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1. INTRODUCTION

Consider a set—up with data {(yt, X,), t =1,...,T} independent across t,

t
where the dependent variable is Y and explanatory variables are the vector
Xt' The true data generating process (d.g.p.) for y given X is unknown,
but we havé a hypothesized parametric density function, denoted f(y,X,8), 6 €
RY. Conditional moment tests are tests of the validity of moment conditions
implied by these assumed parameterizations. In this paper we propose an
approach to the construction of moment functions based on orthogonal
polynomials.

By definition, a conditional moment test is any test based on an sxl

vector of functions m(y,X,0) that satisfy the moment condition:
(1.1) Eylmly,.X.,8) | X,1 = 0 ,

where the subscript 0 denotes expectation with respect to the assumed
distribution.

Tests based on a moment condition of the form (1.1), henceforth
called CM tests, were introduced by Newey (1985) and Tauchen (1985), who also
developed the associated asymptotic theory. Further results by Pagan and
Vella (1989), White (1990) and Wooldridge (1990) demonstrate the unifying and
simplifying power of CM tests as tests of specification. Since most
specification tests can be interpfeted as CM tests, there is a strong case for
adopting it as the preferred general approach to specification tests.

The simplest version of a CM test based on (1.1) uses the corresponding
sample momeﬁt:

1 T

(1.2) mT(e) = T t§1 m(yt,Xt,B)

To operationalize a CM test, the parameter 6 in (1.2) is replaced by an



~

estimator eT, consistent under the maintained model. CM specification tests
are statistical tests of the departure of mT(aT) from zero.

To date most authors assume at the start that a suitable moment function
for constructing the test is available. However, since such moment functions
are not unique, it is desirable to avoid arbitrariness in this choice.
Specifically, the chosen moment functions should satisfy some optimality
criterion, and the relation between different moment functions should be
clarified.

In this paper we propose an approach to the construction of CM functions
based on orthogonal polynomials. The literature on orthogonal polynomials is
vast and their basic properties are well known and widely used. Though many
excellent treatises on this subject are available, the econometric literature
on specification testing has not exploited the properties of orthogonal
polynomials in designing tests. Therefore, we introduce orthogonal
polynomials in section 2; important general results used in this and later
sections are in Appendix A. General expressions for orthogonal polynomials
are given in section 2 and in Appendix B. In section 3 we consider series
expansions for distributions in terms of a base distribution and related
orthogonal functions. In this context specification tests based on orthogonal
polynomials are shown to be score (or LM) tests of certain moment restrictions
on the base density. These general results are specialized in section 4 where
the discussion is narrowed to the leading case of the linear exponential
family with quadratic variance function (LEF-QVF). Illustratively, several
specifiéation tests, some well known, are derived using orthogonal
polynomials. Section 5 considers extensions to models involving truncation.

Section 6 concludes.



2. ORTHOGONAL POLYNOMIALS: SELECTED PROPERTIES AND RESULTS

2.1 A review of some basic results

Let F(y) denote the distribution function and let dF(y) = f(y)dy where
f(y) is the density of the independently distributed scalar continuous random
variable y, a =y = b. The density function f(y) is taken to be nonnegative
and integrable on an interval [a,b] and F(y) has points of increase on a
sufficiently large subset [a,b]. All arguments given below can be repeated
after appropriate change of notation for the case of a discrete random
variable and corresponding results for the discrete case may be reproduced.

It is assumed that finite moments of all order, ”n’ defined by

‘ b
(2.1) p = EIY™ = Jyn-f(y) dy , n=0,1,2...

n a
exist. When y is unbounded, we replace [a,b] by (-w,).

In general f(y) may be a marginal or a conditional density, but for the
purposes of this paper f(y) will be a conditional density, usually denoted by
f(y,X,8 | X) where 8 is an unknown parameter and X is data. We use f(y) for
generality and more compact notation.

Definition: A system of orthogonal polynomials, henceforth abbreviated to
oPSs, Pn(y) (or Pn(y,X,B | X)), degree [Pn(y)] = n, is called orthogonal with
respect to f(y) (or f(y,X,0 | X)) on the interval a =y =Db Iif

) { kn if m=n

2.2) j P_(y)+P (y)+fy) dy =

—00

That 1is, Pn(y) is a polynomial of degree n, a positive integer, iny

satisfying the orthogonality condition



(2.3) fE[Pn(y)Pm(y)] = amnkn, kn #0,

where & is the Kronecker delta, & =0 if m# n, & =1 if m = n. In the
mn mn mn

special case of an orthonormal polynomial sequence, kn = 1. Later in the

paper we shall refer more generally to orthogonal or orthonormal functions,

denoted by En(y), which are defined analogously.

Existence: For an arbitrary real moment sequence {un} to give rise to an

OPS unique up to an arbitrary constant, a necessary and sufficient condition

is that the determinants |A | are positive where A, . = u. . ., where moments

n ij i+j-2

may be taken either about the mean or an arbitrary origin;

By Ky By ooeen M
By My Hgeeooo. Mg
(2.4) Ia] = "2 ¥3 Ha - - Pz > 0, n=0,1,2,...
n o Foere Hon

For proof see Cramer (1946, chapter 12.6) or Szegd (1975, chapter II).

The determinant in (2.4) may be partitioned as follows:

_ n-1
(2.5) NI

....................

