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Abstract 

R-squared measures of goodness of fit for count data are rarely, if ever, reported in empirical 

studies or by statistical packages. We propose several R-squared measures based on various 

definitions of residuals, for the basic Poisson regression model and for more general models 

such as negative binomial that accommodate overdispersed data. The preferred R-squared is 

based on the deviance residual. An application to data on health care service utilization 

measured in counts illustrates the performance and usefulness of the various R-squareds. 

 

KEY WORDS: Goodness-of-fit, Poisson regression, negative binomial regression, deviance, 

deviance residual, Pearson residual. 
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1. INTRODUCTION 

 R-squared (R 2 ) measures were originally developed for linear regression models with 

homoscedastic errors. Extensions to models with heteroscedastic errors with known variance 

were proposed by Buse (1973). Extensions to other models are rare, with the notable 

exceptions of logit and probit models, see Windmeijer (1994) and the references therein, and 

tobit models, surveyed by Veall and Zimmermann (1994). 

 In this paper we investigate R 2  measures for Poisson and other related count data 

regression models. Surprisingly, R 2  is rarely reported in empirical studies or by statistical 

packages for count data. (For Poisson, exceptions are Merkle and Zimmermann (1992) and 

the statistical package STATA. These are discussed in section 2.6). Instead the standard 

measures of goodness of fit for Poisson regression models are the deviance and Pearson's 

statistic. These two statistics are widely used by generalized linear model practitioners, see 

McCullagh and Nelder (1989), and seldom used in econometrics applications. 

 We propose several R 2  measures based on various definitions of residuals. These 

measures are intended to measure goodness of fit within a particular type of count data 

model, e.g. Poisson, rather than across model types, e.g. Poisson versus negative binomial. 

We distinguish between various R 2  on the following criteria: 

(1) 0 ≤ R 2  ≤ 1   

(2) R 2  does not decrease as regressors are added (without degree of freedom correction)  

(3) R 2  based on residual sum of squares coincides with R 2  based on explained sum of 

squares  

(4) There is a correspondence between R 2  and a significance test on all slope parameters, 

and between changes in R 2  as regressors are added and significance tests  

(5) R 2  has an interpretation in terms of information content of the data. 

Criterion 3 is the Pythagorean relationship discussed by Efron (1978) for logit models with 

grouped data. Criterion 4 is used by Dhrymes (1986) for logit and probit models. 
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 R 2  measures for the Poisson regression model are presented and discussed in detail in 

section 2. The preferred measure is one based on deviance residuals. Non-trivial extensions to 

negative binomial models are presented in section 3. The empirical performance of R 2  

measures is analyzed in section 4 in an application to the determinants of individual 

utilization of health care services recorded as counts. Conclusions are given in section 5. 

 

2. R-SQUARED FOR POISSON MODEL 

2.1 Poisson Model and Residuals 

 We begin with the Poisson regression model, see for example Cameron and Trivedi 

(1986). The dependent variable yi , i = 1,...,N, is independent Poisson distributed with log-

density 

l y yi i i i i i( ) log log !µ µ µ= − + − ,      (2.1) 

where for brevity the dependence of li  on yi  is suppressed throughout, with conditional mean  

   E y Xi i i[ | ] ( )= =µ µ βX , i ,      (2.2) 

where µ (⋅) is a specified function, Xi  is a vector of exogenous regressors which throughout 

we assume includes a constant term, and β is a k×1 parameter vector. For this model the 

conditional variance equals the conditional mean 

   Var y Xi i i( | ) = µ .      (2.3) 

 The fitted value of yi  is denoted µ µ β
∧ ∧

=i iX( , )  where β
∧

 is the maximum likelihood 

(ML) estimator of β. It is customary to specify the conditional mean as µi  = exp ( Xi ′β ) . 

Then, since Xi  includes a constant, the ML first-order conditions imply  

( )yi i
i

N
−∑ =

∧

=
µ

1
0  .      (2.4) 

Formulae for several of the R 2  measures below simplify if (2.4) holds. In the intercept-only 

Poisson model the individual predicted mean is y
_

, whatever conditional mean function is 

specified. 
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 R-squared measures and other measures of goodness-of-fit will generally involve sums of 

squared residuals. The simplest choice of residual is the unweighted (or raw) residual 

r yi i i= −
∧

( )µ  .      (2.5) 

 This residual is heteroscedastic from (2.3), and a standardized residual may be preferred. 

The two standard choices are Pearson and deviance residuals, with associated measures of 

goodness of fit being Pearson's statistic and the deviance. 

 The Pearson residual is the obvious standardized residual 

p yi i i i= −
∧ ∧

( ) / /µ µ 1 2  .     (2.6) 

Pearson's statistic is the sum of squared Pearson residuals  

P yi i i
i

N
= −∑

∧ ∧

=
( ) /µ µ2

1
 .     (2.7) 

 The deviance is rarely used in econometrics but more widely used in the statistics 

literature. Let l ( )µ  denote the log-likelihood function for a generalized linear model, 

defined in section 2.5, such as the Poisson, where µ  is the N×1 vector with i-th entry µi . 

Then the fitted log-likelihood is l( )µ
∧

, while the maximum log-likelihood achievable, i.e. that 

in a full model with N parameters, is l y( ) , where µ
∧

 and y  are N×1 vectors with i-th entries 

µ
∧

i  and yi . The deviance is defined to be  

D y l y l( , ) { ( ) ( )}µ µ
∧ ∧

= −2      (2.8) 

which is twice the difference between the maximum log-likelihood achievable and the log-

likelihood of the fitted model. The squared deviance residual is the contribution of the i-th 

observation to the deviance.  

 For the Poisson log-density defined in (2.1) the deviance residual is 

d sign y y y yi i i i i i i i= − ⋅ − −
∧ ∧ ∧

( ) [ { log( / ) ( )}] /µ µ µ2 1 2 ,  (2.9) 

where y log(y ) = 0 for y  = 0. The deviance is 

D y y y yi i i i i
i

N
( , ) { log( / ) ( )}µ µ µ

∧ ∧ ∧

=
= − −∑ 2

1
,   (2.10) 

which usually simplifies due to (2.4). 
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2.2  R-Squared for Poisson Model based on Raw Residuals 

 We first consider using the usual R-squared for the linear regression model, i.e. measures 

based on unweighted residual sums of squares. The benchmark is the residual sum of squares 

in the intercept-only model, with fitted mean y
_

. There are several equivalent ways to express 

R 2  in the linear regression model, but their analogs for nonlinear models differ. 

 Using the (unweighted) residual sum of squares yields 

R
y

y y
RES

i i
i

N

i
i

N
2

2

1

2

1

1= −
−∑

−∑

∧

=

=

( )

( )
_

µ
 .    (2.11) 

RRES
2  is clearly bounded from above by unity, but it may take negative values even if a 

constant term is included in the regression. Intuitively ( ) ( )
_

y y yi ii ii−∑ ≤ −∑
∧
µ 2 2 , but this is 

not guaranteed in small samples as the Poisson MLE minimizes ( log )µ µ
∧ ∧

−∑ i ii iy  rather 

than the sum of squared residuals. For similar reasons RRES
2  may decrease as additional 

regressors are added.  

