratic error "ig � N [0; 1] as usual, and the cluster-speci�c

error "g � N [0; �2g]. Then it can be shown that E[yigjxig] = �(x0ig�=
q
1 + �2g), so that the moment

condition is no longer E[yigjxig] = �(x0ig�). When E[hi(�)] 6= 0 the estimated variance matrix is

still as above, but the distribution of the estimator will be instead centered on a pseudo-true value

(White, 1982). For the probit model the average partial e¤ect is nonetheless consistently estimated

(Wooldridge 2002, pg. 471).

Our concern is with multiway clustering. The analysis of the preceding section carries through,

with buixi in (2.12) replaced by bhi. Then b� is asymptotically normal with estimated variance matrixbV[b�] = bA�1 eBbA0�1, with bA de�ned as in (2.15) and eB de�ned as in (2.13), with matrices eBr de�ned
analogously as

eBr � NX
i=1

NX
j=1

bhibh0jIr(i; j); r 2 R: (2.16)

If the estimator under consideration is one for which a package does not provide one-way cluster-

robust standard errors it is possible to implement our procedure using several one-way clustered

bootstraps. Each of the one-way cluster robust matrices is estimated by a pairs cluster bootstrap

that resamples with replacement from the appropriate cluster dimension. They are then combined

as if they had been estimated analytically.

Finally we consider GMM estimation for over-identi�ed models. A leading example is linear two

stage least squares with more instruments than endogenous regressors. Then b� minimizes Q(�) =�PN
i=1 hi(�)

�0
W
�PN

i=1 hi(�)
�
, whereW is a symmetric positive de�nite weighting matrix. Under

standard regularity conditions b� is asymptotically normal with estimated variance matrix
bV[b�] = �bA0W bA��1 bA0WeBW bA�bA0W bA��1 ; (2.17)

where bA =
P
i
@hi
@�0

���b� , and eB is an estimate of V[
P
i hi] that can be computed using (2.13) and

(2.16).
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3. Monte Carlo Exercises

3.1. Monte Carlo based on Two-way Random E¤ects Errors with Heteroscedasticity

The �rst Monte Carlo exercise is based on a two-way random e¤ects model for the errors with an

additional heteroscedastic component.

We consider the following data generating process for two-way clustering

yigh = �0 + �1x1igh + �2x2igh + uigh; (3.1)

where �0 = �1 = �2 = 1. We use rectangular designs with exactly one observation drawn from

each (g; h) pair, leading to G � H observations. The subscript i in (3.1) is then redundant, and

is suppressed in the subsequent discussion. The �rst �ve designs are square with G = H varying

from 10 to 100, and the remaining designs are rectangular with G < H.

The regressor x1gh is the sum of an iid N [0; 1] draw and a gth cluster-speci�c N [0; 1] draw, and

similarly x2gh is the sum of an iid N [0; 1] draw and an hth cluster-speci�c N [0; 1] draw. The errors

ugh = "g + "h + "gh; (3.2)

where "g and "h are N [0; 1] and independent of both regressors, and "gh � N [0, jx1gh � x2ghj] is

conditionally heteroskedastic.

We consider inference based on the OLS slope coe¢ cients b�1 and b�2, reporting empirical rejec-
tion probabilities for asymptotic two-sided tests of whether �1 = 1 or �2 = 1. That is we report in

adjacent columns the percentage of times t1 = jb�1�1j=se[b�1] � 1:96, and t2 = jb�2�1j=se[b�2] � 1:96.
Since the Wald test statistic is asymptotically normal, asymptotically rejection should occur 5% of

the time. As a small-sample adjustment for two-way cluster-robust standard errors, we also report

rejection rates when the critical value is t:025;min(G;H)�1. Donald and Lang (2007) suggest using the

T (G� L) distribution, with L the number of cluster-invariant regressors.

The standard errors se[b�1] and se[b�2] used to construct the Wald statistics are computed in
several ways:
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1. Assume iid errors: This uses the �default�variance matrix estimate s2(X0X)�1:

2. One-way cluster-robust (cluster on �rst group): This uses one-way cluster-robust standard

errors, based on (2.4) with small-sample modi�cation, that correct for clustering on the �rst

grouping g 2 f1; 2; :::; Gg but not the second grouping.