For a positive definite An’ A;1 exists V n, and the application of the

bordered determinant theorem yields the following alternative representation:
(2.6) |An| = By An—ll - d’ Adj (An—l) d

where a’ = (p B g H2n_1); IA_1| = lAgl = 1



The above discussion has assumed an infinite number of points of increase but
the results will apply to finite discrete distributions if only polynomials of
degree less than the number of points of increase are considered.

Derivation of the orthonormal polynomial: For a given moment sequence {un}

the orthonormal (or monic) OPS can be generated by the following relationship:

_ -1
(2.7) P (y) = []a__,}] Io, (v where
Hg ul “2 ..... ”n
“1' Hy Hgeoon.. B
(2.8) Ip,»l = "2 3 Fa o Fez] 2 0, n=0,1,2,...
Boq soereeees Mon-1
2 n
1 Y ¥V o y

Equation (2.7) is the solution of (2.2) with kn=1, which establishes that the
result is an orthonormal polynomial. The derivation of (2.7) is given in
Appendix A. Also see Cramer (1946, p.132).

Variance of Pn(e): The theoretical variance of Pn(e) is

2
(2.9) EPZ(y)] =]a ] 7 fa_,] >0

174,

By ~ d [An_

n 1

where the last line follows from (2.6).

Other properties: In addition to uniqueness and linear independence,
orthonormal polynomials satisfy other attractive properties such as minimum
variance and completeness which are summarized in Appendix A. Especially
useful in the construction of CM tests is the following three point recurrence

relation which orthogonal polynomials satisfy:



(2.10) Pn(y) = (y - “n)Pn—l(y) - BnPn_z(y) ,

where P_, (y) = 0, PO(y) = 1, and (an, Bn) are defined in Appendix A.

1
2.2 Some special cases

The first step is the construction of the OPS for a given density. This
may be done by the Gram-Schmidt orthogonalization or by the direct use of
(2.7) if the moments are available. More convenienily, the first two terms in
the OPS may be derived directly and the higher order terms derived using the
recurrence relations for a given distribution. The.OPS and the recurrence
relations for many "standard" distributions of applied econometrics are widely
documented; see, for example, Abramovitz and Stegun (1964).

As a simple illustrative exercise consider the orthonormal polynomial

_ .k k-1
(2.11) Pk(y) =y o+ agy S + a

It is easy to see that Po(y) =1, Pl(y) =y +a, which, together with

the conditions Ely] = Ky and E[Po(y)Pl(y)] = 0, implies that
(2.12) Pl(y) =Y 7Ky
Since

2
Poly) =y~ +ayy+a,,

2 2
(v = m)™ ay (v =) +ay, + 20,y = pyd + a5 + 1y

orthogonality conditions E[Pz(y)] =0 and E[Pl(y)] =0 imply B,y * oAy My =
H3

2 _ — = - -
(”2 + “1)' Also E[Pz(y)Pl(y)] =0 =>a, = i, 2py, where p, and pg

are second and third central moments. The above results imply the following



second order orthogonal polynomial in (y -~ ”1):

- - = _ 2 _ _ _
(2.13) Pz(y) = Pz(y “1) = (y “1) (u3/u2)(y ”1) My
General expressions required to derive the orthonormal polynomials up to

fourth order are given in Appendix B.

3. TESTS BASED ON ORTHOGONAL POLYNOMIALS

3.1 Score tests based on orthogonal function expansions for densities

In this paper we present CM tests based upon orthogonal polynomials.
Before doing so, we discuss the more general case of orthogonal functions that
are not necessarily polynomials.

Congider the case of a continuous random variable y with density function
f(y) and let {Eo(y),...} be the corresponding set of complete orthonormal
functions, not necessarily polynomials; see Appendix A for definition of
completeness. Let g(y) be another density assumed to be ¢2—bounded in the

sense that

¢ 1= 17 {g/ENPEWdy < @,

then the following series expansion is formally valid (Ord (1972)):
(3.1) gly) = f(y)-[aogo(y) + algl(y) + ...]-
Multiplying (3.1) by En(y) and integrating term by term, and noting Eo(y) =1,

(3.2) a = J En(y)g(y)dy, a, =1,



(3.3) ¢ = Zn=l a.

That is, the coefficients {an} in the formal expansion are linear combinations
of the moments of g(y). An analogous result holds more generally, including
discrete distributions.

Consider whether a finite number of terms in the series expansion
provides an adequate approximation to g(y), the unknown true data generating
process, the simplest case being the one in which we truncate the expansion
after the first term. Then, f(y) is some baseline density and we wish to test

its adequacy as an approximation to g(y). This is equivalent to the null

hypothesis
(3.4) Hy: a; =a,=.... =0.
From (3.1) we have
(3.5) log gly) = log f(y) + logll + = anin(y)]
(3.6) v, log gly) = En(y) , i=1,2,.
n ‘

a_=0

n
where Va = 4§/8a. We wish to test HO without estimating a s that is to follow

the score test approach. The score test will be based on !EO[Va log g(y)] = 0O,
n

which implies that
(3.7) EO[En(y)] = 0.

Thus, if the unknown true density g(y) admits a formal series expansion in



terms of the baseline density f(y) and the corresponding orthonormal functions
En(y), then a test of the null hypothesis may be based on the formulation |
Eo[in(y)] = 0, n=1,2, ..; that is, the expectation of the orthogonal functions
under the null density is zero. A comparison of (3.7) with (1.1) shows that
any test based on an orthogonal function is a CM test. The analysis leading
up to (3.6) shows that every specification test based on an orthonormal
function is also a score test against some alternative.