 Using instead the (unweighted) explained sum of squares yields the measure 

            R
y

y y
EXP

i
i

N

i
i

N
2

2

1

2

1

=
−∑

−∑

∧

=

=

( )

( )

_

_

µ
 .    (2.12) 

This may exceed unity in small samples and also need not increase as regressors are added.  

 REXP
2 differs from RRES

2  since 

( ) ( ) ( )
_ _

y y y yi
i

N

i i
i

N

i
i

N
−∑ = −∑ + −∑

=

∧

=

∧

=

2

1

2

1

2

1
µ µ  

     + ∑ − −
=

∧ ∧
2

1i

N

i i iy y( )( )
_

µ µ . 

Unlike the case for the linear regression model the third term on the r.h.s. is not zero, and the 

two measures of R2  differ. For logit models where a similar difference occurs and has been 

well studied, Lave (1970) proposed use of the first measure. An additional complication in 
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defining REXP
2  arises in Poisson models with µi  ≠ exp ( Xi ′β ) . Then an alternative to (2.12) 

is to replace the sample mean of yi  in the numerator by the sample mean of the fitted values, 

as these two differ when (2.4) does not hold. Such a modified REXP
2  still differs from RRES

2 , 

and in practice this modification makes relatively little difference to the value of REXP
2 . It 

seems preferable to still use (2.12) which is motivated by decomposing ( )
_

y yi −  into the sum 

of the residual ( )yi i−
∧
µ  and the remainder ( )

_
µ
∧

−i y . 

 A third related measure is the squared sample correlation coefficient between yi  and µ
∧

i  

∑∑

∑

=

∧

=

=

∧

−⋅−

⎟
⎠

⎞
⎜
⎝

⎛ −−
= N

i
i

N

i
i

N

i
ii

COR

yy

yy
R

1

2
_

1

2
_

2

1

__

2

)()(

))((

µµ

µµ
,    (2.13) 

where µ µ
_

= ∑− ∧
N ii

1 . This measure differs from the first two, is clearly bounded between 0 

and 1, and may decrease as regressors are added. 

 In summary, in small samples the three R 2  measures based on raw residuals differ, and 

the only one of criteria 1-5 satisfied is criterion 1 by RCOR
2 . 

 

2.3  R-Squared for Poisson Model based on Pearson Residuals 

 Since the Poisson regression model is a heteroscedastic regression model, a more natural 

procedure is to use standardized rather than unweighted residuals. An obvious choice for the 

numerator of R2  is the Pearson residuals from the fitted model. More problematic is the 

choice of weight in the denominator. We propose y
_

, which is equivalent to using the Pearson 

residuals in the most restricted model where only an intercept is included. Then for the 

Poisson model 

 R
y

y y y
P P

i i i
i

N

i
i

N, _ _

( ) /

( ) /
2

2

1

2

1

1= −
−∑

−∑

∧ ∧

=

=

µ µ
.     (2.14) 

In small samples RP P,
2  is less than unity, but may be negative and may decrease as regressors 

are added. 
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 We could use µ
∧

i  instead of y
_

 as the weight for the denominator term of RP P,
2 . 

Superficially this seems similar to the measure of Buse (1973). Buse analyzed models with 

heteroscedastic errors in the context of GLS estimation with known variance and proposed 

R y y yBUSE i i ii i ii
2 2 2 2 21= − −∑ −∑

∧
[ ( ) / ] / [ ( *) / ]

_
µ σ σ , where y

_
* is the weighted average 

of y  obtained by GLS in the model with just a constant term. To apply this to the Poisson 

model requires caution, however, because unlike the case considered by Buse σi
2  depends on 

the same parameters as the conditional mean. Essentially it only makes sense to consider how 

much of the marginal variance of  y
σ

  is explained by the conditional variance of  y
σ

  given  X  

if σ  does not depend on X. 

 Another possible variation on RP P,
2  is a weighted version of REXP

2  in (2.12). In 

applications the obvious quantity [ ( ) / ] / [ ( ) / ]
_ _ _

µ µ
∧ ∧

−∑ −∑i ii iiy y y y2 2   differs markedly 

from RP P,
2 . This is not surprising as theoretically we need to decompose ( ) /

_ _
/y y yi − 1 2  into 

the sum of the residual ( ) / /yi i i−
∧ ∧
µ µ 1 2  and a remainder term that will be awkward, lack 

interpretation, and differ from ( ) /
_ /µ µ

∧ ∧
−i iy 1 2 .  

 R-squared measures based on Pearson residuals satisfy none of criteria 1 to 5. 

 

2.4  R-Squared based on Deviance Residuals 

 We can construct a similar measure to RP P,
2 , using deviance residuals rather than Pearson 

residuals. The sum of squared deviance residuals for the fitted Poisson model, i.e. the 

deviance, is defined in (2.10). For Poisson with just an intercept the predicted mean is y
_

, 

and the deviance is D y y y y yi i
i

N
( , ) log( / )

_ _
= ∑

=
2

1
. This yields the deviance R-squared for the 

Poisson 

R
y y y

y y y
DEV P

i i i i i
i

N

i i
i

N, _

{ log( / ) ( )}

log( / )
2 1

1

1= −
− −∑

∑

∧ ∧

=

=

µ µ
 ,   (2.15) 

which simplifies due to (2.4) when µi  = exp ( Xi ′β ) . 
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 This deviance measure has a number of attractive properties. From (2.8) we have 

R l y l l y l yDEV P,

_
{ ( ) ( )} / { ( ) ( )}2 1 2 2= − − −

∧
µ     

 = − −
∧

2 2{ ( ) ( )} / { ( ) ( )}
_ _

l l y l y l yµ  ,    (2.16) 

Since the fitted log-likelihood increases as regressors are added and the maximum value is 
l y( )  it follows that RDEV P,

2  lies between 0 and 1 and does not decrease as regressors are 

added. 

 From (2.16), RDEV P,
2  can be equivalently expressed as 

R
y y y

y y y
DEV P

i i i
i

N

i i
i

N,

_ _

_

{ log( / ) ( )}

log( / )
2 1

1

=
− −∑

∑

∧ ∧

=

=

µ µ
 . 

If we define for the Poisson model a generalized deviance function between any two 

estimates a  and b  of the vector mean µ  to be D a b y a b a bi i i i i
i

N
( , ) { log ( / ) ( )}= − −

=
∑ 2

1
, 

then the numerator term in the expression above is the explained deviance D y( , )
_

µ
∧

. Unlike R-

squared measures based on unweighted residuals or Pearson residuals, therefore, that based 

on the deviance residuals has the advantage that the measure based on residual variation 

coincides with the measure based on explained variation.  