3. Two-way random e¤ects correction: This assumes a two-way random e¤ects model for the er-

ror and gives Moulton-type corrected standard errors calculated from bV[b�] = (X0X)�1X0b
X(X0X)�1,
where b
 is a consistent estimate of V[ujX] based on assuming two-way random e¤ects errors

(ugh = "g + "h + "gh where the three error components are iid).

4. Two-way cluster-robust: This is the method of this paper, given in (2.11), that allows for

two-way clustering but does not restrict it to follow a two-way random e¤ects model.

Here the �rst three methods will in general fail. However, inference on �1 (but not �2) is valid

using the second method, due to the particular dgp used here. Speci�cally, the regressor x1gh is

correlated over only g (and not h), so that for inference on �1 it is su¢ cient to control for clustering

only over g, even though the error is also correlated over h. If the regressor x1gh was additionally

correlated over h, then one-way standard errors for b�1 would also be incorrect. The fourth method
is asymptotically valid.

Table 1 reports results based on 2000 simulations. This yields a 95% con�dence interval of

(4:0%, 6:0%) for the Monte Carlo rejection rate, given that the true rejection rate is 5%.

We �rst consider all but the last two columns of Table 1. The simulations with the largest

sample, the G = H = 100 row presented in bold in Table 1, con�rm expectations. The two-way

cluster-robust method performs well. All the other methods, (except the one-way cluster-robust

for �1 with clustering on group 1), have rejection rates for one or both of �1 and �2 that exceed

9%. Controlling for one-way clustering on group 1 improves inference on �1, but the tests on �2

then over-reject even more than when iid errors are assumed. The Moulton-type two-way e¤ects

method fails when heteroskedasticity is present, with lowest rejection rate in Table 1 of 8:8% and
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rejection rates that generally exceed even those assuming iid errors.

The two-way cluster robust standard errors are able to control for both two-way clustering

and heteroskedasticity. When standard normal critical values are used there is some over-rejection

for small numbers of clusters, but except for G = H = 10 the rejection rates are lower than if

the Moulton-type correction is used. Once T critical values are used, the two-way cluster-robust

method�s rejection rates are always lower than using the Moulton-type standard errors, and they

are always less than 10% except for the smallest design with G = H = 10. It is not clear whether

the small-sample correction of Bell and McCa¤rey (2002) for the variance of the OLS estimator with

one-way clustering, used in Angrist and Lavy (2002) and Cameron et al. (2008), can be adapted

to two-way clustering.

The �nal two columns show continued good performance when group speci�c dummies are

additionally included as regressors.

Our results are based on the assumption that the group size Ngh is �nite (see the Appendix).

However, it does not necessarily need to be small compared to G or H. We have estimated models

similar to this dgp with G = H = 30, where we have varied the cell sizes (observations per g � h

cell) from 1, as in Table 1, to 1000. In these simulations we have also added separate iid N (0; 1)

errors to each of x1igh; x2igh and uigh. Results (not reported) indicate that the two-way robust

estimator continues to perform well across the various cell sizes.

We have also examined alternative d.g.p.s in which the errors and regressors are distributed

i.i.d., and d.g.p.s with the classical homoscedastic two-way random-e¤ects design. Results from

these simulations can be found in our working paper (Cameron, Gelbach, and Miller 2009).

3.2. Monte Carlo Based on Errors Correlated over Time and States

We now consider an example applicable to panel and repeated cross-section data, with errors

that are correlated over both states and time. Correlation over states at a given point in time

may occur, for example, if there are common shocks, while correlation over time for a given state

typically decreases with lag length.
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We follow Bertrand et al. (2004) in using actual data, augmented by a variation of their

randomly-generated �placebo law�policy that produces a regressor correlated over both states and

time. The original data are for 1,358,623 employed women from the 1979-1999 Current Population

Surveys, with log earnings as the outcome of interest. For each simulation, we randomly draw 50

U.S. states from the original data (and re-label the states from 1 to 50). The model estimated is

yist = �dst + x
0
ist� + �s + t + uist; (3.3)

where yist is individual log-earnings, the grouping is by state and time (with indices s and t

corresponding to g and h in Section 2), dst is a state-year-speci�c regressor, and xist are individual

characteristics. Here G = 50 and H = 21 and, unlike in Section 3.1, there are many (on average

1294) observations per (g; h) cell. For some estimations we include state-speci�c �xed e¤ects �s and

time-speci�c �xed e¤ects t (69 dummies), as our d.g.p. enables these �xed e¤ects to be identi�ed.