A test based on the nth order orthonormal function is a test of the nth
order moment restriction on the null density. Special cases of score tests of
such moment restrictions, without exploiting in detail the properties of the
orthogonal functions, have sometimes appeared in the literature, e.g. Lee
(1986).

3.2 Score tests based on orthogonal polynomials for densities

In this section we restrict §n(y) to be an nth order orthonormal
polynomial - a valid restriction if fyznf(y)dy exists (Ord (1972), p.198).
Then the CM specification tests will be based on orthonormal polynomials.

Two well known examples of orthogonal series expansions for densities are
Gram-Charlier Type A and B (Cramer (1946), Kendall and Stuart, Vol. 1 (1969))

which take the form
00
= . {
(3.8) g(y) fly)e[1 + Zn=1 anPn(y)/ n!]

based on the normal and Poisson baseline densities. In Type A expansion f(y)

is the standard normal density and Pn(y) are Hermite orthogonal polynomials:

1/

fly) = (2mn)~ 2exp( - y2/2), 0 <y <

(3.9) dnf(y)/dyn

—_ — n_____________
Pn(y) = (-1) y)



In Type B expansion f(y) is the Poisson density with parameter A and Pn(y)

are Poisson-Charlier orthogonal polynomials:

fly) = eyt y=0,1,..
(3.10) df (y)/da

P(y) s

n ahn

Note the use of the Rodrigues formula of Appendix A in (3.9) and (3.10).

Such series expansions are the basis of specification tests discussed in
Section 4.
3.3 Implementation of tests based on orthogonal polynomials

The results given above were stated in terms of Pn(y,X,B), n =0,
orthogonal polynomials in y, given X and 6. In some cases, it will be
possible also to express the polynomials in terms of centered observations
(y=-u) where p = p(X, 0).

If the assumed distribution implies a testable moment restriction, the
test can be carried out using an orthogonal polynomial of the appropriate
order. Since E[Pn(y,x,e) | X] = 0, use of the law of iterated expectations,

following Newey (1985, p.1055), suggests CM tests based on moment functions of

the form

{(3.11) E[mn(y,x,e) | X1 =0,

where

(3.12) mn(y,X,e) = Gn(x,e)-Pn(y,X,e),

and Gn(X,G) is a matrix of functions of X and 0, and different subsets of X
may appear in the functions Gn and Pn' For example, a test of omitted

variables, denoted by X from the conditional mean function may be based on

2’

10



the orthogonality condition (3.13) and (3.14) as appropriate:

(3.13) E[ml(y,X,e) | X] = E[Xz-Pl(y,Xl,G) | XI =0,

(3.14) = IE[X2~P1(y - u(Xl,e)) | X1 =0 .

Similarly a test of misspecified variance function may be based upon

(3.15) Eln,(y,X,0) | X] = E[G,(X,0)-({y - 1)° - (iy/m,)(y = 1) - n,)1 = 0,
where Bes My and My are functions of X, 6. The same general approach can be
used to derive higher moment restrictions.

The attraction of orthonormal polynomials as the basis for CM tests is
founded on their properties of uniqueness, minimum variance (in the class of
polynomial functions) and linear independence.  To test an nth order moment
restriction we may use the nth order polynomial, and under the null hypothesis
density the resulting test statistic will be independently distributed of all
other tests based on higher or lower order polynomials, in the absence of
unknown nuisance parameters. ‘Portmanteau’ or simultaneous tests of several
restrictions may also be devised by linear combination of several individual
restrictions. But the joint test will be additive in its components.

For a test of nth order moment restriction 2n moments must exist; see for
example, equation (2.4). Implementation of the nth order test will use
knowledge of the moments up to order 2n-1, see (2.7). The variance of the nth
order polynomial will involve moments up to order 2n. It is clear that high4
order moment restriction tests are likely to be numerically unstable unless
the sample is very large.

The conditional moment test based on the orthogonal polynomial will be

based on

11



1

T
b
t=

(3.16) ‘ mn,T(B) =T mn,t(y,X,G).

1
To operationalize the CM test based on OPS, 6 is replaced by the estimator GT
consistent under the null, yielding m T(GT). If this substitution leads to

m_ ..(6..) which has the same asymptotic distribution as m_ ..(6.), then the test

n, T OT n, T %
statistic is easily constructed. Under appropriate assumptions Tl/zmn T(GT)
has a limiting standard normal distribution; see Pagan and Vella (1989) and

White (1990). For any moment condition based on the nth ordef"orthogonal

polynomial, under suitable conditions, by a first-order Taylor series

expansion:

1/2 - _ 172 . /2.0
(3.17) T mn,T(eT) = T mn,T(QO) + By T (BT 90) + op(l),
where 60 = plim GT and BO = plim Vemn,T(G). Implementation of the CM

test differs according to whether or not the following condition is satisfied:
(3.18) ED[ Vemn(yt,Xt,B) | Xt] = 0.

From (3.12), this will be the case if the orthogonal polynomial satisfies

EO[ VePn(yt,Xt,G) | Xt] = 0.