 Also from (2.16), RDEV P,
2  equals the log-likelihood ratio test statistic for overall fit of the 

model, divided by a scalar 2{ ( ) ( )}
_

l y l y−  that depends only on the dependent variable y  

and not the regressors X . 

 Finally, from Hastie (1987) the deviance (2.8) equals twice the estimated Kullback-

Leibler divergence between the N×1 vectors µ
∧

 and y . If we interpret the deviance D y y( , )
_

in 

the intercept-only model as the information, measured by Kullback-Leibler divergence, in the 
sample data on y  potentially recoverable by inclusion of regressors, then RDEV P,

2  measures 

the proportionate reduction in this potentially recoverable information. 

 Thus RDEV P,
2  satisfies all of criteria 1-5. 
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2.5  Deviance Residuals and Generalized Linear Models 

 In the simplest generalized linear model (glm) the density is a member of a natural 

exponential family, in which case the only parameter is the mean or a transformation of the 

mean. (By glm we mean a model with log-density (2.17). A broader definition allows for a 

multiplicative dispersion parameter.) The log-density is 

   l y b c d yi i i i i i( ) { ( ) ( )} ( )µ µ µ= − +     (2.17) 

where E[yi ] = µi , Var(yi ) = b'(µi )- 1 , and we have parameterized the model in terms of the 

mean, rather than using the canonical parameterization of McCullagh and Nelder (1989, 

p.28). Different choices of the functions b(⋅) and c(⋅) correspond to different members, such 

as Poisson, normal (σ2  known), gamma and binomial (number of trials known).  

 It is for this class of models that the deviance (2.8) and associated residual are defined, 

while the Pearson residual generalizes to p y bi i i i= −
∧ ∧ −( ) / ' ( ) /µ µ 1 2 . Both deviance and 

Pearson residuals have been used and studied extensively for this class of models. The 

Pearson residuals often exhibit a skewed distribution when y is non-normally distributed, 

while deviance residuals are less skewed.  

 For the Poisson distribution, a residual that approximates normality is the Anscombe 

residual defined by a yi i i i= ⋅ −
∧ ∧

1 5 2 3 2 3 1 6. ( ) // / /µ µ . Although di and ai have different 

functional forms, they take very similar values (see McCullagh and Nelder 1989, p. 39) and 

the deviance residuals are very nearly normally distributed after taking account of the 

discreteness by making a continuity correction (Pierce and Schafer 1986). This continuity 

correction consists of adding or subtracting 1
2  to/from y, toward the center of the distribution. 

Because of the approximate normality of the deviance residuals, they are very useful tools for 

identifying individual poorly fitting observations, or for investigating effects of potential new 

covariates or nonlinear effects of those already in the fitted model. Also, Davison and Gigli 

(1989) advocate using deviance residuals in normal scores plots to check the distributional 

assumptions.  
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 For case-influence diagnostics, comparing the fit of a model including all N cases to the 

fit of a model based on N -1 cases, after deletion of a single observation, Pregibon (1981) 

found the studentized Pearson and deviance residuals most useful. The studentized residuals 

are defined as  p p hi i i* /= −1 and d d hi i i* /= −1 , where hi  is the i-th diagonal element 

of the “hat” matrix H W X X WX X W= −1 2 1 1 2/ /( ' ) ' ,  W diag wi=
∧

( ) , and 

( )w Var y Xi i i i= −( ) / ( ' )1 2∂µ ∂ β . For the detection of outliers, Williams (1987) introduced 

the likelihood residual. The squared likelihood residual is a weighted average of the squared 

studentized deviance and Pearson residuals, l h d h pi i i i i
2 1= − +( ) *2 *2 , and is approximately 

equal to the likelihood ratio test for testing whether an observation is an outlier. Because the 

average value, k / N , of hi  is small, the likelihood residual li  is much closer to di  than to pi , 

and is therefore also approximately normally distributed. Williams (1987) uses half-normal 

plots to analyze the results. 

 Pearson’s statistic and the deviance are used as overall goodness-of-fit tests. A large 

value for Pearson's statistic or the deviance is usually interpreted as indicating poor 

"goodness of fit" of the Poisson model, in the sense that given the assumed conditional 

variance, the fitted conditional mean is on average far from the actual value of the dependent 

variable. However, it may instead indicate inappropriateness of the Poisson restriction that 

the conditional variance equals the conditional mean. Both measures are asymptotically chi-

squared distributed if data is grouped. For the more usual case of non-grouped data, which we 

analyze, the Pearson statistic is often found to be more nearly chi-squared distributed than the 

deviance (Pierce and Schafer 1986), but these authors still argue that the deviance is a more 

appropriate measure than the Pearson statistic. Landwehr et al. (1984) also prefer the 

deviance as a goodness-of fit measure in the logit model, explicitly stating the fact that it will 

decrease when regressors are added, which is not necessarily the case for Pearson’s statistic. 

The analysis of deviance, McCullagh and Nelder (1989, p.35), is a generalization of analysis 

of variance in normal error models that uses the incremental change in deviance as regressors 

are added. This is used in the log-linear model literature, e.g. Bishop, Feinberg and Holland 

(1975), which uses the term G 2  statistic for the deviance. McCullagh and Nelder (1989) 



 10 

merely see the Pearson statistic as a measure of residual variation, and use P /(N-k ) as an 

estimator of the dispersion parameter ρ, when the variance is specified as ρµi . McCullagh 

(1986) derives the asymptotic distribution of both Pearson’s statistic and the deviance, 

conditional on the estimate of β . Both statistics are conditionally asymptotically normally 

distributed. The moments are not easily evaluated, though, and care has to be taken when the 

µi  are small, as the deviance may become degenerate. 

 

2.6  Discussion 

 For the Poisson model, the deviance R 2  satisfies all five criteria presented in the 

introduction, while the other proposed R 2  fail all these criteria, except RCOR
2  which always 

lies between 0 and 1. The deviance R 2  is based on a residual that while unfamiliar to 

econometricians has desirable properties detailed in section 2.5. It can be computed from the 

output of any Poisson regression package that reports the fitted log-likelihood or a likelihood 

ratio test, see (2.16), given separate once-only computation of l y( ) . It is even more easily 

computed as 1 2 2−
∧

G G y( ) / ( )
_

µ , where G 2  is the G 2  statistic reported by the 

econometrics package LIMDEP. 

 The only study we have found that considers or reports an R 2  for Poisson models is 
Merkle and Zimmermann (1992, p.291). They present a measure equal to RDEV P,

2  which is 

motivated as the explained increase in the log-likelihood relative to the maximum increase 
possible, and RP P,

2 . They give little discussion of properties of these, and do not attempt to 

discriminate between them. 