In most of their simulations Bertand et al. (2004) run regressions on data aggregated into state-

year cells. Here we work with the individual-level data in part to demonstrate the feasibility of our

methods for large data sets.

Interest lies in inference on �, the coe¢ cient of a randomly-assigned �placebo policy�variable.

Bertrand et al. (2004) consider one-way clustering, with dst generated to be correlated within state

(i.e., over time for a given state). Here we extend their approach to induce two-way clustering,

with within-time clustering as well as within-state clustering. The placebo law for a state-year cell

is generated by

dst = d
s
st + 2d

t
st: (3.4)

The variable dsst is a within-state AR(1) variable d
s
st = 0:6dsst�1 + v

s
st, with v

s
st iid N [0; 1], and is

generated independently from all other variables. dsst is independent across states. Similarly, the

variable dtst is a within-year AR(1) variable, d
t
st = 0:6d

t
s�1;t+v

t
st, correlated over states, with v

t
st iid

N [0; 1], and also independent from other variables. Here the index s ranges from 1-50 based on the

order that the states were drawn from the original data. This law is the same for all individuals

within a state-year cell. This dgp ensures that dst and ds0t0 are dependent if and only if at least
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one of s = s0 or t = t0 holds. Because we draw the full time-series for each state, the outcome

variables (and hence the errors) are autocorrelated over time within a state. We also add in a wage

shock ynewist = yoriginalist + 0:01wtst, with w
t
st generated similarly to (but independent of) d

t
st, that

is correlated over states. In each of 2,000 simulations we draw the 50 states�worth of individual

data, wages are adjusted with wtst, the variable dst is randomly generated, model (3.3) is estimated,

and the null hypothesis that � = 0 is rejected at signi�cance level 0:05 if jb�j=se[b�] > 1:96. Given
the design used here, b� is consistent, and the correct asymptotic rejection rates for the simulation
results in Table 2 will be 5%, provided that a consistent estimate of the standard error is used.

The �rst column of Table 2 considers regression on dst and individual controls (a quartic in

age and four education dummies, without the �xed e¤ects �s and t). Since log earnings yist are

correlated over both time and state and dst is a generated regressor uncorrelated with yist, the error

uist is correlated over both time and state. Using heteroskedastic-robust standard errors leads to

a very large rejection rate (92%) due to failure to control for clustering. The standard one-way

cluster-robust cluster methods partly mitigate this, though the rejection rates still exceed 19%.

Clustering on the 50 states does better than clustering on the 1,050 state-year cells. Clustering

on year also shows improvements over clustering on state-year cells. We present results from the

two-way cluster-robust method in the last row. The two-way variance estimator does best, with

rejection rate of 7:2%. This rate is still higher than 5%, in part due to use of critical values from

asymptotic theory. Assuming a T (H � 1) distribution, with H = 21 the rejection rate should be

6:4% (since Pr [jtj > 1:96jt � T (20)] = 0:064), and with 1,000 simulations a 95% con�dence interval

is (4:9%, 7:9%). The dgp studied here thus might be well approximated by a T (H�1) distribution.

For the second column of Table 2, we add state �xed e¤ects. The inclusion of state �xed e¤ects

does not improve rejection rates for heteroskedasticity robust, clustering on state-year cells, or

clustering on state. Clustering on year does somewhat better. As in the �rst column, two-way

robust clustering does best, with rejection rates of 6:9%.

For the third column of Table 2, we add year (but not state) �xed e¤ects. In this setting the

results for clustering on state-by-year and for clustering on state improve markedly. However, when
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clustering on state we still reject 12% of the time, which is not close to the two-way cluster robust

rejection rate of 7:6%.

In column four we include both year and state dummies as regressors. For the models using

heteroskedastic-robust standard errors the rejection rate is 79%. Clustering on just state-year cells

results in rejection rates of 13:9%, which is similar to those from clustering on state (15%). As

before, two-way clustering does best, with rejection rates of 7:1%. In this example the two-way

cluster-robust method works well regardless of whether or not state and year �xed e¤ects are

included as regressors, and gives the best results of the methods considered.

4. Empirical examples

In this section we contrast results obtained using conventional one-way cluster-robust standard

errors to those using our method that controls for two-way (or multi-way) clustering. The �rst

and third examples consider two-way clustering in a cross-section setting. The second considers a

rotating panel, and considers probit estimation in addition to OLS.