When the conditional moment m_ t(yt’xt’e) is chosen so that (3.18) is

b

satisfied, under HO’ BO = 0, so that the asymptotic distribution of m T(OT)
coincides with that of mn,T(GO)' Since EO[mn,T lXt] = 0, and mn,t are
assumed independent over t under HO’ a central limit theorem yields
172 - a -1 T
(3.19) T7°°m .(6.) =~ NO, 1lim T "2 m_ ,*m’ ),
n,T T n,t n,t
T t=1

so that under HO’ the test statistic

12



[T T SR

(3.20) T =2 T m ,[Znm 'm’ ,] “em .
n t=1 n,t t=1 n,t n,t n,t
~ - - . 2, .. . . s
where mn,t = mn(yt,Xt,GT), is x (dlm(mn)). This test statistic can be

conveniently computed as T times the uncentered Rz from the auxiliary

-~

regression of 1 on m .
n,t

The condition (3.18) may not be satisfied when, for example, there are
nuisance parameters, say &, in the p.d.f. If (3.18) does not hold the

asymptotic distribution of m (BT, aT) can still be obtained, but will in

» T

general differ from that of m

n,T(eO’ ao) and will vary with the choice of

consistent estimator 8T' Pierce (1982) and Newey (1985) have given the
appropriate derivations and proofs for this later case which can be
specialized to the present case as follows.

Let (6T &T)I = 6%’ be a consistent estimator of the true vector 63’.
Following Pierce (1982) and Newey (1985) we assume that under the appropriate
regularity conditions,

VT-mn(Gé) \Y v

E 3
(3.21) ~ N|o |™m mé

(A% — %
VT (GT 90) Ve*m VG*O*

Then using the results of Pierce and Newey it can be shown that

PN ~ ~ ~
-1

. Sk, _ -1, %Y L s
(3.22) T mn(BT) Vo Vme*Ve*e*Ve*m] mn(eT) X (dlm(mn)),

which will be the basis of the OPS based CM test in the presence of nuisance
parameters in the pdf. As emphasized by Pagan and Vella (1989, p.S33-834),
the computational implementation of this version of the test is partially

simplified by the use the OPG (outer product of gradient vector) estimators

13



for components of the asymptotic variance of VT-mn(G). Specifically,

~

x May be obtained as follows: V =

consistent estimators of Vme* and V me*

Zt mn,t Se,t’ T PN

— 7
p*e* *t %, t%,t °
based score, 8 log L(8)}/808. For theoretical arguments underlying these

6*o
T \' where Sg denotes the likelihood
results see Pierce (1982, p.478), Newey (1985) or Pagan and Vella (1989).
Asymptotically equivalently, Neyman’s C(a) approach can be used to transform

¥
(orthogonalize) m_ ..(8) to a sample moment m_ ..(8) which does satisfy

n,T n, T
condition (3.18), so that we can subsequently apply the simpler theory.

4. APPLICATION TO SPECIFICATION TESTS IN THE LEF-QVF

To illustrate the use of orthogonal polynomials as the basis for the
choice of moment function, we consider linear exponential families with
quadratic variance functions (LEF-QVF). This covers many commonly used
econometric models: regression models with constant variance; discrete choice
models such as probit and logit; Poisson models for count data; and gamma
models for continuous positive data. In this leading case, the fundamental
moments from various testing approaches are closely related, and are the first
few terms in an orthogonal polynomial system.

The LEF is defined by

(4.1) fly,y) = expiyy - o) + k(y)} ,

where Y is a scalar parameter, and the dependence of Y on exogenous regressors

has been suppressed for notational convenience. The LEF has the property

(4.2) Elyl = p = wa(w)

(4.3) varlyl

it

-
V(p) = wa(w)

where VE = an/awn.

14



In a more general exponential family f(y,y¥) = expi{g(y,y) - o(y) + k(y)}.
The LEF is the specialization where the function g(y,¥) is linear in y, in
which case y is called the natural observation, and linear in ¥, in which case
Y is called the natural parameter. Other studies, suqh as Gourieroux,
Montf;rt, and Trognon (1984), use the mean parameterization of the LEF: f(y,p)
= exp{A(n) + B(y) + C(u)y}, where the functions A, B and C are such that the
density integrates to 1 and conditions corresponding to (4.2) and (4.3) are
satisfied. Here the natural parameterization of the LEF is used, which Morris
(1982) called the natural exponential family. These are just two different
parameterizations, using the mean u or the natural parameter ¢, of the saﬁe
family of densities.

An important subclass of LEF is one with quadratic variance functions,
meaning the variance is a quadratic function of the mean so that V(u)

satisfies the relationship
(4.4) V(p) =v, + v,u + v ”2
) 0 1 2 ?

0’ v1 and v2 lead to

six exponential families, five of which, the normal, Poisson, binomial,

where various possible choices of the coefficients v

gamma, and negative binomial families constitute the Meixner class (Meixner
(1934)). Thus the restriction to QVF leaves a wide range of commonly used
models.

The following results are useful in deriving the fundamental moment
restrictions for the LEF-QVF class.
(i) For the LEF-QVF the orthogonal polynomial system Pn(y,u) is defined by

the Rodrigues formula (see Morris (1982))

(4.5) P (y,n) = Vn{vzf(y,xﬁ)/f(y,lll)}, ‘n=0,1,2,..

15



where Pn(y,u) is a polynomial of degree n in both y and p with leading term
y*, n=1,2,..., and f(y,y) is the LEF-QVF density.

(ii) The polynomials {Pn(y,u)} satisfy the recurrence relationship

(4.6) Pa1 = (P1 - nVuV(u))Pn - n(1 + (n—l)vz)V(u)Pn_l, n =z 1.
(iii) Let ag = 1, for n = 1,
n-1
= i 3 .

