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Abstract

This paper makes three contributions. First, it uses copula functions to obtain

a ßexible bivariate parametric model for nonnegative integer-valued data (counts).

Second, it recovers the distribution of the difference in the two counts from a spec-

iÞed bivariate count distribution. Third, the methods are applied to counts that

are measured with error. SpeciÞcally we model the determinants of the difference

between the self-reported number of doctor visits (measured with error) and true

number of doctor visits (also available in the data used).
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1 Introduction

This article provides a new method for studying the distribution of the difference between

two nonnegative correlated counts, y1 and y2, whose marginal distributions F1(y1) and

F2(y2) are parametrically speciÞed. This topic is motivated by some data situations. In

one of these y1 and y2 are two measurements, perhaps replicated, of the same outcome.

One or both might be contaminated by measurement error, and one�s interest is in study-

ing the distribution of the difference. For example, y1 may be an observed variable, y2

may be the corresponding value from a cross-validation study, and (y1 − y2) is the mea-
surement error. A second data situation is one in which y1 and y2 are paired observations

that are jointly distributed. They could be data on twins, spouses, or paired organs (kid-

neys, lungs, eyes). The interest lies in studying and modeling the difference. For example,

one may want to analyze the sources of differential utilization of health care, e.g. doctor

visits, by two spouses. Another example from empirical industrial organization involves

the difference between the number of Þrms entering and exiting an industry (Mayer and

Chappell, 1992; Berglund and Brännäs, 2001).

When the bivariate distribution of (y1, y2) is known, standard methods can be used to

derive the distribution of any continuous function of the variables, say H(y1, y2). Indeed,

there is a rich statistical literature that deals with this class of problems that includes the

distribution of sums of independent random variables. A problem arises, however, when

the bivariate distribution is either not available or available in an explicit form only under

some restrictive assumptions. This situation arises in the case of many nonnormal discrete

random variables. For example, most speciÞcations of bivariate Poisson and Binomial

distributions only admit positive dependence between counts, thus lacking generality. On

the other hand, as in the case of entries and exits from an industry, dependence between

the two variables may be positive or negative.

We propose a solution based on copula functions. Copulas, originally introduced by
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Sklar in a 1959 article in French (see also Sklar, 1973),1 have been suggested as a useful

method for deriving joint distributions given the marginals, especially when one wants

to work with nonnormal distributions. The approach is likely to be fruitful when the

marginals can be speciÞed with conÞdence, but the joint distribution is awkward to es-

tablish. The approach, though not new, has recently attracted considerable attention

(Genest and Rivest, 1993; Joe, 1997; Nelsen, 1999; Capéraà, Fougères and Genest, 2000).

To date several published articles (Miller and Liu, 2002; Smith, 2003) and working papers

(Chen and Fan, 2002) using copulas in econometrics have focused mainly on continuous

variables. Several econometrics papers have modeled sample selection using bivariate la-

tent variable distributions that can be interpreted as speciÞc examples of copula functions

- Lee (1983), Prieger (2002) and van Ophem (1999, 2000). Other approaches for model-

ing correlated count variables, without explicitly using copulas, are developed in Cameron

and Trivedi (1998), Munkin and Trivedi (1999), and Chib and Winkelmann (2001). The

copula approach used in this paper, although relatively unexplored in applied statistics

and econometrics, can be used to study the joint distributions of any set of discrete,

continuous, or mixed discrete/continuous variables. The approach allows us to estimate

the parameters of a bivariate distribution based on speciÞc families of copulas. These

estimates are used to recover the empirical cdf and/or the pmf of the difference, y1 − y2.
The proposed method will generalize to continuous random variables, with or without

dependence.

We carry out a case study using health care utilization data from Australia. In the em-

pirical application, y1 represents an individual�s number of self-reported physician visits,

and y2 denotes his number of actual physician visits. Using a unique Australian data set

that has both self-reported and independently observed measures of physician visits, we

study the difference between the two measures to determine sources of misreporting. Re-

sults indicate a relationship between the number of visits and the extent of misreporting.

1Sklar (1996) clariÞes in a brief note the contributions made by others such as Schweizer and Fréchet

to the development of copulas. We owe this reference to a referee.
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We measure the effect of key regressors on the difference in counts.

The remainder of the paper is organized as follows. Section 2 sketches the essentials

of the copula-based approach, the research problem of interest, and our solution method.

Section 3 brießy discusses other methods of obtaining joint distributions of count variables.

Section 4 deals with an application that involves the distribution of measurement errors

in recorded number of physician visits using an Australian data set. The Þt of the copula

models is also discussed in Section 4. Section 5 gives some concluding remarks.