We compare computed standard errors and p-values across various methods. In contrast to the

section 3 simulations, there is no benchmark for the rejection rates.

4.1. Hersch - Cross-Section with Two-way Clustering

We consider a cross-section study of wages with clustering at both the industry and occupation

level. We base our application on Hersch�s (1998) study of compensating wage di¤erentials. Using

industry and occupation injury rates merged into CPS data, Hersch examines the relationship

between injury risk and wages for men and women. In this example there are 5,960 individuals in

211 industries and 387 occupations. The model is

yigh = �+ x
0
igh� +  � rindig + � � roccih + uigh; (4.1)

where yigh is individual log-wage rate, xigh includes individual characteristics such as education,

race, and union status, rindig is the injury rate for individual i�s industry and roccih is the injury
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rate for occupation. In this application, as in many similar applications, it is not possible to include

industry and occupation �xed e¤ects, because then the coe¢ cients of the key regressors rind and

rocc cannot be identi�ed. Hersch emphasizes the importance of using cluster-robust standard errors,

noting that they are considerably larger than heteroskedastic-robust standard errors. She is able

to control only for one source of clustering - industry or occupation - and not both simultaneously.

We replicate results for column 4 of Panel B of Table 1 of Hersch (1998), with both rind and

rocc included as regressors. We report several estimated standard errors: default standard errors

assuming iid errors, White heteroskedastic-robust, one-way cluster-robust by industry, one-way

cluster-robust by occupation, and our preferred two-way cluster-robust with clustering on both

industry and occupation. We also present (in brackets) p-values from a test of each coe¢ cient

being equal to zero.

The �rst results given in our Table 3 show that heteroskedastic-robust standard errors di¤er

little from standard errors based on the assumption of iid errors. The big change arises when

clustering is appropriately accounted for. One-way cluster-robust standard errors with clustering

on industry lead to substantially larger standard errors for rind (0:643 compared to 0:397 for

heteroskedastic-robust), though clustering on industry has little e¤ect on those for rocc. One-way

cluster-robust standard errors with clustering on occupation yield substantially larger standard

errors for rocc (0:363 compared to 0:260 for heteroskedastic-robust), with a lesser e¤ect for those

for rind. In this application it is it is most important to cluster on industry for rind, and to cluster

on occupation for rocc.

Our two-way cluster-robust method permits clustering on both industry and occupation. For

rind, the two-way cluster-robust standard error is ten percent larger than that based on one-way

clustering at the industry level, and is forty-�ve percent larger than that based on one-way clustering

on occupation. The p-value for a test of zero on the coe¢ cient on rind goes from 0.0001 (when

clustering on Occupation) to 0.0070. For rocc, the two-way standard error is little di¤erent from

that based on clustering on occupation, but it is forty percent larger than that based on clustering

on industry. The p-value on a similar test for rocc goes from 0.0639 (when clustering on Industry)
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to 0.1927.

4.2. Rose and Engel - bilateral trade model

A common setting for two-way clustering is paired or dyadic data, such as that on trade �ows

between pairs of countries. Cameron and Golotvina (2005) show the importance of controlling for

two-way clustering, and propose FGLS estimation based on the assumption of iid country random

e¤ects. Here we instead apply our more robust method to an example in their paper, which

replicates the �tted model given in the �rst column of Table 3 of Rose and Engel (2002).

The data are a single cross-section on trade �ows between 98 countries with 3262 unique country

pairs. A gravity model is �tted for the natural logarithm of bilateral trade. The coe¢ cient of the

log product of real GDP (estimated slope = 0:867) has heteroskedastic-robust standard error of

0:013, reported by Rose and Engel (2002), and average one-way clustered standard error of 0:031,

where we average the one-way standard error with clustering on the �rst country in the country

pair and the one-way standard error clustering on the second country in the country pair. Using

the methods proposed in this paper, the two-way robust standard error is 0:043. This is 36% larger

than the average one-way cluster robust standard error, and 230% larger than the White robust

standard error. Note that if country speci�c e¤ects are included (for each of the two countries

in the country pair) as a possible way to control for the clustering, then the coe¢ cient of the log

product of real GDP is no longer identi�ed.