 The only statistical package we have found that reports an R 2  is STATA, which uses the 

likelihood ratio index,  

R l

l y
LRI
2 1= −

∧
( )

( )
_
µ  

which compares the log-likelihoods of the fitted and intercept-only models. RLRI
2  is a scalar 

multiple of RDEV
2 , since 
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     R l y l y RLRI DEV
2 21= − ⋅{ ( ) / ( )}

_
 

using (2.16). For the Poisson these differ and RLRI
2  has the disadvantage of having a 

theoretical upper limit less than unity. 

 All of the measures defined above generalize in a straightforward way to other 

generalized linear models. In particular, the general formula for RDEV
2  given in (2.16) is 

evaluated at densities aside from Poisson that are also special cases of (2.17). For the normal 

(σ 2  known) the deviance residual is the usual residual and the deviance R 2  coincides with 

the usual R 2 , and for the Bernoulli, e.g. logit and probit, the deviance R 2  coincides with the 

R 2  of McFadden (1974) which equals RLRI
2 . Generalization of the deviance R 2  to 

generalized linear models is studied in detail by Cameron and Windmeijer (1994). 

 Our concern here is with count data models. The Poisson model imposes the restriction 

that the conditional variance equals the conditional mean, but in practice this restriction is 

often unreasonable. More general count data models relax this restriction by introducing a 

dispersion parameter which complicates computation of both deviance R 2  and Pearson R 2 . 

Furthermore, the deviance is a construct for generalized linear models, yet not all count data 

models fall in this class. The next section nonetheless proposes deviance R 2  and Pearson R 2  

for the commonly-used non-Poisson count data models. 

 

3. R-SQUARED FOR OVERDISPERSED COUNT DATA MODELS 

3.1 General Results 

 The Poisson model imposes the restriction that the conditional variance equals the 

conditional mean, but in practice this restriction is often unreasonable. More general count 

data models relax this restriction. Basic models for count data are presented in Cameron and 

Trivedi (1986), while Gurmu and Trivedi (1992) provide a more recent comprehensive 

survey.  
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 The variance-mean relationship is usually specified to be either that of the Negbin 1 

variance function 

Var y Xi i i i( | ) = + ⋅µ α µ      (3.1) 

or the Negbin 2 variance function 

Var y Xi i i i( | ) = + ⋅µ α µ 2     (3.2) 

where we use the terminology of Cameron and Trivedi (1986) with 1 and 2 denoting the 

highest power to which the mean is raised in the variance function. The scalar α ≥ 0 is called 

the dispersion parameter.  

 Two possible modeling approaches may be taken. The quasi-likelihood (QL) approach 

assumes mean function (2.2) and variance function Var y X vi i i( | ) ( , )= µ α  for specified 

function v as in (3.1) or (3.2), and estimates the parameters β and α on the basis of the 

assumed first two moments. The QL score equations for β  have the form 
( )

( , )
y

v
i i

i

i

i

N − =∑
=

µ
µ α

∂µ
∂β

0
1

      (3.3) 

for a given value of α . 

 The maximum likelihood (ML) approach additionally specifies a density, usually the 

negative binomial, and estimates the parameters β and α by maximum likelihood methods. In 

econometrics, the  MLE for negative binomial with Negbin 2 variance function is commonly 

used, and is the estimator provided, for example, by the LIMDEP and STATA packages. We 

consider both QL and negative binomial ML estimators for the Negbin 1 and Negbin 2 

variance functions. 

 For all these models the definition of the unweighted residual is that in (2.5). The 

unweighted residual R-squared measures RRES
2 , REXP

2  and RCOR
2  are as defined in the 

Poisson case, except that they are evaluated at the mean fitted by the relevant estimation 

procedure. These measures have the same properties, and deficiencies, as in the Poisson case. 

In the special case where µi  = exp ( Xi ′β )  and Xi   includes a constant, the raw residuals can 

be shown to sum to zero, i.e. (2.4) holds, for the Negbin 1 model (both QL and ML 
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estimates), but not for the Negbin 2 model. The latter result can lead to quite different 

performance of RRES
2  and REXP

2  in Negbin 2 applications. 

 For all these models, the Pearson residual generalizes to 

p y vi i i i= −
∧ ∧ ∧

( ) / ( , ) /µ α µ 1 2      (3.4) 

where the variance function in the denominator is defined in (3.1) or (3.2). To construct an 

RP
2  measure for count data models more general than the Poisson we need to obtain a 

dispersion parameter estimate α
∧

 for both the fitted and intercept-only models. We use the 

same estimate of the variance parameter for both the fitted and intercept-only models, as we 

wish to measure the fit due to the regressors, not the dispersion parameter. On this point, it is 

instructive to consider the homoscedastic error classical regression model. If the variance 

parameter σ2  is known, the Pearson residual equals ( ) /yi i−
∧
µ σ  in the fitted model and 

( ) /
_

y yi − σ  in the intercept-only model. When σ is unknown we use the same estimate of σ 

for both the fitted model and intercept-only model, cancellation occurs, and RP
2  reduces to 

the usual R2  for the classical regression model. If instead we used 

σ µ
∧ − ∧

= − −∑2 1 2( ) ( )N k yi ii  for the fitted model and σ
∧ −= − −∑0

2 1 21( ) ( )
_

N y yii  for the 

intercept-only model, then RP
2  would always equal ( ) / ( )k N− −1 1 . The same would occur 

for the QL estimator with Negbin 1 variance function, defined in section 3.3. 

 We therefore define for general count data models the Pearson R-squared 

 R
y

y
P

i i i
i

N

i
i

N
2

2

1

0
2

1
0

1= −
−∑

−∑

∧ ∧ ∧

=
∧

=

∧ ∧

( ) / ( , )

( ) / ( , )

µ ν µ α

µ ν µ α
.    (3.5) 

where µ
∧

i  and α
∧

 are evaluated at the estimates ( , )α β
∧ ∧

 of the fitted model, and µ µ α
∧ ∧ ∧

=0 0( )  

denotes the predicted mean in the intercept-only model estimated under the constraint that 

α α=
∧

. For the Poisson model RP
2  simplifies to RP P,

2  as v i i( , )µ α µ
∧ ∧ ∧

=   and  µ
∧

=0 y
_

. 

Computation of RP
2  for other models is deferred to the relevant sub-sections below. In all 

cases this measure satisfies none of criteria 1-5. 
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 The deviance is traditionally defined for generalized linear models, a class that excludes 

the Negbin 2 model, unless α is known, and the Negbin 1 model even if α is known. We 

propose the following generalization of the deviance to cover these models when estimated 

by ML 

D l ls i si i i
i

N
( , , ) { ( , ) ( , )}µ µ α µ α µ α

∧ ∧ ∧ ∧ ∧ ∧ ∧

=
= −∑2

1
,    (3.6) 

where li i( , )µ α
∧ ∧

 is the log-density evaluated at the ML estimator  of the fitted model, and 

µ µ α
∧ ∧ ∧

=si si ( ) is the ML estimate of the fitted mean in the saturated model, i.e. the model with 

separate intercept for each observation, estimated with the constraint α α=
∧

. The deviance is 

twice the difference between the maximum log-likelihood (given α α=
∧

) and the log-

likelihood for the fitted model, and is clearly nonnegative. (We call this generalization the 

deviance. The discussion in McCullagh and Nelder (1989, p. 33) suggests it could also be 

called the discrepancy, or in some applications the scaled deviance. The working paper 

version of this paper had a slightly different definition which, as pointed out be a referee, 

could potentially be negative.) To generate an R-squared measure from (3.6) we evaluate the 

deviance for the benchmark intercept-only model at the same estimated value of α as for the 

fitted model, taking the same approach as for the Pearson R-squared. 

