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ABSTRACT

The information matrix (IM) test of White (1982) is a model specification test
obtained by specifying a null hypothesis model only. A criticism often made
is that failure to specify an alternative hypothesis model makes it difficult,
in a general setting, to interpret what types of departure the IM test is
testing against. In this paper it is shown how the IM test can be interpreted
as a test against an alternative hypothesis. By comparison to the most
studied example of an IM test, the linear regression model with homoskedastic
normally distributed error, the IM test will in general test more fundamental
forms of misspecification. As an illustration, IM tests for regression models
based on the linear exponential family are presented and interpreted.
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1. INTRODUCTION

The information matrix (IM) test of White (1982) is an intuitively
appealing model specification test, and is easily implemented using results of
Chesher (1983) and Lancaster (1984). Furthermore, in empirical applications
the IM test can be applied to models for which there is as yet no standard
battery of specification tests. Yet it is not widely adopted as a model
specification test, in part because of lack of knowledge as to what
alternative hypothesis the null hypothesis model is being tested against.

In some cases the IM test for a specifié model coincides with an existing
test, in practice usually a score test. Then the IM test is interpreted as a
test of the same form of misspecification as that for the existing test. The
best known example is the linear regression model with homoskedastic normally
distributed error, discussed in White (1982, p.12) and analyzed in detail by
Hall (1987). Then the IM test is a test of specific forms of departure from
homoskedasticity, symmetry and normal kurtosis, which for inference on the
regression parameters are second-order effects compared to migspecification of
the conditional mean.

In other cases, however, the IM test is a test of more fundamental forms
of misspecification. Less well known is that for regression models under
normality that are nonlinear, the IM test is additionally a test of
misspecification of the conditional mean of the dependent variable.

In this paper we provide a general interpretation of the IM test, one
that additionally explains why an IM test in different settings can be
testing such radically different forms of misspecification. The key step is
to recognize that parametric econometric models with densities depending on g
parameters, say, are typically based on densities depending on underlying

parameters of dimension much less than q. For example, for the regression
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model under normality, the underlying parameters are the mean and variance.
These two underlying parameters are in turn modeled to depend on explanatory
variables and ¢q unknown parameters.

The general theory is presented in section 2. In section 3 we present
and interpret IM tests for regression models based on the linear exponential
family. These regression models are based on only one underlying parameter.
The results are discussed further in section 4, and some concluding remarks

are made in section 5.

2. GENERAL THEORY

2.1 The Information Matrix Test

We model dependent variables, a vector Yis conditional on pre-determined
explanatory variables, a vector Xt' Statistical inference is based on an
assumed parameterized density function f(ytl xt,e), denoted f(yt,Xt,e),
where 6 is a qxl1 parameter vector, that satisfies the regularity
conditions of White (1982). This paper focuses on cross-section data,

{(yt, X,), t =1,...,T}, independent across t.1

t

Def ine

(2.1) Se(yt’xt’e) = Velog f(yt,Xt,B)

to be the score for the t-th observation, and

(2.2) D(yt,Xt,e) = ve,se(yt,xt,e) + se(yt,xt,e)-se(yt,xt,e) ,

Extension to time seriés is straightforward by conditioning on {yt~1’ Yo

. Xt’ Xt—l’ Xt~2’ ...} rather than Xt alone.



where Ve and Ve, denote derivatives with respect to 6 and 6’. For
densities satisfying the regularity conditions, the information matrix

equality implies that EO[D(yt,Xt,G) | X,1 = 0, where the subscript 0

t
denotes expectation with respect to the assumed density f(yt,Xt,e). The
information matrix (IM) test of White (1982) is a test of the ql{g+1)/2

. s 2
unique moment conditions™:

(2.3) Eo[vech(D(yt,Xt,e)) ] Xt] = 0 |,
where vech(+*) 1is the "vector half" operator which stacks the lower
triangular part of a symmetric matrix into a column vector.