For the coe¢ cient on log distance (estimated slope = �1:367), we obtain standard errors of

0:035 (heteroskedastic robust), 0:078 (average of one-way clustered standard errors), and 0:106

(two-way robust). Roughly similar proportionate increases in the standard errors are obtained for

the coe¢ cients of the other regressors in the model. Allowing for two-way robust clustering impacts

the estimated standard errors by a considerable magnitude.
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4.3. Other examples

We have also examined the importance of clustering in the context of CPS rotating panel design.

In an applicaion based on Gruber and Madrian�s (1995) study of health insurance availability

and retirement, we examine the importance of clustering on state-year cell (359 clusters) and by

household (26,383 clusters). In this particular application the impact of two-way clustering is

modest compared to clustering at either level. For more details see Cameron, Gelbach and Miller

(2009).

Foote (2007) re-investigated Shimer�s (2001) in�uential �nding of a (surprising) negative cor-

relation between a U.S. state�s annual unemployment rate (dependent variable) and the share of

the state�s labor force that is young. Even with relatively high migration by the young, a state�s

youth share is highly autocorrelated over time; correlation in regional socioeconomic conditions also

imply that youth shares will be correlated across states within year. Similar two-way correlation is

expected for residual state-level unemployment rates.

In the subset of his results that exactly replicates Shimer�s OLS speci�cation (Panel A, column

(1) of his Table I), Foote �nds that clustering at the state level, which most researchers likely

would do in the wake of Bertrand et al. (2004), raises the estimated standard error from 0.18 to

0.39. Using our method to cluster at both the state and year levels yields as dramatic an increase

in the estimated standard error from 0.39 to 0.61, even with state and year �xed e¤ects included

as regressors. Clustering on year alone, which would be an uncommon approach, yields a 0.50

estimate. A qualitatively similar pattern of changes in estimated standard errors is obtained for a

speci�cation that instruments the state�s youth share (Foote�s Panel B).

5. Conclusion

There are many empirical applications where a researcher needs to make statistical inference con-

trolling for clustering in errors in multiple non-nested dimensions, under less restrictive assumptions

than those of a multi-way random e¤ects model. In this paper we o¤er a simple procedure that
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allows researchers to do this.

Our two-way or multi-way cluster-robust procedure is straightforward to implement. As a

small-sample correction we propose adjustments to both standard errors and Wald test critical

values that are analogous to those often used in the case of one-way cluster-robust inference. Then

inference appears to be reasonably accurate except in the smallest design with ten clusters in each

dimension.

In a variety of Monte Carlo experiments and replications, we �nd that accounting for multi-way

clustering can have important quantitative impacts on the estimated standard errors and associated

p-values. For perspective we note that if our method leads to an increase of 20% in the reported

standard errors, then a t-statistic of 1:96 with a p-value of 0:050 becomes a t-statistic of 1:63 with

a p-value of 0:103. Even modest changes in standard errors can have large e¤ects on statistical

inference.

The impact of controlling for multi-way clustering is greatest when the errors are correlated

over two or more dimensions and, in addition, the regressors of interest are correlated over the

same dimensions. This is especially likely to be the case when the research design precludes �xed

e¤ects along each of the dimensions, as in the Hersch (1995) example. The Hersch example also

illustrates that even if the regressor is most clearly correlated over only one dimension, controlling

for error correlation in the second dimension can also make a di¤erence. However, we also note

that in some settings the impact of the method is modest.

In general a researcher will not know ex ante how important it is to allow for multi-way cluster-

ing, just as in the one-way case. Our method provides a way to control for multi-way clustering that

is a simple extension of established methods for one-way clustering, and it should be of considerable

use to applied researchers.
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A. Appendix

We present results for the general case of GMM estimation. Estimation is based on the moment

condition E[zi(�0)] = 0 for observation i, where � is a q � 1 parameter vector � and z is an m� 1

vector with m � q. Examples include OLS with zi = (yi�x0i�)xi, linear IV with zi = (yi�x0i�)wi

where wi are instruments for xi, and the logit MLE with zi = (yi � �(x0i�))x0i�.

For models with m = q, such as OLS, logit, and just-identi�ed IV we need only use the m-

estimator e� that solves PN
i=1 zi(

e�) = 0. Given two-way clustering with typical cluster (g; h),

zi(�) = zigh(�) and XN

i=1
zi(�) =

XG

g=1

XH

h=1

X
i2Cgh

zigh(�) (A.1)

=
XG

g=1

XH

h=1
zgh(�);

where Cgh denotes the observations in cluster (g; h), and

zgh(�) =
X

i2Cgh
zigh(�) (A.2)

combines observations in cluster (g; h).