 The Deviance R-squared is 

     RDEV
2  = −

∧ ∧ ∧ ∧ ∧ ∧
1 0D Ds s( , , ) / ( , , )µ µ α µ µ α      

 = −
−∑

−∑

∧ ∧ ∧ ∧

=
∧ ∧ ∧ ∧

=

1 1

0
1

{ ( , ) ( , )}

{ ( , ) ( , )}

l l

l l

i si i i
i

N

i si i
i

N

µ α µ α

µ α µ α
    (3.7) 

where µ
∧

i , α
∧

 and µ
∧

0  are defined after (3.5). This nests RDEV P,
2  for the Poisson model, as then 

α
∧

= 0 , µ
∧

=si iy , and µ
∧

=0 y
_

. For the negative binomial density with Negbin 1 or 2 variance 

function, RDEV
2  approaches RDEV P,

2  as α
∧

 → 0, since the negative binomial density then 

simplifies to the Poisson density. RDEV
2  always satisfies criteria 1 and 4, directly from (3.7), 

and criterion 3 by re-expressing (3.7) as RDEV
2  =

∧ ∧ ∧ ∧ ∧ ∧
D D s( , , ) / ( , , )µ µ α µ µ α0 0 . Criterion 2 is 

generally not satisfied, as changes in α
∧

 as regressors are added leads to changes in all terms 
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in (3.7). Criterion 5 is generally not satisfied, but will be if the model is a generalized linear 

model. 

 QL estimation does not require specification of a density. It can be shown, however, that 

for the Negbin 1 or 2 variance functions there is a specific likelihood function for which the 

ML estimator of β  (for given α ) equals the QL estimator. The deviance concept can 

therefore be applied to QL estimation. Details are given in the following sub-sections where 

we consider computation of RP
2  and RDEV

2  for models with Negbin 2 and Negbin 1 variance 

functions estimated by both ML and QL methods. 

 

3.2 R-squared for Negbin 2 

 The estimator for overdispersed count data most commonly used by econometricians is 

the MLE for the negative binomial distribution with mean (2.2) and Negbin 2 variance 

function (3.2) quadratic in the mean. This estimator is provided, for example, by LIMDEP 

and STATA. The log density is 

l yi i( , ) log( ( ) / ( ))µ α α α= + − −Γ Γ1 1        

 − + + + −−( ) log( ) log( ) log !y y yi i i i iα αµ αµ1 1 .  (3.8) 

The ML estimator jointly maximizes the log-likelihood function w.r.t. β and α. The QL 

estimator of β  solves (3.3) with α  replaced by a consistent estimator, e.g. 

α µ µ µ µ
∧ ∧ ∧ ∧ ∧

= − −∑ ∑i i i ii iiy2 2 4{( ) } , where µ
∧

i  is the Poisson estimated mean. This can be 

shown to be equivalent to maximizing (3.8) w.r.t. β  with α α=
∧

 (see Cameron and Trivedi 

1986, pp.45-46). 

 The Pearson R-squared is 

  R
y

y y y y
P NB

i i i i
i

N

i
i

N, _ _ _

( ) / ( )

( ) / ( )
2

2

2 2

1

2

1

2
1= −

− +∑

−∑ +

∧ ∧ ∧ ∧

=

=

∧

µ µ α µ

α
,    (3.9) 

as it can be shown that µ
∧

=0 y
_

 for both the ML and QL estimators. 
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 The deviance for ML estimation is 

DNB s2 ( , , )µ µ α
∧ ∧ ∧

         

= − + +

+
∑ ∧

∧ −
∧ −

∧ ∧ −=
2 1

1

11
{ log( ) ( ) log( ( )

( )
)}y y y y

i
i

i

i
i

i
i

N

µ
α α

µ α
    (3.10) 

using µ
∧

=si iy  for the log-density (3.8). Thus 

RDEV NB ML, ( )2
2           

= −

− + +

+
∑

− + +

+
∑

∧

∧ −
∧ −

∧ ∧ −=

∧ −
∧ −

∧ −=

1

1
1

11

1
1

11

{ log( ) ( ) log( ( )

( )
)}

{ log( ) ( ) log(( )

( )
)}_

y y y y

y y
y

y y

y

i
i

i

i
i

i
i

N

i
i

i
i

i

N

µ
α α

µ α

α α

α

      (3.11) 

Criteria 1, 3 and 4 are always satisfied as noted in section 3.1. Criterion 2 is not, but we find 
in examples that RDEV NB ML, ( )2

2  increases as regressors are added. Criterion 5 is satisfied if 

α is known, in which case α
∧

 above becomes α, as then the model is a generalized linear 

model, i.e. (3.8) is a special case of (2.17), so the deviance equals twice the estimated 

Kullback-Leibler divergence. A leading example of known α is the geometric count model, 

which sets α = 1. 

 If estimation is by QL, the same formula (3.11) is used for RDEV NB QL, ( )2
2 , but the MLE 

for α is replaced by a consistent estimate α
∧

, and µ
∧

i  is replaced by the QL estimate of µi . 

 

3.3 R-squared for Negbin 1 

 The log density for the negative binomial with mean (2.2) and Negbin 1 variance function 

(3.1) linear in the mean is 

l yi i i i( , ) log( ( ) / ( ))µ α α µ α µ= + − −Γ Γ1 1       

    − + + + −−( ) log( ) log log !y y yi i i iα µ α α1 1    (3.12) 
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The ML estimator jointly maximizes the log-likelihood function w.r.t. β and α. The QL 

estimator which solves (3.3) for given α, can be shown to maximize w.r.t. β the log-

likelihood based on the scaled Poisson log density 

l y c yi i i i i( , ) ( log ) / ( ) ( , )µ α µ µ α α= − + +1 ,   (3.13) 

where c yi( , )α  is a normalizing constant. Clearly, no matter what value α  takes, the QL 

estimator for β  is equal to the Poisson ML estimator. 

 The Pearson R-squared for the ML estimator is given by 

  R
y

y
P NB ML

i i i
i

N

i
i

N, ( )

( ) /

( ) /
1

2

2

1

0
2

1
0

1= −
−∑

−∑

∧ ∧

=
∧

=

∧

µ µ

µ µ
.   (3.14) 

Further simplification occurs for the QL estimator as then µ
∧

=0 y
_

, so R RP NB QL P P, ( ) ,1
2 2= . 