We note that the IM Test is a special case of the conditional moment (CM)
tests of Newey (1985) and Tauchen (1985). In this more general framework,
Vech(D(yt,Xt,e)) in (2.3) may be replaced by any function with expectation
zero under the assumed model, not just that function defined by (2.2). The CM
test framework is used below.

The IM test is implemented by testing the departure from zero of the

T

corresponding sample moment, T~1 z vech(D(yt,Xt,eT)) , Where GT is an
t=1

estimator consistent for © wunder the true model. In this paper we are
concerned with interpretation of the moment condition (2.3), rather than

methods of implementation.

2 The IM test considered here is the original White (1982) IM test, called the

Second~Order IM test by White (1990). Two other IM tests are the
Cross-Information Matrix test, White (1990), and, for dynamic models, the
Dynamic (First-Order) IM test, White (1987). Sometimes (2.3) includes moment

restrictions already imposed by estimation. If so, these would be omitted.



2.2 The IM Test in Terms of Underlying Parameters
For the case where Vi is i.1.d., there is a large menu of density
functions of the form f(yt,n), where 7 is a hxl parameter vector. In

regression analysis, the dependence of y, on explanatory variables X is

t
captured by replacing ny by L ni(Xt,ei), i=1,...,h, where ei is
qixl, and 6 = (91,..,65)’ is the gx1 vector of parameters in section

2.1, The vector of underlying parameters 7 has dimension (h) that is
considerably less than g. For example, in the classical linear regression
model under normality, vy is N(nlt, "Zt)’ where My = Xt B8 and "2t =
02, so h =2 and gq = dim(B) + 1. In other commonly used univariate

regression models h is also of low dimension, typically 1 or 2.

The assumed density is therefore of the form f(yt,n(X£,9)) =

f(yt’nl(xt’el)"'"nh(xt’eh))’ or more simply:
(2.4) f(yt,nt) = f(yt,nlt,...,nht) ,
where n, = n(Xt,G) does not depend on V-

To obtain the IM test given the density (2.4), we first define

(2.5) Sn(yt’"t) = anog f(yt,n(xt,e))

to be the score with respect to the underlying parameters m, and
(2.6) Hly,,m) = vn'sn(yt’"t) + sn(yt,nt)sn(yt,nt)
to be the matrix which satisfies the information matrix equality in terms of

the underlying parameters m. Then by application of the chain rule of

differentiation, (2.1) becomes



(2.7) se(yt,Xt,e)) Vgn, 'Sn(yt’"t)
h ‘
_% venit'sn.(yt’nt)
i=1 i

Differentiating again, (2.2) becomes after some rearrangement:

2 rs 7 '
VoMt Sni(yt’nt) + Vg, H(yt,nt) (Vent )

™MD

(2.8) D(yt,Xt,e) =
1

i
where Vg denotes the second derivative.

The IM test is a test of EO[vec(D(yt,Xt,e)) | X,1 = 0. From (2.8),

t
the dependent variable Y, appears in two ways. First it appears as the
score vector with respect to the underlying parameters =. Second it appears
in the term H(yt,nt) which has expectation zero by the information matrix

equality for the model in the underlying parameters m. We directly obtain

the following proposition.

Proposition 1

The IM test is a conditional moment test that simultaneously tests:

(2.9) El

™MD

2
vec(venit) sni(yt,nt) | Xt] = 0

i=1

(2.10) Eql(Vgn ") @(Vgn, ") svec(Hly,,n.)) | X,1 =0 . =

By the law of iterated expectation, the IM test is accordingly a
simultaneous test of the following forms of misspecification: (1) that the
score vector for the model in the underlying parameters does not have zero

mean, i.e. E[Sn(yt’nt) | Xt] # 0; and (2) that the score vector for the model



in the underlying parameters does not satisfy the information matrix equality:
i.e. E[H(yt,nt) | Xt] # 0 .

An interesting question is in which directions (2.9) and (2.10) are
testing the two forms of misspecification. At first glance the directions

appear to be exactly (Vent’)'®(vent’)’, the nonlinear analog of squares

h
and products of regressors, and I Vgni
» i=1

. respectively. But this needs

qualification as given in the next section.