4.7) a n'iEo (1 + 1v2), nz1il;
(4.8) EP =20, nzl;

On
(4.9) EPP =6 _aV, mn = 0 ;

; Omn mnn n

(4.10) vp =(1)vsa P, n=z=zl,r=1,...,n

En n’ “n-r’ n-r

In regression applications of the LEF, regressors Xtrare introduced via
the mean parameter, By = p(Xt,e), and possibly via the parameters Vor V4 and
v2 of (4.4) which may be parameterized in terms of By and the nuisance
.parameter «. The function p is such that the parameters 6 can be identified

{McCullagh and Nelder (1983)). Note that some or all of Vor Vg and v, will be
known. We propose using (4.8) as the basis for CM specification tests of such
regression models. As discussed in section 3.3, the procedure is to
progressively test for n = 1,2,..

(4.11) H.: EO[mn(yt’Xt’e) | X,1 = 0 ,

0 t

(4.12) 'mn(yt,Xt,e) = Gn(Xt,B)-Pn(yt,u(Xt,B)),

for some chosen function Gn(Xt,e), where for simplicity we have suppressed the

16



nuisance parameter. The recurrence relation (4.6) generates Pn(yt,u(xt,e)).

Pn,t is a polynomial of degree n in Vi and Ky, SO the distributional
assumptions used in performing the test are that the first 2n moments of y are
correctly specified. The variance of Pn,t for the optimal test is easily
obtained using (4.8) and (4.10). Tests based on different degrees of
polynomial are orthogonal by (4.9).

In comparing tests based on these orthogonal polynomials with other
tests, such as score and information matrix tests, we say the tests are
identical if Y, appears in the corresponding moment condition only via the
function Pn(yt, u(Xt,B)). Consider a score test based on the alternative

hypothesis density g(yt,X 0,%) such that g(yt,Xt,9,7=7*) yields the null

t’
hypothesis LEF-QVF density. If the factorization

= * .
v, In g(yt,Xt,e,v)l GX(X,,0) P (y,, u(X;,0))

r=y*
occurs, for some G;(Xt,e), then the score test is identical to a CM test based
on the nth order orthogonal polynomial.

Tests based on P - ut) coincide with score tests of omitted

1t = Oy
variables from the conditional mean function in an LEF-QVF model (Cameron and
Trivedi (1990b)). They also coincide with the score test for misspecified
functional form of the conditional mean, where the alternative hypothesis
model is embedded in an LEF-QVF, (Gurmu and Trivedi (1990b)). Tests based on
PZ,t coincide with a number of score tests of conditional variance; see
Cameron (1990). For tests based on higher drder polynomials, we consider in
turn some examples in each of the LEF-QVF families.

Example 1 - Normal Family: For the normal family with mean g and variance
02, V(u) = 02 implies that the variance does not depend upon the mean so that
VuV(u) =0, v, = v, = 0 and the recurrence relationship for the orthogonal

1 2

17



polynomials is Pm+1 = Ple - mVPm_l. The orthogonal (Hermite) polynomials of
order two, thrée and four are respectively {(y—u)2 - 02}, {(y~u)3 -
302(y—u)}, and {(y—u)4 - 602(y—u)2 + 304} , and their variances are
respectively 204, 606, and 24@8.

CM tests based on the order two polynomials are equivalent to the
standard score test for heteroskedasticity. CM tests based on order two,
three and four orthogonal polynomials are tests of heteroskedasticity,
skewness and non-normal kurtosis identical to the score tests of Bera and
Jarque (1982) against the Pearson system.

Hall (1987) has shown that for the general linear regression model with
normal errors and correctly specified conditional mean function (X%B), the
information matrix (IM) tes£ of White (1982) can be decomposed into three

components which individually test for heteroskedasticity, skewness and

non-normal kurtosis. These three components are respectively m, . =

(vec*(XtX;:)/o*ll)-P2 ¢ where vec*(XtXL) denotes the unique elements of
i i 7y. == 2- . = 80
vectorization of (XtXt), m3’t = (vec(Xt)/ZO ) PB,t’ and m4,t (1/407) P4,t”

The OPS approach suggests a wider range of simultaneous ("portmanteau") tests
of homoskedasticity, zero skewness and non-normal kurtosis by using different
linear combinations of PZ,t’ P3,t and P4,t to those used in the IM test.
Linear dependence of the orthogonal polynomials implies additivity property of
the joint test.

Example 2 - Poisson Family: For the Poisson family with mean p, V(u) =
M, V”V(u) =1, v, = 1, v, = 0. The recurrence relation for the orthogonal

polynomials is Pm+1 = (P1 - m)Pm - mVPm_ The orthogonal (Poisson-Charlier)

1
polynomials of order two and three are {(y—u)2 - y} and {(y—u)3 - 3(y-u)2 -
(3u-2) (y-u) + 2u}, with variances Zuz and 6u3, respectively.

The Poisson density is the benchmark model for count data, where yt

takes values 0,1,2,... A common feature of count data is that, conditional on
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regressors, the vgyiance exceeds the mean, whereas the Poisson imposes
variance-mean equality. Tests for variance-mean equality, given corfect
specification of the mean, are called tests of overdispersion (or
underdispersion). They are the analogues of tests of heteroskedasticity in
the normal case.