 The deviance for the ML estimator which maximizes the likelihood based on (3.12) is 

∑
=

∧
−

∧∧
−

∧

∧
−

∧∧
−
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∧∧∧

⎪⎩

⎪
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−

∧
)1log()( 11 αµαµα isi      (3.15) 

where the saturated model estimator µ
∧

si  equals 0 for yi  = 0, and for yi  > 0 is the solution to 

the nonlinear system of equations log( ) ( )1 1

1

1+ = − +∑
∧ ∧ − ∧

=

−α α µy ji si
j

yi
. The solution is very 

well approximated by µ α
∧ ∧

= +si iy / 2. (A Gauss program to compute all the R-squareds in this 

paper is available from the JBES ftp-site, and from the authors upon request.) The deviance 

R-squared is 

   ∑
=

∧
−

∧∧
−

∧

∧
−
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−

∧
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⎛
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∧
)1log()( 0

11 αµαµα si   (3.16) 

Criteria 1, 3 and 4 are always satisfied. Criterion 2 is not, but we find in examples that 

RDEV NB ML, ( )1
2  increases as regressors are added. Criterion 5 is not satisfied, as even if α is 

known the Negbin 1 model is not a generalized linear model. 

 For the Negbin 1 variance function the ML estimator is rarely used. The QL estimator, 

however, is the generalization of the Poisson most commonly used by applied statisticians. 

As indicated above, this estimator of β  is exactly the same as the Poisson MLE, while the 

standard errors of the QL estimator of β are the usual reported Poisson MLE standard errors 

multiplied by the scalar ( ) /1 1 2+
∧
α , where 1 1 2+ = − −∑

∧ − ∧ ∧
α µ µ( ) ( ) /N k yi i ii  and µ

∧

i  is the 

Poisson fitted mean. The QL estimator could be viewed as providing a consistent but 

inefficient estimator in the model with log-density (3.12). It is better to view it as maximizing 

w.r.t. β  the log-likelihood based on (3.13), for which RDEV
2  reduces to the Poisson RDEV

2 , 

due to cancellation of the common factor 1+
∧
α . We use this version of RDEV

2  for the QL 

estimator, i.e. RDEV NB QL, ( )1
2  = RDEV P,

2 . It satisfies criteria 1-4. 

 

3.4 Discussion 

 If a constant term is excluded from the full model, it no longer nests the reference 

intercept-only model and all R 2 , with the exception of REXP
2  and RCOR

2 , may be negative. 

This is similar to the linear regression model without intercept. 

 The goal has been to present R 2  measures that do not decrease as regressors are added. 

For the linear regression model, a degrees-of-freedom adjusted R 2  has been developed to 

provide a penalty as the number of regressors increase. Similar measures can be developed 

here. The obvious correction to measures such as RRES
2 , RP

2 , or RDEV
2  is to divide the 

numerator by ( N− k )  and the denominator by (N−1 ) . Another correction is to instead use 
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small-sample adjusted residuals defined in Pierce and Schafer (1986), for example. Our 

concern, however, is with the more fundamental issue of which residual should be used in the 

first place. 

 The estimators discussed specify at least the first two moments of yi . A consistent but 

inefficient estimator using only the first moment is the nonlinear least squares (NLLS) 

estimator with nonlinear mean function (2.2). Heteroscedaticity consistent standard errors can 

be computed, but RRES
2  is inadequate due to heteroscedasticity, while the RP

2  or RDEV
2  

measures defined above will satisfy none of criteria 1 to 5 when evaluated at the NLLS 

estimate. 

 The proposed R 2  measures are not intended to discriminate between Poisson and 

negative binomial (types 1 and 2) models. A variation of (3.7) that does this for ML 

estimation  is  

R
l y l

l y l y
DP

pi i i i
i

N

pi i pi
i

N
2 1

1

1= −
−∑

−∑

∧ ∧

=

=

{ ( ) ( , )}

{ ( ) ( )}
_

µ α
    (3.17) 

where lpi  denotes the Poisson density and li i( , )µ α
∧ ∧

 denotes the log-density for the fitted 

Poisson or negative binomial model. The motivation for RDP
2  is that l ypi i( )  is the log-

density in the saturated model not only for Poisson, but also negative binomial if 

maximization is over both µ i  and α, and l ypi ( )
_

 is the obvious benchmark intercept-only 

model for all densities. For Poisson RDP
2  = RDEV P,

2  and hence satisfies criteria 1-5. For 

negative binomial models RDP
2  satisfies criteria 1-4. A high value RDP

2  will arise if the 

regressors have high explanatory power, or if the data are considerably overdispersed so that 

even without regressors the negative binomial models fits the data much better than the 
Poisson. Comparisons of the ML Negbin RDP

2 's with RDEV P,
2  are implicitly tests of α = 0. 

 

4. EMPIRICAL PERFORMANCE OF MEASURES 



 20 

 Three estimators are considered: (1) Poisson MLE or equivalently Negbin 1 QLE, (2) 

Negbin 1 MLE, and (3) Negbin 2 MLE. These estimators are abbreviated to POISSON, NB1 

and NB2. We could alternatively call the first estimator Negbin 1 QLE since from section 3.3 

the estimators of β and the associated R-squared measures are the same for Poisson MLE and 

Negbin 1 QLE. The only difference is in the reported standard errors. Thus we consider all 

the common count data estimators plus the less used Negbin 1 MLE. In all models the 

conditional mean is specified as µ β= exp( ' )X . 

 We compare six R-squared measures. Three are based on unweighted residuals (RRES
2 , 

REXP
2 , and RCOR

2 ), one is based on Pearson residuals (RP
2 ), and two are based on deviance 

residuals (RDEV
2  and RDP

2 ) with RDEV
2  = RDP

2  for Poisson. Formulae for these measures are 

collected in Table 1. 

[TABLE 1 ABOUT HERE] 

 We use the same models and sample of 5,190 individuals drawn from the 1977-78 

Australian Health Survey, Australian Bureau of Statistics (1978) and Social Science Data 

Archives (1983), as used by Cameron and Trivedi (1986). No goodness of fit measure, aside 

from the fitted log-likelihood, is reported in their study. We consider the extent to which 

utilization of health care services varies with socioeconomic characteristics (SEX, AGE, 

AGESQ, INCOME), health insurance type (the three included mutually exclusive dummies 

for type of health insurance are LEVYPLUS, FREEPOOR and FREEREPA with LEVY the 

omitted category), recent health (ILLNESS, ACTDAYS), and long-term health status 

(HSCORE, CHCOND1 and CHCOND2). A summary description of the independent 

variables is given in Table 2.  

[TABLE 2 ABOUT HERE] 

 Three dependent variables are modeled, viz. DOCTORCO, the number of doctor 

consultations in the past two weeks; HOSPADMI, the number of hospital admissions in the 

past 12 months; and MEDICINES, the number of medicines taken in the past two days. The 

values of the R-squared measures for the models with all 12 regressors are given in Table 3, 
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together with bootstrap standard error estimates. The bootstrap resamples ( yi , Xi )  jointly, 

with 200 bootstrap replications performed following the suggestion for standard error 

estimation of Efron and Tibshirani (1993, p. 52). 