2 The Copula Approach

In order that this paper should be reasonably self-contained, we begin by reviewing some

basic properties of copulas.2

2.1 Properties of Copulas

To deÞne a copula we begin with possibly dependent uniform random variables U1, ..., Uq

on the [0, 1]-interval. The dependence relationship is described through their joint cdf

C (u1, ..., uq) = Pr [U1 ≤ u1, ..., Uq ≤ uq] , (1)

where the function C(·, · · · , ·) is the copula, and uj is a particular realization of Uj,
j = 1, ..., q, where q ≥ 2. Note that for a function C(·, · · · , ·) to be a copula on [0, 1]q, it
must have the properties: its domain is [0, 1]q; it is grounded, and increasing on the unit

hypercube (see Nelsen (1999)).

Now for q marginal cdfs F1 (·) , ..., Fq (·) and arbitrary (x1, ..., xq), we have from (1)

C (F1 (x1) , ..., Fq (xq)) = Pr[F−11 (U1) ≤ x1, . . . , F−1q (Uq) ≤ xq]
≡ F (X1, · · · , Xq) , (2)

2An excellent review of the copula literature is provided by Frees and Valdez (1998).
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where Xj = F−1j (Uj), j = 1, . . . , q. Therefore, F (·, · · · , ·) deÞnes a joint cdf for the q
variables X1, . . . ,Xq. With a copula-based construction of a joint cdf, we select a set

of marginals and combine them to generate a joint cdf. A given copula is a functional

form for combining selected marginals. Sklar�s Theorem states that for any multivariate

cdf, there exists a copula function such that this cdf can be represented as a function

of its marginal cdfs through this copula. Also, if this multivariate cdf is continuous,

then the copula representation is unique. It is worth noting that for a joint distribution of

multivariate discrete random variables, the associated copula representation is not unique.

Such a non-uniqueness arises from the fact that a cdf of a discrete random variable does

not map such a variable to the entire [0, 1] interval, and thus the copula C need not be

uniform over rectangles. See Joe (1997, p.14) for a detailed discussion on this issue. This

result, however, does not create a serious problem from a modeling viewpoint, as while

a copula is not unique for a joint distribution of discrete variables with marginals Fk(·),
k = 1, . . . , q, it is unique on

Qq
k=1Ran(Fk), where Ran(Fk) denotes the range of the

marginal distribution Fk(·) consisting of all the possible values of Fk(·) (see Nelsen, 1999,
p.15).

2.2 Bivariate Copula Representation

For the bivariate case, suppose F (y1, y2) is a joint distribution with corresponding marginal

distributions F1(y1) and F2(y2). Then F (y1, y2) can be expressed as

F (y1, y2) = C (F1(y1), F2(y2); θ) (3)

where C is a parametric copula function, and θ is a dependence parameter measuring

dependence between the two random variables. The properties of copulas make them

attractive for many empirical applications. A researcher might not know the joint distri-

bution of two variables, or the joint distribution might be intractable, but if the marginal

distributions are known and take a convenient form, then the copula approach provides

a representation of the joint distribution.
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Joe (1997) deÞnes a bivariate copula associated with F (·) , denoted by C (u, v) , as a
two-dimensional probability distribution function deÞned on the unit square [0, 1]2 , with

univariate marginals uniform on [0, 1] . For all (u, v) ∈ [0, 1]2 , C (u, 0) = C (0, v) = 0;

C (u, 1) = u, and C (1, v) = v. In this notation Sklar�s Theorem states that, there exists

a copula function C such that

F (x, y) = C (Fx (x) , Fy (y)) , (4)

where F (x, y) = Pr [X ≤ x, Y ≤ y] is a bivariate distribution function of random variables
X, Y , and Fx (x) and Fy (y) denote the marginal distribution functions.

If F is continuous, and if the univariate margins have corresponding quantile functions

F−1x and F−1y , then the unique copula in equation (2) can be expressed as

C (u1, u2) = F
¡
F−1x (u1) , F

−1
y (u2)

¢
. (5)

If F is discrete, then (5) gives a unique copula representation for F for (u1, u2) ∈
Ran(Fx) × Ran(Fy). The copula approach involves specifying marginal distributions of
each random variable along with a function (copula) that binds them together. The

copula function can be parameterized to include measures of dependence between the

marginal distributions. If no dependence is detected, the two marginals are independent,

and estimation can be performed on each variable separately. However, if dependence is

present, improved estimates may be obtained by recovering a joint distribution by way

of a copula function. Since a copula can capture dependence structures regardless of

the form of the margins, a copula approach to modeling related variables is ßexible and

potentially very useful to statisticians.

The table below gives examples of some bivariate copula functions that have been

used in the literature. Here φ and Φ denote the normal density and cdf respectively, and

η equals 1− e−θ. Joe (1997) discusses the properties of these copulas.

6



Copula type Function C (u, v) Dependence

Product uv N.A.