CM tests of overdispersion in the Poisson may be based on the second

2

order polynomial P ) I Yy Note that this leads to different CM

2,6 = Uy By ‘
tests than those based on the more obvious polynomial P2,t = (yt - ut)z T By
the difference between (yt - ut)z and its expectation under the null
hypothesis. CM tests based on Pz,t are identical to the score tests of
overdispersion in the Poisson model against alternatives that Var(yt) L

equals a non-zero constant, considered in Cameron and Trivedi (1986, 1990a)

and Lee (1986). The test statistic for this reduces to

Zt(y - ut)z - Y a
(4.13) T, = - ~ N(0,1).
2 2.4172
(2 zt(”t))

CM tests for non-Poisson skewness may be based on the third order polynomial

defined above. The test statistic is

~ .3 ~ ~ N2
2y, = p) =) -3y, - )= vy,)
(4.14) T, = t 't t t ot t

3 =
va2z (ui)

This derivation and the test may be compared with the corresponding test
procedure of Lee (1986, equation (5.12)) who derives .essentially the same test
as a score test by taking the null model as the Poisson and the alternative as
a truncated Gram—Chariier series expansion in terms of discrete orthogonal
polynomials and Poisson baseline density.

Example 3 - Exponential Family. The unit exponential is a member of the
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gamma family with mean and variance unity, VuV(u)=D, vy =V, = 0. The

recurrence relation for the orthogonal polynomials is Pm+1 = Ple - um_

The second and third orthogonal (Laguerre) polynomials are {(y—l)2 - 1} and

1"

{(y—1)3~ 3(y~1)}, with variances 1 and 6. (In the more general gamma
family, the orthogonal polynomials are the generalized Laguerre polynomials]).
The unit exponential arises in diagnostic tests for any parametric hazard
model. Following convention t denotes uncensored survival times with pdf
f(t]X) and distribution function F(t|X), survival function S(t|X) =1 - F(¢[X)

and hazard rate h(t|X) = f(t|X)/S(t|X) =V, log S(t|X). Let H(tIX)

" J

h(s[X)ds denote the integrated hazard function. Diagnostic checks for any
parametric survival model may be based on the generalized residuals €s)

i=1,..T, defined as
(4.15) e, = H(t,|X,).
i i1

The generalized residuals are easily shown to have a unit exponential
distribution, irrespective of the parametric form of f(t|X), if the null model
is correctly specified. Hence EO[ej] = jt, j=0. Therefore CM diagnostic test
may be based on the departure of the sample moments of € from the
corresponding theoretical moments of the unit exponential distribution.

In duration models a likely source of misspecification is neglected

heterogeneity, which leads to generalized residuals £, having non-unitary

t

variance. The CM test based on P2t can be used to test for zero neglected

heterogeneity. This coincides with the score test given in Lancaster (1985).
The CM tests of higher moments may be constructed using the resulis above.

Example 4 - Negative binomial family. The parameterization we choose is
fly) = (1+9)-a—y_9y'[y+$-1]. In this case Ely] = a8 = u, V() = a0(1+0) = pu

+ (1/a)u2; VuV(u) =1+ (2/a)p = 1 + 20. The first two orthogonal (Meixner)
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polynomials are Pl(y) =y - u, and Pz(y) = {y - u)z - (1 + (w/a)d)y, so the
condition (3.18) is not satisfied for tests based on Pz(y).

The negative binomial is commonly used for count data which are
overdispersed, so that the Poisson is inappropriate. CM tests based on Pz(y)
can be used to test the validity of the variance-mean relationship of the
assumed negative binomial model. To the best of the authors’ knowledge no
score tests of variance-mean relationship in the negative binomial model have
appeared in the literature.

A fifth example is the binomial family, in which case CM tests will be
based on orthogonal (Krawtchouk) polynomials. Results are straight-forward.

Implementation of the above tests for LEF-QVF examples is usually

straight-forward since by (4.10) and (4.8), E[V“Pn] = E[(-a_/a )P ] =0,

n n-1""n-1

so (3.18) holds. To the extent that no nuisance parameters are present, i.e.
the only unknown parameters in LEF-QVF density for Vi appear via the mean
function M, we can directly compute the simpler (3.20). It can be shown that
this is also the case for the normal density, the nuisance parameter 02 does
not prevent the use of (3.20). Only in example 4 (the negative binomial with
nuisance parameter «) do CM tests need to be implemented by the more general
procedure discussed at the end of section 3.

"Thus to implement all of the CM tests given in this section aside from
example 4, but additionally including tests for the binomial with known number

of trials, we need simply regress 1 on Gn,t(Xt,BT)'Pn,t(Xt,BT). T times the

uncentered R2 from this regression is xz with degrees of freedom dim(Gn t)

»

under HO'

Furthermore, note that the orthogonal polynomials approach leads exactly

to tests for which (3.18) holds. For example, for skewness in example 1 we

have P )3 - C&o‘z(yt'~ ut), whereas most authors use Pt = (yt - ut)g

3¢ = Vy™ By
which does not lead to tests for which (3.18) holds.
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5. ORTHOGONAL POLYNOMIAL TESTS FOR TRUNCATED MODELS

Truncated regression models provide a useful illustration of the
differences between OPS based CM tests and conventional score tests. Truncated
distributions feature widely in applied econometric work but there is little
consensus on the use of appropriate diagnostic tools. The application of
diagnostic tests in such cases is especially desirable since the failure of
common distributional assumptions such as homoskedasticity of the latent
dependent variable in a Tobit type model can have serious implications for
consistency, not just efficiency (Amemiya (1985)). The diagnostic tests for
these models are often cumbersome to derive and to compute as evidenced by,
inter alia, Bera, Jarque and Lee (1984), Lee and Maddala (1985), Robinson,
Bera and Jarque (1985), Gurmu and Trivedi (1990a). Computation of the CM test
may be simplified using the popular OPG variant of the information matrix, but
this frequently has unsatisfactory properties.