2.3 An Underlying Alternative for the IM Test

We impose the additional structure that for n(Xt,O) = (nl(Xt,el)’
nh(Xt,eh)’)', the (i).1 are non-overlapping components of 8, q = q, + oot
a4, Then the (i, j)-th subcomponent of (2.8) associated with the underlying

parameters ni and nj is of dimension qixqj and is given by

ij 4 2 . L] - ’
(2.11) D (yt,Xt,e) Ve.e.nit Sn.(yt’"t) + Ve.nit Hij(yt,nt) (Ve.njt) ,
: i7J i 1 J
where Hij(yt,nt) = vnisnj(yt’nt) + sni(yt,nt)snj(yt,nt) is the (i, j)-th

entry in H(yt,nt).

The first term in (2.11) will always disappear for cross-terms, since

Vg 0 ni(Xt,Gi) = 0 for 1 # j. However, it will not disappear when i = j,

1J
-y : . 2 _
unless ni(Xt,Gi) = Xt ei, in which case Veini(Xt,ei) = 0. The second term

will always be present, unless Hij(yt,nt) = 0. Therefore upon vectorization

The assumption of non-overlapping components of 6 1is satisfied in usual
applications of the IM test, but does exclude, for example, multivariate
models with cross-equation parameter restrictions. The approach taken here

can be appropriately modified on a case by case basis.



the (i, j)-th subcomponents corresponding to Proposition 1 are:

2 _ .
(2.12) Eo[sni(yt,nt) vech(Veinit) | Xt] = 0, i=3 ,
(2.13) EO[Hii(yt,nt)'Vech(veinit°(Veinjt) ) Xt] = 0, 1i=j
EO[Hij(yt,nt)'vec(veinit'(Vejnjt) ) Xt] = 0 , 1i=].

To further interpret (2.12) and (2.13) we use the following construct.

The moment condition (2.13) is of the form EO[H(yt,nt)-g(nt) | X,1 =0,

t
where H(-) is a scalar, g(-) is a vector and ny is not a function of Vi Then
tests of this moment condition are "WLS regression based" conditional moment
tests of HO: EO[H(yt,nt) | Xt] = 0 against H1: EI[H(yt’nt) | Xt] =
Var(H(yt,nt))'g(nt)’a. The rationale is that H1 suggests regression of
H(yt,nt) on Var(H(yt,nt))'g(nt). Since H(yt,nt) may be heteroskedastic
the most powerful test of HO: o = 0 against local alternatives « = T—b?y
will use the weighted least squares (WLS) estimator which divides terms by
Var(H(yt,nt))l/z. Thus

~ T T

— . -1. 4 _1. .
s T Z 8 Var By, )T egn) )T 2 gy, 0) Gy )

~

Tests based on o s are equivalent to tests based on the second summation term
only, but this is just the CM test based on the sample moment corresponding
to EO[H(yt,nt)-g(nt) I Xt] = 0.

This approach is discussed in more detail in Cameron and Trivedi (1990a).
The key part of this interpretation is that tests of EO[H(yt,nt)-g(nt) | Xt] =
0 are tests of El[H(yt,nt) | Xt] = 0 against El[H(yt,nt) | Xt] =

Var(H(yt,nt))'g(nt)’a rather than the more obvious g(nt)'a. Unless H(yt,nt)



is homoskedastic these alternatives differ. A similar interpretation is used

for the moment condition (2.12).

Proposition 2

Let Gi in w,, = ni(Xt,Oi) be non-overlapping components of 6 = (91,..,6h) .