[TABLE 3 ABOUT HERE] 

 The first dependent variable, the number of doctor consultations ( DOCTORCO) in the 

past two weeks, is a discrete variable taking the values 0, 1, 2, ..., 9 with probabilities of 

respectively 0.798, 0.151, 0.034, 0.006, 0.005, 0.002, 0.002, 0.002, 0.001, 0.000. Estimates of 

the various count data models are given in Cameron and Trivedi (1986, p.47) and are not 

reproduced here. The data are overdispersed, with the ML estimate of the variance parameter 

α  being 0.456 in the NB1 model and 1.077 in the NB2 model. The log-likelihood statistics 

are respectively −3355.5, −3226.6 and −3198.7 in the Poisson, NB1 and NB2 models, so that 

the parameter α is estimated to be highly significantly different from zero in both the NB1 

and NB2, with the NB2 model providing the best fit for the data. 

 Looking across different count data models for DOCTORCO, the preferred measure 

RDEV
2  for the full model takes respective values of 0.223 for Poisson, 0.171 for NB1 and 

0.229 for NB2. RP
2  takes respective values of 0.373, 0.413 and 0.373. RCOR

2  changes little 

across the models, due to the fitted values being highly correlated across models, taking 

values 0.164, 0.162 and 0.150. The other two measures, REXP
2  and especially RRES

2 , change 

appreciably across the different models, and for this reason may be inferior. In particular for 

the NB2 model estimated by MLE REXP
2  = 0.502, RCOR

2  = 0.150 and RRES
2  = 0.051. (This 

large difference for NB2 arises because, in contrast to the Poisson and NB1 model, the NB2 

model raw residuals do not sum to zero for µ = exp(X'β ). This leads to residuals that are 

considerably larger than in the Poisson and NB1 case, especially for some outlying 

observations, in this case people who did not visit the doctor but had high values for 

ILLNESS and ACTDAYS. At the same time, the Poisson and NB2 fitted values are still very 

highly correlated, which leads to little difference in RCOR
2  across the two models. For the full 

model a regression of the NB2 fitted values on the Poisson fitted values has a slope 

coefficient of 1.40, considerably different from unity, while the squared correlation 
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coefficient between NB2 and Poisson fitted values is 0.97. Corresponding figures in 

comparing NB1 and Poisson are 0.92 for the slope and 0.98 for the squared correlation 

coefficient.) The final measure RDP
2 , which can be meaningfully compared across models, 

increases from 0.223 for POISSON to 0.268 for NB1 and 0.278 for NB2. 

 The second dependent variable, the number of hospital admissions (HOSPADMI) in the 

past 12 months, takes the values 0, 1, 2, ..., 5 with probabilities of respectively 0.865, 0.108, 

0.018, 0.005, 0.001, and 0.002. The data are moderately overdispersed, with the 

(unconditional) sample variance 1.48 times the sample mean. HOSPADMI is a priori difficult 

to predict. This difficulty in prediction is illustrated in Table 3, where the largest value of R 2  

is 0.181 for RP
2  in NB1. 

 The third dependent variable is the number of medicines (MEDICINES) taken in the past 

two days, which takes the values 0, 1, 2, ..., 8 with probabilities of respectively 0.429, 0.268, 

0.139, 0.076, 0.042, 0.020, 0.012, 0.006 and 0.008. This is more easily predicted, with higher 

R 2  than for the other two utilization measures. 

 The deviance R 2  takes similar values for the Poisson and NB2 models for all three 

dependent variables, but for the NB1 model the value is always lower than the other two. For 

the Pearson R 2  also the values of the Poisson and NB2 models are quite similar, and for this 

measure the NB1 results are higher. The raw residuals based R 2  measures are similar for all 

three models for HOSPADMI and MEDICINES, but not for DOCTORCO. For the last 

variable, the differences between the various R 2  measures are largest, with for example RP
2  

being more than twice the value of RRES
2  in both the Poisson and NB1 model. Also, the 

difference between RRES
2  and REXP

2  is largest for DOCTORCO. For all applications, except 

NB2 model for DOCTORCO, RRES
2  is very close to RCOR

2 . 

 In all cases the variability of the deviance R 2  is less than that of the other measures, even 

if we standardize for different scale of different measures by comparing the ratio of the 

bootstrap estimated standard error to the calculated R 2 . The variability of the Pearson R 2  is 

largest. 
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[FIGURE 1 ABOUT HERE] 

 Figure 1 gives nonparametric estimates of the bootstrap densities of the various R 2  for 

the model with all regressors included. The bandwidth for the various densities is 0.008, 

except for the more variable RP
2  for which it is 0.012, and there are 1,000 replications. RDEV

2  

is symmetrically distributed, and more concentrated around its mean than the other measures. 

RP
2  is asymmetrically (skewed to the left) distributed, whereas RRES

2  and RCOR
2  are skewed 

to the right. The density of REXP
2  is symmetric. Plots corresponding to Figure 1 for the other 

estimators and models show symmetry for RDEV
2  throughout, asymmetries for other R 2  

measures for NB1 and NB2 estimates of DOCTORCO similar to that for POISSON, and 

relatively little asymmetries for all measures and all models for HOSPADMI and 

MEDICINES.  

[FIGURE 2 ABOUT HERE] 

 Figure 2 plots the R 2  measures for DOCTORCO as regressors are progressively added. 

Recall that while Figure 2 is labeled as the Poisson model it could just as well be labeled as 

the NB1 variance function model estimated by the QL method. The plot illustrates that RP
2  

can indeed be negative and decrease as regressors are added. All R-squared measures tell a 

similar story as regressors are added. Health status variables, especially recent health, appear 

much more important than socioeconomic characteristics and health insurance status in 

determining the number of doctor consultations in the past 2 weeks. This interpretation is 

dependent on the order with which regressors are added. If the order of the regressors is 

reversed, the R 2  measures range from 0.05 to 0.09 when just long-term health status 

variables are included, and range from 0.15 to 0.36 if the short-term health status variables 

are additionally included. These latter variables, either ILLNESS or ACTDAYS alone, have 

the greatest contribution to R 2 . 