Frank −θ−1 log ¡(η − (1− e−θu)(1− e−θv))/η¢ −∞ < θ <∞
Normal ΦB [Φ

−1 (u)Φ−1 (v) ; θ] −1 ≤ θ ≤ +1
Kimeldorf and Sampson

¡
u−θ + v−θ − 1¢−1/θ −1 ≤ θ < 0 or 0 < θ <∞

The dependence parameter θ is not always easy to interpret because the relationship

between the dependence parameters and familiar measures of association such as Spear-

man�s �rho� may not be transparent. Indeed most copulas do not require that θ ∈ [−1 , 1].
Typically, when y1 and y2 are continuous variables, θ is converted into Kendall�s �tau�

or Spearman�s �rho� which are both bounded on the interval [−1 , 1]. See Bouye et al.
(2000) for a discussion of how to convert dependence parameters into Kendall�s �tau� and

Spearman�s �rho�. However, when y1 and y2 are discrete, Marshall (1996) and Tajar et al.

(2001) explain that Kendall�s �tau� and Spearman�s �rho� depend on the choice of marginal

distributions, and, thus, they are not useful measures of dependence. The implication is

that one must use caution when interpreting dependence parameters of copulas for dis-

crete variables. Since our empirical applications consider discrete count variables, we do

not use Kendall�s �tau� or Spearman�s �rho�.

2.3 Parametric Families of Copulas

Like all multivariate distribution functions, bivariate copulas must obey the Fréchet-

Hoeffding lower and upper bounds, C− and C+ , deÞned as

C−(u1, u2) = max(u1 + u2 − 1, 0) (6)

C+(u1, u2) = min(u1, u2), (7)

for (u1, u2) ∈ [0, 1]2. Thus, by Sklar�s theorem, for a joint cdf F (·, ·) of (y1, y2) with
marginal distributions F1(·) and F2(·), respectively, we have the corresponding Fréchet-
Hoeffding bounds as follows

max(F1(y1) + F2(y2)− 1, 0) ≤ F (y1, y2) ≤ min(F1(y1), F2(y2)).
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Fréchet-Hoeffding bounds are important for interpreting dependence parameters θ. A

desirable feature of a copula is that as θ approaches the lower (upper) bound of the

permissible range, the copula corresponds to the lower (upper) Fréchet-Hoeffding bound.

However, the parametric forms of some copulas place restrictions on the dependence struc-

ture such that one or both Fréchet-Hoeffding bounds are not included in the permissible

range.

In preliminary analysis, we considered three different copulas: the Normal copula and

the Frank copula include both Fréchet-Hoeffding bounds in their permissible ranges while

the Kimeldorf and Sampson copula only includes the Fréchet-Hoeffding upper bound. The

latter two are members of the Archimedean family, with the representation C (u, v) =

ξ
¡
ξ−1 (u) + ξ−1 (v)

¢
where ξ is a generator function; see Smith (2003) for an extensive

discussion of this copula class as well as several generator functions. For a more extensive

list of families of copulas, see Hutchinson and Lai (1990).

The question of comparing and selecting from a family of copulas is at present an open

one. The Frank copula provides the best Þt in terms of information criteria, so we focus

on results for the Frank speciÞcation. However, results for the other two copulas were

nearly identical.

Frank�s copula (1979) is C(u, v; θ) = −θ−1 log ¡(η − (1− e−θu)(1− e−θv))/η¢ , where
η = 1 − e−θ. The dependence parameter θ can equal any value on the real domain

(−∞ , ∞) except zero. Values of −∞ , 0, and ∞ correspond to the Fréchet-Hoeffding

lower bound, independence, and the Fréchet-Hoeffding upper bound. This copula permits

both positive and negative association between the variables.

2.4 Modeling Differences in Counts

In this paper, we use the copula approach to represent F (y1, y2), which will also allow

us to derive the distribution of y1 − y2, where both y1 and y2 are nonnegative integer
counts. Although to the best of our knowledge, no existing copula article attempts to

model distributions of differences between variables, such an application is in principle
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straightforward. If the joint distribution F (y1, y2) is known, then standard methods can

be used to derive the distribution of y1− y2. However, no explicit form of bivariate count
distribution with ßexible dependence structure is available. There are attempts in the

literature to develop a bivariate count distribution, but they suffer from shortcomings.

Kocherlakota and Kocherlakota�s (1992) trivariate reduction method and Marshall and

Olkin�s (1990) mixture method both restrict dependence between y1 and y2 to be positive.

Gourieroux, Monfort and Trognon�s (1984) moment based method ignores the integer

value nature of the counts. Munkin and Trivedi (1999) and Chib and Winkelmann (2001)

propose a bivariate count model with ßexible dependence, but their method requires

approximating integrals using either Gauss-Hermite approximation or simulations.

The copula representation is used to model a joint bivariate distribution. The key is to

recognize that the copula representation C (F1(y1), F2(y2); θ) , or equivalently C (u, v; θ) ,

can be used in place of the unknown joint cdf F (y1, y2). In the case of two continuous

random variables, the joint density is obtained from ∂2C/∂u∂v, denoted c12 (·) . In the case
of discrete random variables, the continuous derivatives are replaced by Þnite differences,

as shown below.