Then the first component of the IM test is zero for i # j, and for i = j is a

t

WLS regression based CM test of:

(2.14) HO: EO[Sni(yt’nt) | Xt] = 0,
against

= . 2 ’
(2.15) Hl‘ El[sni(yt’nt) | Xt] = Var(sni(yt,nt)) vech(veinit) @pos

The second component of the IM test is a WLS regression based CM test of:

(2.16) HO: EO[Hij(yt,nt) I Xt] = 0,
against
(2.17) Hy: El[Hij(yt,nt) I Xt]
= Var(Hii(yt,nt))'vech(veinit-(Veinjt)’)’aZii, i=j,
= Var(Hij(yt’"t))'VeCh(ve.nit'(ve.njt)l)lazij’ i#=j. =

1 J

Therefore the IM test can be interpreted as a test of a null hypothesis
moment condition against one for the alternative hypothesis, with the
alternative hypothesis model parameterized by o in addition to 9.4 This

ovefccmes one of the perceived weaknesses of the IM test.

4 Of course (2.15) and (2.17) are just one representation of the alternatives,

as there will be many locally equivalent alternatives.



The above results also suggest why IM tests can have poor power. First,

the implicit null hypotheses are that sni(yt,nt) and Hij(yt’nt) have

expectation zero. These are just two of many functions of Yy and the
underlying pargmeters Ny that might be chosen as the basis for a test.

Second, the directions of departure under the implied alternatives given
in Proposition 2 are very specific. For example, if Ny = Xitlei’ i.e. a
linear specification is chosen for the underlying parameter, the first part of
the IM test drops out completely, and for the second part the direction is

) o The power of the IM test might be improved

Var(Hij(yt,nt))-vech(Xit-X. o

jt
by testing in other directions. Furthermore, we might test in fewer than the

q(g+1)/2 directions of the IM test. Thus CM tests of EO[sn (yt,nt)-gi(xt) l
i

Xt] = 0, and EO[Hij(yt,nt)'gij(Xt) | Xt] = 0 might be implemented, where
gi(Xt) and gij(xt) are of lower dimension than the corresponding terms in
(2.12) and (2.13). Obvious candidates are powers of LI and njt’

Third, the IM test does not test the two conditions (2.9) and (2.10)
separately, sequentially or jointly. Instead the sum of the two conditions
is tested, as given in (2.8). Since it is possible that one of the two terms
of (2.8) may be negative while the other is positive, the IM test may not

detect misspecification when separate tests of the two conditions would.

Separate CM tests of the two conditions might instead be implemented.

3. IM TESTS FOR REGRESSION MODELS BASED ON THE LINEAR EXPONENTIAL FAMILY

3.1 1IM Test for LEF Models

A wide range of commonly used models are actually based on densities with
Jjust one underlying parameter, notably members of the linear exponential
family (LEF). The LEF includes the normal (with known variance), binomial

{(with known number of trials), Poisson, gamma, exponential, and geometric



distributions. For more details, see Gourieroux, Montfort, and Trognon (1984)
and McCullagh and Nelder (1989). For CM tests for the LEF, see Wooldridge
(1991).

We begin by deriving a general expression for the IM test in LEF models.

Using the mean parameterization, the LEF is defined by:

(3.1) fly,pu) = exp{A(p) + Bly) + C(n) -y} ,

where the functions A, B and C are such that the density integrates to 1,

and it can be shown that:

(3.2a) Elyl] = p = —(VMC(u))—l-VNA(u)

(3.2b) El(y-p)%] = v(p) = (VHC(“))—l

(3.2¢) EL(y-p)°] = V()Y YV (k)

(3.2d) El(y-w)? = V(u){(VMV(u))Z + V(u)-ViV(u) F V(W)
and the score

(3.3) s, 1) = ¥ logly,um) = viw ety -

In terms of the discussion in section 2.2, 7 equals W, here a scalar,
and regression models are obtained by letting u = u(Xt,e). For example,

for the linear regression model u(Xt,G) = X,’0, and for the Poisson

t
regression model it is customary to specify u(Xt,G) = exp(the).
The essential property of the LEF that yields the results below is

that the score vector in terms of the underlying parameters equals the

"residual" (y - p) divided by the variance as given in (3.3). Then

(3.4) H(y,u)

2
vusu(y,u) + (su(y,u))

Vi) " (y-m)? - vV ) - V),

10



with variance

(3.5) Var (H(y,p)) = V(u)—z-(vﬁv(ut) ‘£ 2),

obtained by squaring (3.4), taking expectations, using equations (3.2), and
simplifying. The IM test is therefore a test of the moment condition:

-1
(3.6) EO[V(ut)

'(yt - ut)-vech(vgut)
+ v(ut)'z{(yt-ut)2 - VuV(ut)-(yt-ut) - Vip )}

~vech(Veut-(Veut) ) Xt] = 0.