In this section we consider CM tests derived using orthogonal polynomials
when the baseline sample density is obtained by restricting the set of support
points for the parent distribution. Reconsider the series expansion (3.9)

which is rewritten as follows:

00
(5.1) gly) = f*(y)-[1 + anl a;P;(y)/n!] ,

f(yt)
(5.2) f*(y |y, e V) = ,
1 - F(ytlyt e Y)

where f*(y) is a truncated density with support points restricted to set Y,
P;(y) are corresponding orthogonal polynomials, and a; are functions of the

moments of f*(y). Specification tests of the truncated distribution based on
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P;(y) are tests of the null HO: a; = 0. The results given in section 2.2 can
be used to derive orthogonal polynomials for the truncated case after
interpreting all relevant moments as those of the truncated distribution.
Since the OPS for a given baseline distribution is unique, the OPS based CM
criteria will be different from those in the regular (untruncated) case. But
the approach to the construction of CM tests is unchanged.

Compare the above strategy with that used in the construction of a score
test where the starting point is likely to be the selection of a baseline
truncated model and a truncated alternative. (For example, Gurmu and Trivedi
(1990a) derive a score test of overdispersion for the truncated Poisson
regression as the null model and the truncated negative binomial as the
‘ alternative.) Though the OPS based CM test is a score test, it will be based
on an implicit alternative density g(y), which in general will be different
from that used in the derivation of a score test against a specific
alternative. Therefore, OPS based CM tests may differ for truncated
distributions even when they coincide for the untruncated counterparts.

Further, conventionally desighed score tests of moment restrictions in
truncated models are generally not independent. This feature of score tests
appears in the context of some non-truncated models where the parameterization
of the model does not lead to a block diagonal information matrix. The OPS
based CM tests have the independence property by design, but the test may be
based on an implied direction of departure from the nﬁll may not be the same
as in another conventionally designed score test.

As an illustration we reconsider the example of left truncated Poisson
distribution analyzed in Gurmu and Trivedi (1990a). Let the untruncated
Poisson pdf be h(yt,wt)= exp(wt)wtyt/yt! where wt is the untruncated mean,
usually specified to be log-linear in a set of exogenous variables. Consider

the positive Poisson (Poisson distribution without zeroes). This has the pdf
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h(yt)/(l - h(0)), or

y
t

Vi

2 f(yt’wtlyt =P - (exp(y,) - 1)-Y;!

The first three (truncated) moments of the positive Poisson are as follows:

(5.4) Bip = wt + 6t

(5.5) by =W, - 8,y - 1)

(5.6) Hay = wt + 2”1t(“?t - w%) + at(Bwt + 1)
(5.7) 8, = ¥~ (exp(y,) + 1).

We may construct an OPS based CM test of the second moment restriction

using (2.13), which yields
(5.8) P.(y.,X.,08) = €2 - (/1. )e, - I
) A A t 3t"72t° 7t 2t°

where € = (yt - ult). By contrast the score function given in Gurmu and
Trivedi (1990a) is the sum of terms that are a multiple (not depending on yt)

of the polynomial
(5.9) p (y.,X.,8) = (62 —y.) + (g, - y,)8
) LA t t t £t

score

Evidently, unlike the case of untruncated Poisson considered in example 2
of the last section, in the truncated case the OPS-based CM test is different

from that based on the score function.
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6. CONCLUDING REMARKS

Orthogonal functions offer a new and convenient approach to specifying CM
functions and deriving CM tests. Formulae given in this paper permit
construction of orthogonal polynomials, particularly of low order, in quite
general settings.

Even simpler formulae are presented for members of the LEF-QVF families,
which subsume a wide range of commonly used econometric models. Fér the
LEF-QVF examples, to the extent that CM tests based on orthogonal polynomials
coincided with existing tests, these tests were score tests. By contrast, in
the example of truncated models, CM tests based on orthogonal polynomials
differed from existing score tests.

OPS based CM tests are score tests designed to be orthogonal in a
specific sense. The conventional score approach in which one examines the
departure from the null in one direction at a time does not in general ensure
orthogonality of tests. The linear independence of tests based on OPS is an
impoftant advantage in some situations. For example, separate tests of
homoskedasticity and normality in Tobit type models are correlated. Yet even
in high level applied work investigators sometimes apply diagnostic tests one
at a time, ignoring possible correlation. When the tests are not independent,
the interpretation of the test outcome is problematic since the tests will not
then have the nominal asymptotic size. The orthogonal polynomial approach may
have an advantage over the standard score or CM approach in such cases.
Further insights may be gained by additional work on the properties and
performance of OPS based tests in settings more general than those considered

here.

25



Appendix A

We shall review a number of important results on orthogonal polynomials.
No proofs are given and the interested reader may wish to consult Cramer

(1946), Lancaster (1969), and Szegd (1975) for proofs and further details.

Derivation of the result (2.7): First partition IDn(y)I as follows:

(A.1) ID

The partitioned bordered determinant theorem yields

— n - 7 .