Suppose, for the case of discrete random variables, the variable of interest is the differ-

ence z = y1 − y2. We present a simple approach using copulas to derive the distribution
of z.

The joint probability mass function (pmf) is derived by taking Þnite differences:

c12 (F1(y1), F2(y2); θ) = C (F1(y1), F2(y2); θ)− C (F1(y1 − 1), F2(y2); θ)
− C (F1(y1), F2(y2 − 1); θ) + C (F1(y1 − 1), F2(y2 − 1); θ) , (8)

where lower-case �c� denotes the pmf.

With the transformation z = y1 − y2, the joint pmf can be equivalently expressed in
terms of z and y2 as,

c12 (F1(z + y2), F2(y2); θ) . (9)

The pmf of z, denoted g(z), is obtained by summing over all possible values of y2,
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g(z) =
∞X
y2=0

c12 (F1(z + y2), F2(y2); θ) . (10)

For any value of z, (10) gives the corresponding probability mass. The cdf of g(z) is

calculated by accumulating masses at each point z,

G(z) =
zX

k=−∞
g(k). (11)

Both g(z) and G(z) characterize the full distribution of z so that inference can be made

regarding the difference between two count variables. This method can also be applied to

any discrete or continuous variables when the marginal distribution of the components of

the differences is parametrically speciÞed.

2.5 Estimation

The Þrst step in the copula approach is to specify the marginal distributions. In our

applications, y1 and y2 are nonnegative integer counts, so we specify F1(y1) and F2(y2) as

cdfs of the negative binomial-2 distribution (NB2). This speciÞcation has been found to

provide a ßexible speciÞcation of a count regression in many different alternative situa-

tions.3 Each marginal is speciÞed conditional on vectors of exogenous covariates X1 and

X2 with corresponding parameter vectors β1 and β2. For each observation i = 1, ..., N ,

F1(y1i|X1i,β1) and F2(y2i|X2i,β2) are

Fj(yji|Xji,βj) =

yjiX
k=0

Γ(k + ψj)

Γ(ψj)Γ(k + 1)

µ
ψj

λji + ψj

¶ψj µ λji
λji + ψj

¶k
, (12)

3As pointed out by a referee, the copula approach requires speciÞcation of both the marginal distri-

butions and the copula function. For our data the negative binomial provides a good model. It allows

for the large overdispersion in the doctor visit data (the sample variances are roughly Þve times the

sample mean). And there is no excess zeros problem for our data, since for both self-reported and actual

numbers of doctor visits, there are only about 10% of individuals who have reported or had zero doctor

visit, respectively. The methods developed here can, of course, be adapted to alternative models for the

marginals.
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for j = 1, 2, where λji = exp(X0
jiβj) is the conditional mean, and ψj = 1/αj, ( αj > 0 )

is the overdispersion parameter in the conditional variance λji(1 + ψjλji).

Once the marginal distributions are speciÞed, an appropriate copula function C is

selected; in this paper, we use the Frank copula. Then

C (F1(y1i|X1i,β1), F2(y2i|X2i,β2); θ)

provides a representation of the unknown joint distribution F (y1i, y2i|X1i,X2i,β1,β2).

The joint pmf is formed by taking differences as shown in equation (8). The log-

likelihood function is formed by taking the logarithm of the pmf and summing over all

observations. The log-likelihood is maximized using a quasi-Newton iterative algorithm

requiring only Þrst derivatives. Post-convergence, the variances of the estimates are ob-

tained using the robust �sandwich� formula.

Maximization of the log-likelihood using variants of the Newton-Raphson procedure

that we used were found to be straightforward and computationally efficient even for a

high-dimensional parameter space. However, establishing error bounds for some quantities

of interest involves approximation that are discussed in the next section.

3 Other Approaches

It is useful to compare the results from a copula-based model with other methods of gener-

ating joint distributions. Therefore, we present results from two other similar approaches.

One such model is the Marshall-Olkin bivariate negative binomial with marginals that

are univariate negative binomial, generated as a �shared-frailty model�, deÞned as

f(y1, y2|λ1, λ2) = Γ(y1 + y2 + α)

y1!y2!Γ(α)

µ
λ1

λ1 + λ2 + 1

¶y1 µ λ2
λ1 + λ2 + 1

¶y2 µ 1

λ1 + λ2 + 1

¶α
,

(13)

where λ1, λ2, α are, respectively, the two univariate means and the overdispersion param-

eter.
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Like the copula approach, the Marshall-Olkin model provides a closed-form likelihood

function that is easily estimated. However, this approach also has several disadvantages.

First, it only applies to applications where both marginals are negative binomials, whereas

the copula approach accomodates any combination of marginal distributions. Second, it

restricts heterogeneity to the identical component α for both count variables. Third, the

correlation between the two count variables,

Corr(y1,y2) =
λ1λ2q

(λ21 + αλ1)(λ
2
2 + αλ2)

, (14)

must be positive. In our application, correlation between the number of self-reported

visits and the number of actual visits is likely to be positive, but for many applications,

such as entry and exit of Þrms into an industry, the assumption of positive dependence

might not be plausible.