For applications to any LEF model one can directly use (3.6). Here we
are concerned with interpreting the resulting IM test. By proposition 2, the

first component of the IM test is a CM test of:

-1 _
(3.7) HO: EO[V(ut) (yt—ut) | Xt] = 0,
against
(3.8) H: E V) Yy,-p) | X1 = Vi) ‘evech(viu, )’
: 17 Ep PV Y TRy gl T Vi) rvechiVgr Jra,

and the second component of the IM test is a test of

-2 2 =
(3.9) HO: EO[V(ut) {(yt-ut) - V“V(ut)-(yt—ut) - V(ut)} | Xt] = 0,
against
" _2 — 2 — ] — —
(3.10) Hy: El[V(”t) {(yt ut) VHV(ut) (yt ut) V(“t)} | X

¢

= V(ut)"z-(vivtut) + 2)svech(Vgp, + (Vo)) .

Upon obvious simplification, the first component can alternatively be

11



interpreted as a test of:

against
= 2. s
(3.12) H: IEl[yt | Xt] = uy ¥ Vech(Veut) o,

while the second component can be interpreted as a test, given (3.11) is not

rejected, i.e. given [E[yt | X.1 = My of the following null versus alternative

t
hypotheses:

2
(3.13) H_.: EO[(yt-ut)

o | X,1 = V(”t) ,

t

2
(3.14) H.: El[(ytwut) | X,

1 t

2 ' '
= V(”t) + (VHV(ut) + 2)'vech(veut'(veut) ) "0y

Thus in regression models based on the LEF, the IM test is in general
a test of (1) a particular misspecification of the conditional mean, and (2)
conditional on correct specification of the conditional mean, a particular
form of misspecification of the conditional variance function, namely that
given in the second line of (3.14). Rather than sequentially performing these

tests, the IM test is a test of the sum of the two.

3.2 Specific LEF Examples
The normal distribution with 02 known is a member of the LEF. Then V{u)
= 02, and simplification occurs because V“V(u) = 0. In particular, (3.14)

— 2 ra 7 » - -
] ="+ 2 vech(veut (Veut) ) *a,, which is

2

simplifies to [El[(yt-ut)2 | X

t 2’

locally equivalent to El[(yt—ut) .[ Xt] = h('arO + Zt 71) where 2, =

t
vech(Veut'(Veut)’). This is the alternative for usual tests for

12



heteroskedasticity, with Zt here chosen to be the products and cross products

of Veu(Xt,e). However, unless Vgu =0, i.e. By = X.’8, the IM test is

t t

additionally testing the specification of the conditional mean, as in (3.12).
Nonlinear normal models are not all that uncommon. An example is the

time series model with AR(1) error: Ve = Xt’B +ouy where u, = pPu._, * €, and

t
€, is i.i.d. N(O, ¢2). Then By = IEO[yt | yt—l""xt"'] =PV 4 * Xt’B -
Xt_l’Bp is nonlinear in B and p. The portion of the IM test corresponding
to p will test the conditional mean as well as the conditional variance, as
found by Bera and Lee (1992) who analyzed the IM test for this model.