(A.2) i, = v 12 4l o’ (y) 4dj (A _,) d

Ip_(y)] -
(A.3) 07 - P a1 ta

IA ! n"l

n-1

where c’'(y) = (1 vy y2 y3 ..... yn-l)
Uniqueness: The OPS {Pn(y)} in which the leading coefficient is normalized

to unity, i.e., the orthonormal (or monic) polynomial sequence, is unique.
If {Qn(y)} is also an OPS, then there exist constants cn¢ 0 such that Qn(y) =

cnPn(y), n=0,1,2,..

Completeness: An orthonormal polynomial sequence is complete if any function
[24]
¢(y) has vari¢(yl] = 121 a? < o where a, = E[¢(y)Pi(y)]; for proof see

Lancaster (1969, chapter 4.4).
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Covariance properties: For an OPS {Pn(y)} and for every polynomial nm(y), n

< n,

(A.41) E[nm(y)Pn(y)] = 0 form<n

(A.4ii) E[nm(y)Pn(y)] #0 form=n

(A.4ii1) Ely"P (y)] =k & , k_# 0, for m=n.
n n mn n -

Let Pn(y) be an orthonormal polynomial, and nn(y) be any other

orthonormal polynomial. Then

(A.5) Elm (y)P (11 =[] ~ 08 0, 1240 =1

For non-orthonormal polynomials n;(y) with leading coefficient c_, and P;(y)

with leading coefficient a,

(A.6) Eln*(y)PX(y)]l =ac Qo) 72§, §a,01=1

Minimum variance property: If IAnl > 0 (n = 0), then the orthonormal

polynomial Pn(y) satisfies the following property for every non-orthonormal

orthogonal polynomial nn(y) # Pn(y):
2 2
(A.7) E[PT(y)] < Eln”(y)].
n n
Recurrence relationship: Given the positive definite sequence {un} and an
orthonormal {Pn(y)}, there exist real constants @ and Bn’ Bn > 0, such that

the polynomials satisfy the following three point recurrence relationship:
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(A.8) Pn(y) = (y - “n)Pn—l(y) - BnPn_z(y)

where P_, (y) = O, Po(y) = 1, and

1
a Ll iad
_ 2 2 _ I n-2 n
(A.8a) Bn+1 = E[Pn(y)]/ E[Pn~1(y)] = ——IZ—‘“I“Z-—-—
n-1
2 =
(A. 8b) E[Pn(y)] = BBy By
(A. 8¢) = Ely-P>_ (y)1/ E[P>_ (¥)]
. Oy T BT n-1Y

Note that if {un} is symmetric then Pn(—y) = (—1)nPn(y), and @ = 0, n=z 1.

Rodrigues formula: In some cases, including the leading case of the
classical orthogonal polynomials, the {Pj(y)} may be conveniently generated by

the Rodrigues formula

1

J . J
E}fT?) VH{f(y) m(y)“},

(A.9) Pj(y) =

for some constants kj where n(y) is a polynomial in y, independent of j, and

V is the operator 8/8y.
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Appendix B

Orthonormal polynomials may be derived, using (2.7), in terms of moments

around the origin. Below we give expressions, obtained using the computer

algebra program MACSYMA Version 412.62, which can be used to derive the first

four orthogonal polynomials.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

(B.

1)

2)

3)

4)

5)

6)

7)

8)

1
o

12,

2
By =y

121

> 3 2
o B e R L W e

_ 2 3 3 2 3. 22
|A3| = (H2H4 ) ”2) Hg = Holg * 2(;13u4 + n2u3)u5 Ky + Hoky

2 a 2 2 2 2
= Buphghy + g+ (g =iy 2Gnpuane = (ppy + a4 gy iy

I
o

[,

D, =v -1y

2 2
[0, 1 = 18, 1v" + (upny -ngdy + (g - p3)
_ 3 2 2, _ 2 2
I =12y + [(”5“1 (opy + dwy — (nobg = popy, u2u3)]y

| 2, 2 2 2 2
+ [(u3u4 B o L T el L DN T uzug)]y +[(u4 L O DNy DY TS

3
T Mgy * ol ]
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(B.9) ED4(y)| = —|A3|-y4 +[(—-u2u4 + pi + ug)u,r + (b + o, ”2“3)'“6
* “3“5 + (= ”i * 2”2“4 - “2“2)'“5 - 2”2”3”2 * “3“4 * lughy - ”5“6)“?
* (2upuqu, + (pym, + “g)”é * “2“2 - “Z)”l]y3
+ [(—uzus g, * ugug)u7 + uzug - (pgpg - ui + u§u4 - uzug)-u6
* (”2 * “5“7)”? * (pypy “i)#7 ~ (uphg * Spgiydpg + “3”2 * “i“s)“1
+ uz + u3u 3 u3 - uzuz ]yz + [(u Be = Bk, B, — M ”z + (pop
gMs T Bats Holty = Ky ols = HgHylHy = Holg 3Ms
* ”Z)“6 B ”4“2)”1 + (gg - “i * ”3”4 B ”zug)'“7
B “3“2 + ((2py- “g)”s * “g)”s B ”g * 2“2“3”2 * ("“z”i - 2”2”4)”5

3 ‘ .
+ Mg, ]y + [((uzus R L N o LSl -oo) D

2 2 2 2 2 2
* (uphg = 2uppap, + pdug — kg + (2L + ok, - “3”4)”6]
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