A second approach based on unobserved heterogeneity is presented by Munkin and

Trivedi (1999). They assume that y1 and y2 are correlated even after controlling for

X1 and X2 because of a common unobserved hetergeneity component w, and y1 and

y2 are independent after controlling for X1, X2, and w. Therefore, they model y1 and

y2 separately as Poisson with conditional means λ1i = exp(X0
1iβ1 + γ1wi) and λ2i =

exp(X0
2iβ2 + γ2wi). Then the joint distribution of y1 and y2 is simply the product of the

two independent marginal distributions.

Since we do not observe w, we draw a pseudo random number from an assumed

standard normal distribution and calculate the joint distribution as the product of the two

marginals. We repeat this exercise 400 times to obtain a simulated likelihood function,

which is then estimated in the usual way. This approach is referred to as unobserved

heterogeneity (UH). IdentiÞcation requires that either γ1 or γ2 be normalized to unity,

as without such a restriction on the factor loading parameters, one cannot identify the

scales. We set γ2 = 1, the marginal corresponding to actual doctor visits, so that γ1 is a

general measure of correlation between the two measures of utilization. Results are very

similar if we instead set γ1 = 1.
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Unlike the Marshall-Olkin model, the UH approach allows ßexibility in choosing func-

tional forms for the marginals, and in the choice of distribution of w. Moreover, the

method allows for positive and negative correlation, as measured by the variable γ1, be-

tween the outcome variables. The main disadvantage of the UH approach is that the

numerical integration can be extremely time consuming, especially for large models or

large datasets.

Despite disadvantages associated with the Marshall-Olkin and UH methods, they are

helpful in comparing the performance of the copula approach. Therefore, results from

these two models are presented below along with results from the Frank copula.

4 Application: Measurement Error in Self-reported

Counts

The maximum likelihood estimation procedure described in Section 2.5 produces pa-

rameter estimates (�β1, �β2, �θ) and corresponding covariance matrix �Ω. Substituting the

estimated parameters into the joint pmf of y1 and y2 yields

�c12

³
F1(y1|X̄1, �β1), F2(y2|X̄2, �β2); �θ

´
(15)

where the covariates X1 and X2 have been set to their mean values.4 Following the

technique presented in section 2.4, the transformation z = y1 − y2 gives the expression

�c12
³
F1(z + y2|X̄1, �β1), F2(y2|X̄2, �β2); �θ

´
. (16)

The estimated density of z is obtained by summing over all possible values of y2 in (9) as

follows

�g(z) =
∞X
y2=0

�c12
³
F1(z + y2|X̄1, �β1), F2(y2|X̄2, �β2); �θ

´
. (17)

4In principle, one could set the covariates to any values of interest. In the empirical applications, we

set all covariates to their means while adjusting one variable at a time to determine its impact on y1−y2.
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For the empirical applications in this paper, the area of interest for �g(z) lies mostly in the

region z ∈ [−8 , 8], but for other applications, a different range might be more appropriate.
The calculation in expression (17) requires summation from zero to inÞnity, which is in

practice replaced by a truncated sum in which the upper bound of the summation can be

a sufficiently large Þnite value. For count variables, as the count approaches inÞnity, the

probability mass approaches zero. Very large counts are associated with a pmf that is close

to zero. For the applications in this paper, we calculated the summation from zero to 50.

Values at 50 are indistinguishable from zero. Different values for the upper bound of the

summation, provided they are large enough, did not affect the results. The estimated cdf
�G(z) is calculated by accumulating masses as in expression (11). Alternatively, one can

rewrite (17) as an expectation using importance sampling techniques, and approximate

this expectation using the random draws from the importance function.

Error bounds on �g(z) and �G(z) are obtained by a Monte Carlo technique based on

the asymptotic normal distribution of (�β1, �β2, �θ)
0. Simulated parameters

³
�β1, �β2, �θ

´0
are

drawn from N
³
(�β1, �β2, �θ)

0, �Ω
´
, and �g(z) and �G(z) are recalculated using

³
�β1, �β2, �θ

´0
.

This is repeated for 500 replications. The 2.5 and 97.5 percentiles of the 500 replications

provide error bounds.

4.1 NCEPH Data

As an illustration of our approach, we study the distribution of measurement errors using

data from the Record Linkage Study conducted by the National Centre of Epidemiology

and Population Health (NCEPH) at the Australian National University. The data set is

unique in that it contains both self-reported physician visits and actual physician visits

as recorded by the Health Insurance Commission, although it is probably not nationally

representative. We treat the latter as a cross-validation sample, as it is commonly be-

lieved that the number of physician visits recorded by the Commission is accurate. The

availability of both mis-reported and accurate number of visits in this data set makes
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the data interesting in studying the measurement error in counted outcomes.5 However,

analyzing the measurement error problem in these data is complicated by the lack of a

statistical model for the difference of counts, which is a discrete variable taking on integer

values that can be negative, zero, or positive. Our approach is indeed motivated by such

a difficulty in modeling and provides a useful solution.6

As with many microeconomic data sets, errors in the measurement of self-reported

variables is a potential problem (Li, 2002; Li, Trivedi and Guo, 2003; Guo and Li, 2001).