The normal model with 02 unknown is a member of the quadratic exponential
family, rather than the LEF. This model is considered in an earlier version
of this paper, Cameron and Trivedi (1990b). Then (nlt’ n2t) = (ut, w%), and
the afore-mentioned test for heteroskedasticity corresponds to the (1,1)
subcomponent of the IM test. The (1,2) subcomponent yields a test of symmetry
and the (2,2) subcomponent a test of non-normal kurtosis. These correspond to
the results of Hall (1987) for the linear model. However, in the same way
that the (1,1) subcomponent will additionally test the specification of the
conditional mean if u(Xt,B) is nonlinear, the (2,2) subcomponent will
additionally test the specification of the conditional variance if 0% is
parameterized as 02(Xt,y) nonlinear in 7.

A second well-known example of the LEF is the binary choice model.5 In
this model Vi is Bernoulli distributed, a member of the LEF (binomial with
one trial) with mean My and variance function V(ut) = ut(l - ut). The

logit model is the special case By = exp(Xt’B)/(l + exp(Xt’B)) and for the

probit model By = @(Xt’B) where ¢ is the standard normal c.d.f. Then H(y,u)

This example arose from conversation with Dick Jefferis. The IM test for

the logit model is given in Newey (1985).

13



in (3.4) equals (u(l—u))—z'{(y~u)2 - (1-2p)+ (y-p) - p(l-w)}, which equals
zero when Yi takes either of its possible values 0 and 1. So the only
hypothesis tested is that of correct specification of the conditional mean,
. - 2 P
IED[yt | Xt] il against El[yt | Xt] = Byt vech(Veut) o,
A third example of the LEF is the Poisson regression model. Then Vi has
mean W, and variance V(ut) = Hy- The IM test is a simultaneous test of
correct specification of the conditional mean, with [El[yt | Xt] i +
vech(vgut)'al, and correct specification of the conditional variance,
with Varl[yt | X

t] =yt 2-vech(Veut-(V9ut) ) "o

4. DiscussioN

Most applications of the IM test have been to the linear regression model
with homoskedastic normal error. In this case the null hypothesis is that
(second through fourth) moments of residuals are constant, and the alternative
hypothesis is that these moments are respectively quadratic, linear or
constant functions of the regressors.

The analysis of this paper indicates that generalization of this special
case is possible, though is not immediate. The IM test is actually a
simultaneous test of two forms of misspecification.

The first form of misspecification is one that is not tested in, and not
suggested by, the linear regression example. In nonlinear regression models
under normality, and more generally LEF models, this is a test that the
conditional mean is correctly specified, against the alternative that in
addition terms in the second derivatives of the conditional mean should be
included. More generally still, from Proposition 2 the test is one of correct

specification of . (yt,nt) against the alternative given in (2.15).
i

The second form of misspecification can be viewed as a generalization of

14



that found by Hall (1987) for the linear regression model under normality. In
place of moments of residuals, we have the expectation of the products and
cross—-products of the sum of the second derivative and outer product of the
first derivatives of the density, where these derivatives are taken with
respect to the underlying parameters of the density, i.e. Hij(yt’xt'e)
defined in (2.6). Under the alternative hypothesis, the non-zero expectation
equals a linear function of the cross product of the derivatives of the
underlying parameters with respect to the model parameters. Unlike the normal
regression model case, this linear function of cross products under the
alternative is additionally weighted by a variance function, given in general
by (2.17), and for the LEF case in (3.10). In many models the function
Hij(Yt’xt’e) may not be readily interpretable, though it is in the examples
given above, which subsume many commonly-used econometric models.

Interpretation of the IM test is clearly simplest if only the second form
of misspecification is tested, which is the case if Vgni(Xt,e) = 0.
Previous in-depth studies have implicitly restricted analysis to such cases.
This interpretation is still possible if we define IM tests to be conditional
on E[Vn's(yt,n(Xt,B)) | Xt] = 0. But the examples given show that this may

i
be the most important ﬁoment condition to test, e.g. for binary choice
models imposing this condition would leave nothing to test. And the
applied researcher will perform the entire test.