For models withm > q, the more general GMM estimator b� maximizesQ(�) = �N�1PN
i=1 zi(�)

�0
W
�
N�1PN

i=1 zi(�)
�
, whereW is an m�m full rank symmetric weighting matrix withW

p!W0.

The GMM estimator reduces to the m-estimator when m = q, for any choice ofW.
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We assume that b� is consistent for �0, that G!1 and H !1 at the same rate, so that G=H

! constant, and that the number Ngh of observations in cluster (g; h) is not growing with G or H.

Note that Ngh = 1 is possible. As discussed below, we consider a rate of convergence
p
G, so that

p
G(b� � �0) d! N [0,

�
A00W0A0

��1
A00W0B0W0A0

�
A00W0A0

��1
]; (A.3)

where A0 = lim E
h
(GH)�1

PN
i=1 @zi0(�)=@�

0
i
and

B0 = lim E
�
G�1H�2

XN

i=1

XN

j=1
zi(�)zj(�)

0
�
: (A.4)

For m = q the result simpli�es to
p
G(b� � �0) d! N [0, (A00B0A0)

�1].

We now simplifyB0 under the assumption of two-way clustering. Since
P
i zi(�) =

P
g

P
h zgh(�)

we have

E
�
G�1H�2

XN

i=1

XN

j=1
zi(�)zj(�)

0
�

(A.5)

= E
�
G�1H�2

XG

g=1

XH

h=1

XG

g0=1

XH

h0=1
zgh(�)zg0h0(�)

0
�

= G�1H�2
X

g

X
h

X
h0
E[zghz

0
gh0 ]

+G�1H�2
X

h

X
g

X
g0
E[zghz

0
g0h]

�G�1H�2
X

g

X
h
E[zghz

0
gh];

where the �rst triple sum uses dependence if g = g0, the second triple sum uses dependence if h = h0,

and the third double sum subtracts terms when g = g0 and h = h0 which are double counted as

they appear in both of the �rst two sums.

Consider the �rst triple sum which has GH2 terms. Each of the cross-product terms zghz0gh0 =P
i2Cgh

P
j2Cgh0 zghi(�)zgh

0j(�) is an Ngh � Ngh matrix. We assume that E[zigh(�)zjgh0(�)] is

bounded away from zero and bounded from above. Then E[zghz0gh0 ] is bounded, given Ngh �xed,

and G�1H�2P
g

P
h

P
h0E[zghz

0
gh0 ] is bounded. Similarly for the second term. The third term has

only GH terms so this third term goes to zero.

The above analysis assumes that E[zigh(�)zjgh0(�)] is bounded away from zero. This will be

the case for common shocks such as the standard two-way random e¤ects model. But it need not
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always be the case. As an extreme example, suppose Ngh = 1 and that there is no clustering; i.e.,

each observation is independent. Then E[zghz0gh0 ] = 0 unless h = h
0 and so the �rst sum has only

GH nonzero terms, and similarly for the other two terms. The triple sum is of order GH, rather

than GH2, and the rate of convergence of the estimator becomes a faster
p
GH rather than

p
G.

This is the rate expected for estimation based on GH independent observations.

More generally the triple sum is of orderGH, rather thanGH2, if the dependence of observations

in common cluster g goes to zero as clusters h and h0 become further apart, as is the case with

declining time series dependence or spatial dependence. Then in B0 we normalize by (GH) and

the rate of convergence of the estimator becomes a faster
p
GH rather than

p
G. Regardless of the

rate of convergence, however, we obtain the same asymptotic variance matrix for b�.
Qualitatively similar di¤erences in rates of convergence are obtained by Hansen (2007) for the

standard one-way cluster-robust variance matrix estimator for panel data. When N ! 1 with T

�xed (a short panel), the rate of convergence is
p
N . When both N ! 1 and T ! 1 (a long

panel), the rate of convergence is
p
N if there is no mixing (his Theorem 2) and

p
NT if there is

mixing (his Theorem 3). While the rates of convergence di¤er in the two cases, he obtains the same

asymptotic variance for the OLS estimator.
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Table 1
Rejection probabilities for a true null hypothesis