In health economics, a related concern is whether individuals accurately report their level

of health care utilization. McCallum et al. (1993) report that evidence from the United

States suggests individuals tend to underreport their actual level of usage. They Þnd

similar results for Australian data. What factors might cause a person to misreport his

level of utilization? According to McCallum et al.(1994),

�The most obvious factor that might lead to error in self reports is the

actual utilization rate. The more similar events that people have to recall, the

more their memory is likely to �decay� to generic memories. Similarly, factors

associated with high use, older age, female gender and health status may be

associated with error in reporting.�

Using their Australian data set, we test their hypotheses using a copula approach. We

delete individuals for whom either self reported physician visits or actual physician visits

are missing. The Þnal sample size is 502. Summary statistics are provided in Table 1. The

utilization variables highlight the problem of misreporting: on average, individuals have

6.5 physician visits (ACTUAL) but report only 4.4 visits (SELF). Explanatory variables

include age, sex, income, unemployment status, health status, number of chronic health

5A previous regression analysis of these data, but with the main focus on health insurance decision,

was given in Cameron and McCallum (1995).
6The only possible alternative model for the differences in counts that we are aware of and permits

negative counts, is the ordered probit. In our example, the thresholds might be ≤ −8,−7,−6, . . . , 6, 7,≥ 8.
An example of this is Hausman, Lo and Mackinlay (1992) cited in Cameron and Trivedi (1998, p.88).
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conditions, level of education, number of kids under age 6 and age 18, an indicator of

private insurance, and an indicator of whether the person works a shift job. We also

include an interaction term FEMALE*AGE.

A reasonable assumption is that SELF and ACTUAL are correlated and jointly dis-

tributed as F (SELF , ACTUAL). The copula approach discussed above provides a rep-

resentation of F (SELF ,ACTUAL). We use the technique of section 2 to derive the

distribution of z = SELF − ACTUAL in order to determine sources of misreporting.

Both marginal distributions are negative binomial-2 as speciÞed in equation (12). Since

both marginals correspond to the same individual, each marginal includes the same set

of explanatory variables.7

As a preliminary excercise, we use a simple linear regression model of measurement

error that speciÞes the dependent variable measured as SELF - ACTUAL as a function

of a set of explanatory variables X and the �true� value of ACTUAL. That is

SELF−ACTUAL = γACTUAL+X0β + u.

Depending upon the starting point to derive this regression, the right-hand side variable

ACTUAL can be treated as exogenous or endogenous. Table 2 contains results based on

OLS and IV applied to the above regression.

The OLS results show that γ is signiÞcant and negative. This is consistent with

the measurement error depending upon ACTUAL. It also may be consistent with the

measurement error being a nonlinear function of X.

Under the assumption that E[u|ACTUAL] 6= 0, the regression can be estimated by

IV, with a predicted value of ACTUAL serving as an instrument.8 From the IV results

7As pointed out by a co-editor, in principle the sets of explanatory variables for the two marginals do

not need to be the same. While it is possible that measurement error can be driven by different factors

than those that explain health care utilization, we choose to use the same set of explanatory variables

for both marginals because there are no other variables in our data set that we have not used and that

would be used for explaining self-reported counts.
8Note that the IV estimates here are identiÞed by the nonlinear functional form, not by exogenous
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shown in Table 2, we can see that the standard error of �γ is large and the interpretation

is inconclusive.

4.1.1 Results

Results for the Frank copula model are given in Table 3. Utilization for both SELF

and ACTUAL is positively and signiÞcantly related to age (AGE) and being female (FE-

MALE), but the interaction term FEMALE*AGE is signiÞcantly negative indicating that

increased utilization associated with being female diminishes with age. Unhealthy indi-

viduals (low value for HEALTH) and those with chronic conditions (CHRONIC) have

more physician visits. Being employed at a shift job (SHIFT) is associated with fewer

physician visits.

Having private health insurance (PHINS=1) does not appear to affect utilization.

Whereas this result may come as a surprise, since one expects having insurance as a

stimulus to additional health care usage, it is possible to rationalize the result in the

Australian institutional context. SpeciÞcally, we note that �the Australian health system

provides universal access to needed health care, regardless of the ability to pay� (Hall,

1999: p. 97). Hall�s (1999) overview of the Australian systemmakes clear that a major role

of private insurance is to provide higher quality of care in public hospital. Hence we should

not expect that private insurance has any impact on an individual�s use of primary care

services that we model in this section. The dependence parameter θ is 5.829. Allowing for

dependence leads to higher log-likelihood relative to the independence assumption, which

suggests that the two outcomes ACTUAL and SELF are jointly determined.9

Because of the positive (unconditional and conditional) correlation between the two

counts, our benchmark Marshall-Olkin model should also perform well on this sample.