Sub-components of the IM test sometimes coincide with existing score
tests. For the normal linear regression model, where only the second type of
misspecification is tested, Hall (1987) noted that the IM test is equivalent
to score tests for heteroskedasticity (Breusch and Pagan (1979)), skewness and
non-normal kurtosis (Bera and Jarque (1982)). And for a number of members of
the LEF family, the second type of misspecification tested by the IM test of

section 3 is equivalent to a score test of departures from the null hypothesis

15



variance-mean relationship, see Cameron (1991). However, in general there is
no reason to believe that for a given model the score tests that are
equivalent to the IM test will be the score tests typically used to test

specification of the given model.

5. SUMMARY AND CONCLUSION

Parametric regression models are typically based on densities depending
on few, say h, parameters, where these few parameters are in turn modeled to
depend on explanatory variables and many, say ¢, unknown parameters.

The IM test for such models is testing two types of misspecification: (1)
that the score vector for the model in the underlying parameters does not have
zero mean, and (2) that the score vector for the model in the underlying
parameters does not satisfy the information matrix equality. Furthermore,
these two misspecifications are tested in very particular directions,
determined by the first and second derivatives of the underlying parameters
with respect to the g parameters. A weakness of the IM test is that it
considers the sum of these two types of misspecification, even though the two
may be offsetting.

Because previous studies of the IM test have focused on the linear
regression model, they have implicitly restricted analysis to examples where

only the second form of misspecification is tested.

16



REFERENCES

Bera, A.K. and C.M. Jarque, 1982, "Model Specification Tests: A Simultaneous
Approach”, Journal of Econometrics, 20, 59-82.

Bera, A.K. and S. Lee, 1992, "Information Matrix Test, Parameter Heterogeneity
and ARCH: A Synthesis", Review of Economic Studies, forthcoming.

Breusch, T.S. and A.R. Pagan, 1979, "A Simple Test for Heteroscedasticity and
Random Coefficient Variation", Econometrica, 47, 1287-1294.

Cameron, A.C., 1991, "Regression-Based Tests of Heteroscedasticity in Models
where the Varlance depends on the Mean Relationships", working paper
#379, Department of Economics, U,C.-Davis.

Cameron, A.C. and P.K. Trivedi, 1990a, "Conditional Moment Tests with Explicit
Alternatives", Working Paper #366, Department of Economics, U.C.-Davis.

Cameron, A.C. and P.K. Trivedi, 1990b, "The Information Matrix Test and its
Implied Alternative Hypotheses", Working Paper #372, Department of
Economics, U.C,-Davis.

Chesher, A., 1983, "The Information Matrix Test: Simplified Calculation via a
Score Test Interpretation", Economics Letters, 13, 45-48.

Gourieroux, C., A. Monfort and A.Trognon, 1984, Pseudo Maximum Likelihood
Methods: Theory", qunometrica, 52, 3, 681-700.

Hall, A., 1987, "The Information Matrix Test in the Linear Model", Review of
Economic Studies, 54, 257-265.

Lancaster, T., 1984, "The Covariance Matrix of the Information Matrix Test",
Econometrica, 52, 1051-1054.

McCullagh, P. and J. A. Nelder, 1989, Generalized Linear Models, 2nd ed.,
London: Chapman and Hall.

Newey, W.K., 1985, "Maximum Likelihood Specification Testing and Conditional
Moment Tests", Econometrica, 53, 1047-1070.

Tauchen, G. 1985, "Diagnostic Testing and Evaluation of Maximum Likelihood
Models", Journal of Econometrics, 30, 415-443.

White, H., 1982, "Maximum Likelihood Estimation of Misspecified Models",
Econometrica, 50, 1-25,.

- White, H., 1987, "Specification Testing in Dynamic Models", in T. Bewley, ed.,

Advances in Econometrics, Fifth World Congress, 1, 1-58, Cambridge
University Press, New York.

White, H., 1990, Estimation, Inference and Specification Analysis,
Cambridge University Press, forthcoming.

Wooldridge, J.M., 1991, “Specification Testing and Quasi-likelihood
Estimation", Journal of Econometrics, 48, 29-55.

17