10 10 8.0% 7.9% 15.7% 9.8% 15.9% 14.3% 18.4% 16.5% 14.5% 12.9% 8.6% 8.9%

20 20 7.0% 5.4% 9.5% 7.1% 13.0% 10.8% 11.9% 10.9% 10.3% 8.8% 7.1% 5.9%

30 30 5.9% 6.9% 7.0% 8.1% 9.7% 10.8% 8.2% 9.2% 7.1% 8.0% 6.2% 6.0%

60 60 7.6% 8.2% 6.0% 8.5% 8.8% 9.4% 7.1% 7.0% 6.3% 6.5% 5.9% 5.7%

100 100 11.6% 10.5% 6.1% 11.2% 9.6% 9.0% 6.4% 6.9% 6.0% 6.4% 4.4% 5.4%

10 50 8.1% 5.6% 12.9% 8.8% 12.9% 12.3% 13.7% 9.8% 9.6% 5.9% 6.1% 6.0%

20 50 7.6% 7.5% 7.9% 8.1% 10.5% 11.5% 9.2% 8.6% 7.6% 6.6% 5.2% 6.7%

10 100 10.0% 6.4% 10.4% 9.4% 10.1% 13.0% 11.3% 10.0% 7.3% 6.8% 7.5% 6.2%

20 100 11.7% 5.3% 9.2% 6.7% 10.8% 10.1% 9.4% 6.4% 7.7% 4.5% 5.1% 6.2%

50 100 11.2% 8.1% 6.7% 8.7% 9.9% 10.0% 6.9% 6.8% 6.1% 6.2% 6.1% 5.2%

True model: a random effect common to each group, and a 
heteroscedastic component.

Two-way cluster-
robust, T critical 

values
Assume 

independent errors

One-way cluster 
robust (cluster on 

group1)
Two-way random 

effects
Two-way cluster-

robust

Note:  The null hypothesis should be rejected 5% of the time.  Number of monte carlo simulations is 2000.

Number of 
Group 1 
Clusters

Number of 
Group 2 
Clusters

Assumption about errors in construction of Variance
Group fixed 

effects, Two-way 
cluster-robust



Table 2
Rejection probabilities for a true null hypothesis
Monte Carlos with micro (CPS) data

quartic in age, 4 
education dummies

quartic in age, 4 
education dummies, 

state fixed effects

quartic in age, 4 
education dummies, 

year fixed effects

quartic in age, 4 
education dummies, 
state and year fixed 

effects

Standard error estimator:
Heteroscedasticity robust 91.6% 92.1% 82.2% 79.0%

One-way cluster robust (cluster on state-by-year cell) 19.8% 22.4% 13.1% 13.9%
One-way cluster robust (cluster on state) 16.2% 17.0% 12.0% 15.0%
One-way cluster robust (cluster on year) 10.2% 8.9% 8.7% 7.6%

Two-way cluster-robust (cluster on state and year) 7.2% 6.9% 7.6% 7.1%

RHS control variables

Note: Data come from 1.3 million employed women from the 1979-1999 March CPS.  Table reports rejection rates for testing a (true) null hypothesis of 
zero on the coefficient of fake treatments.  The "treatments" are generated as (t = e_s + 2 e_t), with e_s a state-specific autoregressive component and 
e_t a year-specific "spatial" autoregressive component.  The outcome is also modified by an independent year-specific autoregressive component.  See 
text for details.  2000 Monte Carlo replications



Table 3
Replication of Hersch (1998)

Industry 
Injury Rate

Occupation 
Injury Rate

Estimated slope coefficient: -1.894 -0.465

Estimated standard errors Default (iid) (0.415) {0.0000} (0.235) {0.0478}
and p-values: Heteroscedastic robust (0.397) {0.0000} (0.260) {0.0737}

One-way cluster on Industry (0.643) {0.0032} (0.251) {0.0639}
One-way cluster on Occupation (0.486) {0.0001} (0.363) {0.2002}

Two-way clustering (0.702) {0.0070} (0.357) {0.1927}

Note: Replication of Hersch (1998), pg 604, Table 3, Panel B, Column 4.  Standard errors in parentheses.  P-
values from a test of each coefficient equal to zero in brackets.  Data are 5960 observations on working men from 
the Current Population Survey.  Both columns come from the same regression.  There are 211 industries and 387 
occupations in the data set.
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