However, it is interesting to note that the models have quite large differences in log-

instruments. We owe this point to a co-editor.
9We have estimated the model under the assumption that the two counts are independent, and found

that our copula model provides a better Þt to the empirical frequency distribution.
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likelihood with the Frank copula model having the largest log-likelihood, given only 500

observations, and essentially the same number of parameters. As a result, on any in-

formation criteria the Frank copula model will be preferred. For example, using BIC =

−2∗ln(L)+K∗ln(N) whereK is the number of parameters estimated and N is the sampe

size, the criteria values are 5123.9 for the Marshall-Olkin model and 4893.79 for the Frank

copula. Moreover, both the copula approach and the Marshall-Olkin model outperform

the UH approach by a larger margin. The implication is that the copula model provides

the best Þt of the three approaches. This could be due to the fact that the Frank copula

model is the least restrictive one among the three models.

To analyze the effect of particular covariates on z = SELF − ACTUAL, we calculate
pmfs and display them graphically in Figures 1 - 3, as it is more informative to look at

the results in this way. For each graph, covariates are set to their mean values while a

particular covariate of interest is adjusted to determine its impact on z. For example, the

Þrst graph of the Þrst rows of Figures 1 - 3 shows two pmfs: one for females (FEMALE

= 1) and one for males (FEMALE= 0) where the other covariates are set to their means.10

The pmf for females has a lower peak at zero than the pmf for males. The interpretation

is that females tend to misreport their true number of physician visits more than males.

The pmfs for both females and males have fatter left tails than their corresponding right

tails, which suggests that overall misreporting is mostly due to underreporting rather

than overreporting. The left tail of the pmf for females is fatter than that for males,

which indicates that females tend to underreport more than males. The right tails are

not statistically different from each other.

The second graph of the Þrst rows of Figures 1 - 3 compare thirty year old individuals

(AGE = 3.0) and sixty year olds (AGE = 6.0) where other covariates are set to their

sample averages. Sixty year olds have a lower peak at zero indicating that they tend to

misreport more than thirty year olds. Both graphs have fatter left tails indicating that

10The interaction term FEMALE*AGE is set to the average of AGE for the female�s graph and zero

for the male�s graph.
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when individuals misreport their number of physician visits, they then to underreport.

Sixty year olds tend to underreport more than thirty year olds.

The Þrst graph of the second rows of Figures 1 - 3 compare those with median health

(HEALTH = 8.5) to those at the 25th percentile of health (HEALTH = 2.5). Unhealthy

individuals tend to misreport their number of physician visits more than healthy people,

while both groups tend to underreport more than overreport.

The second graph of the second rows of Figures 1 - 3 compare shift workers (SHIFT

= 1) to nonshift workers (SHIFT = 0). The differences are less pronounced than in the

other cases, but nonshift workers show a slight tendency to misreport compared to shift

workers.

In summary, females, sixty year olds, unhealthy individuals, and nonshift workers tend

to misreport their number of physician visits when compared to their counterparts. These

groups also have higher levels of utilization, as indicated by the coefficients of FEMALE,

AGE, HEALTH, and SHIFT. This is consistent with the results of McCallum et al. (1993).

Evidently, the more physician visits a person must recall, the less accurate are the self-

reported numbers. Moreover, as McCallum et al. (1993, 1994) Þnd, overall misreporting

is mostly underreporting, as reßected in the thick left tails of the pmf graphs.

4.2 Measures of Fit

We employ two techniques to gauge the Þt of the copula approach. The Þrst mea-

sure of Þt is Andrews� GoF test (Andrews, 1988). The GoF test is calculated as S =

(f −�f) 0�Σ−1(f −�f) where (f −�f) 0 is an (N × q) matrix of differences between sample and
Þtted cell frequencies, q is the number of cells, and �Σ is its estimated covariance matrix.

Under the null hypothesis of no misspeciÞcation, the test has an asymptotic χ2(q − 1)
distribution. When the statistic is formed using maximum likelihood estimates, compu-

tation is simpliÞed. Let A be a (N × q) matrix with ith row given by (fi −�fi), and let B
be a (N ×K) matrix with ith row given by (∂/∂Ψ) log fi(yi|Ψ), where Ψ is the vector of

K parameters. DeÞning H = [A B], the test statistic is
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τGoF = 1
0H(H 0H)−1H 01 (18)

where 1 is a column vector of ones. We calculate q = 10 cells.11

The objective of the test is to determine the Þt of the marginal distributions. For

the sample we use, the test statistics are 11.57 for self-reported visits and 8.64 for the

actual number of visits. These values favor the null hypothesis of no misspeciÞcation for

both measures of utilization. Therefore, our marginals are well-speciÞed. The marginal

corresponding to actual physician visits has a better Þt (lower GoF statistic). This is

intuitive because self reported physician visits include measurement error contamination.