 Some studies calculate a fitted frequency distribution as the average over the predicted 

probabilities for each count, denoted p j

~
, j = 0, 1, 2,..., tabulate this along with the observed 

frequencies p j

_
, and use correspondence between the two as a measure of model adequacy. 
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This suggests an R 2  equal to 1 2

0
0

2

0
− −∑ −∑

= =
( ) ( )

_ ~max( ) _ ~max( )
p p p pk k

k

y

k k
k

y
 where pk

~

0  is the 

predicted probability from the intercept-only model. For counts 0, 1, 2, ..., 9 of DOCTORCO 

the observed probabilities of respectively 0.798, 0.151, 0.034, 0.006, 0.005, 0.002, 0.002, 

0.002, 0.001, 0.000 are seemingly closely fitted by the Poisson MLE average predicted 

probabilities of 0.773, 0.178, 0.032, 0.009, 0.004, 0.002, 0.001, 0.000, 0.000, 0.000. But the 

intercept-only Poisson predicted probabilities of 0.740, 0.223, 0.034, 0.003, 0.000, ... , 0.000 

are also reasonable, leading to an R 2  of 0.84. Aggregation leads to an R 2  much higher than 

the other measures. 

 

5. CONCLUSIONS 

 The preferred R-squared measure for standard count data models is that based on the 

deviance residual, RDEV
2 . For the Poisson ML estimator and the QL estimator with Negbin 1 

variance function this satisfies all five criteria presented in the introduction. For other count 

data models, we propose an extension to the deviance leading to RDEV
2  which satisfies at 

least criteria 1, 3 and 4. 

 The measure based on Pearson residuals, RP
2 , has the limitation that it satisfies none of 

the five criteria presented in the introduction. If measures based on raw residuals are used, 

the squared correlation coefficient between fitted and actual values, RCOR
2 , has the advantage 

over measures based on residual sums of squares, RRES
2 , or explained sums of squares, 

REXP
2 , of being bounded by 0 and 1, while the other two measures fail all of criteria 1-5. For 

the linear regression model these three measures would be equal. 

 While all these measures are designed to measure the explanatory power of the 

regressors, one measure, RDP
2 , has been introduced, that allows for cross model comparison, 

and implicitly tests whether the dispersion parameter in either Negbin 1 or Negbin 2 model is 

equal to zero, when compared to RDEV
2  for the Poisson model. 
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 The different R-squared measures are compared in an extensive application to data on 

individual utilization of health care services from the 1977-78 Australian Health Survey. 

Utilization may vary with socioeconomic characteristics, health insurance status, recent 

health status and long-term health status. The three unweighted residual R 2  measures can 

differ substantially. RP
2  and RDEV

2  can markedly differ from each other, even though in the 

fitted models the Pearson and deviance residuals are quite similar to each other. For all 

estimators and models RP
2  at times decreased with additional regressors, and an explained 

sums of squares version of RP
2 , not presented in the figures given here, differed quite 

substantially from RP
2 . In application to different health utilization measures, i.e. different 

dependent variables, the measures considered take higher values for count data that are a 

priori more easily predictable, and attribute high explanatory power to variables that a priori 

might be expected to be important.  

 The various R 2  measures proposed give qualitatively similar results regarding detection 

of important regressors, with the notable exception of REXP
2  and RRES

2 in the Negbin 2 

model. Use of any of these measures, aside from this exception, is more informative than the 

current practice of not computing an R-squared. 

 The preferred deviance R 2  requires specification of the likelihood or quasi-likelihood. If 

this is misspecified, just criteria 1 and 2 are satisfied. As an indication of the information 

content of the regressors RDEV
2  may still do well, however, as illustrated by the examples 

which were not necessarily Poisson or negative binomial. Furthermore, a (nonparametric) 

bootstrap revealed that the distribution of RDEV
2  was less variable and more symmetric than 

that of other measures. 
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Table 1: Summary of R-Squared Measures for Count Data Models 
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∧

0  is the estimate in the intercept only model, conditional on α
∧

, 

and µ
∧

si  is the estimate in the saturated model, conditional on α
∧

, and y ylog = 0 when y = 0. 
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Table 2: Description of Regressors for Health Application 

_____________________________________________________________________  
_____________________________________________________________________  

Socioeconomic 

SEX  1 if female; 0 otherwise. 

AGE  In years. 

AGESQ Age squared. 

INCOME Annual income in dollars. 

 

Health Insurance 

LEVYPLUS 1 if covered by private health insurance fund for private patient in public  

  hospital, 

  0 otherwise. 

FREEPOOR 1 if covered by government because low income, recent immigrant,  

  unemployed, 

  0 otherwise. 

FREEREPA 1 if covered by government because of old age or disability pension, or  

  because invalid veteran or family of deceased veteran, 0 otherwise. 

LEVY  1 if covered by Medibank, 0 otherwise is the omitted dummy. 

 

Recent Health Status 

ILLNESS Number of illnesses in the past two weeks 

ACTDAYS Number of days of reduced activity in past two weeks due to illness or 

  injury. 

 

Long-term Health Status 
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HSCORE General health score using Goldberg's method. High Score indicates bad 

  health. 

CHCOND1 1 if chronic condition that does not limit activity, 0 otherwise. 

CHCOND2 1 if chronic condition that limits activity, 0 otherwise. 

_____________________________________________________________________  
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  Table 3: R-Squared Measures for Health Application 

_____________________________________________________________________  
_____________________________________________________________________  

        Model 

__________________________________________________   

Dep. Variable R2Measure     Poisson         NB1         NB2 

DOCTORCO RRES
2  0.157   (0.026) 0.159   (0.025) 0.051   (0.062) 

 REXP
2  0.243   (0.024) 0.208   (0.022) 0.502   (0.083) 

 RCOR
2  0.164   (0.024) 0.162   (0.024) 0.150   (0.024) 

 RP
2  0.373   (0.033) 0.413   (0.040) 0.373   (0.035) 

 RDEV
2  0.223   (0.018) 0.171   (0.013) 0.229   (0.016) 

 RDP
2   0.268   (0.018) 0.278   (0.019) 

 

HOSPADMI RRES
2  0.108   (0.020) 0.108   (0.020) 0.105   (0.020) 

 REXP
2  0.116   (0.019) 0.111   (0.018) 0.125   (0.021) 

 RCOR
2  0.108   (0.020) 0.108   (0.020) 0.106   (0.019) 

 RP
2  0.144   (0.034) 0.181   (0.042) 0.132   (0.037) 

 RDEV
2  0.131   (0.016) 0.108   (0.013) 0.131   (0.015) 

 RDP
2   0.159   (0.016) 0.156   (0.016)  

 

MEDICINES RRES
2  0.370   (0.013) 0.370  (0.013) 0.367   (0.013) 

 REXP
2  0.404   (0.015) 0.403   (0.015) 0.428   (0.016) 

 RCOR
2  0.371   (0.013) 0.371   (0.013) 0.369   (0.013) 

 RP
2  0.380   (0.020) 0.411   (0.020) 0.372   (0.022) 

 RDEV
2  0.347   (0.011) 0.325   (0.011) 0.340   (0.011) 

 RDP
2   0.359   (0.010) 0.357   (0.010) 

_____________________________________________________________________  

NOTE: Model with all regressors. Standard errors from 200 bootstrap replications in parentheses.  
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  Figure 1: Bootstrap Densities of R2  for DOCTORCO, Poisson Models 

 

  Figure 2: R-Squared for DOCTORCO, POISSON Model 
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