We also compared Þtted versus empirical cell frequencies of the pmf g(z). For each

observation i, �gi(z) is calculated for cells z = −8, ..., 8. Averaging each cell across all
observation produces an estimated pmf �g(z). Figure 4 shows estimated pmfs of z, denoted

by the dashed lines, compared to the actual pmfs of z, denoted by the solid lines. The

estimated pmfs of the copula approach and the Marshall-Olkin model appear to match

well with the actual pmfs. However, the Þt of the UH is not as close to the actual

distribution.

5 Conclusion

This paper presents a new method for studying the distribution of the difference between

two nonnegative integer counts variables. Estimation is complicated by the lack of avail-

ability of a convenient representation for the bivariate distribution of the two counts. The

proposed method uses copulas to express the bivariate distribution so that the distribution

of the difference between the counts can be recovered. The technique is fully parametric

11There is a shortcoming of the τGoF test. Classical tests with Þxed signiÞcance levels tend to overreject

the null hypothesis in large samples. The GoF test suffers from the same problem (Deb and Trivedi, 1997;

Cameron and Trivedi, 1998). Despite this caveat, the GoF test serves as a useful indictor of Þt with smaller

values indicating better Þt.
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and straightforward to implement.

The approach is demonstrated for an empirical application of determinants of misre-

porting of physician visits by Australian citizens. Results indicate that the more physician

visits an individual must recall, the more likely he is to misreport his number of visits. The

elderly, the unhealthy, nonshift workers, and females are groups that have more physician

visits than their counterparts, and these groups tend to misreport their true number of

doctor visits more than their counterparts. Results also show that misreporting is pri-

marily due to underreporting rather than overreporting. Furthermore, our approach can

also be used to establish the relationship between the measurement error and the true

number of doctor visits.

While this paper focuses on the difference between two counts, the approach can be

applied to any situation in which the difference between two outcomes is of interest and

data on both outcomes are available, but a convenient expression for the joint distribution

of two outcomes is not available. Furthermore, the method can be extended to model other

functions of two outcomes rather than the difference.
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Table 1 � Summary Statistics for Australian Application

Variable DeÞnition Mean St. Dev.

Utilization

ACTUAL # of actual physician visits 6.52 5.92

SELF # of self reported physician visits 4.37 4.55

Demographic

AGE age/10 4.59 1.24

FEMALE =1 if female 0.48 0.50

FEMALE*AGE female*age interaction 2.19 2.45

INCOME income/10000 3.01 2.42

KIDS18 # of kids younger than 18 0.96 1.23

KIDS6 # of kids younger than 6 0.30 0.64

EDUC1 =1 if Þrst level education 0.03 0.18

EDUC2 =1 if second level education 0.26 0.44

EDUC3 =1 if third level education 0.29 0.46

EDUC4 =1 if fourth level education ommitted

UNEMP = 1 if umemployed 0.03 0.18

SHIFT = 1 if shift worker 0.07 0.26

PHINS = 1 if holds private health insurance 0.73 0.44

Health

HEALTH health score 7.39 2.10

CHRONIC # of chronic conditions 1.80 1.76
Sample Size = 502
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Table 2 � OLS and IV Results

Dependent Variable: = (SELF−ACTUAL)
OLS IV

Variable Coeff. St. Err. Coeff. St. Err.

INTERCEPT 0.850 1.293 1.528 1.375

AGE -0.146 0.241 -0.434 0.587

INCOME 0.059 0.094 0.086 0.060

FEMALE 0.225 1.514 -0.501 2.993

FEMALE*AGE 0.160 0.317 0.157 0.513

KIDS6 0.687 0.367 0.288 0.382

KIDS18 -0.062 0.192 -0.135 0.171

UNEMP 0.584 1.124 1.034 1.076

SHIFT -0.193 0.763 0.451 1.114

EDUC1 -0.548 1.183 -0.420 1.892

EDUC2 -0.554 0.520 -0.778 0.690

EDUC3 -0.570 0.490 -0.814 0.965

COND 0.636* 0.119 0.113 0.450

PHINS -0.187 0.451 0.168 0.309

ACTUAL -0.565* 0.020 -0.261 0.475
* signiÞcant at 5 percent level

Note: Fitted values of ACTUAL from a Þrst stage negative binomial regression are used as

instruments in the IV estimation.
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Figure 1 � Australian PMFs for the Frank Copula
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Figure 2 � Australian PMFs for the Marshall-Olkin Model

95 percent conÞdence bands (CB) indicated by solid lines
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Figure 3 � Australian PMFs for the UH Model

95 percent conÞdence bands (CB) indicated by solid lines
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Figure 4 � Fitted pmfs of z = y1 − y2
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