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Abstract

For regression models other than the linear model, R-squared type goodness-of-fit

summary statistics have been constructed for particular models using a variety of

methods. We propose an R-squared measure of goodness of fit for the class of

exponential family regression models, which includes logit, probit, Poisson, geometric,

gamma and exponential. This R-squared is defined as the proportionate reduction in

uncertainty, measured by Kullback-Leibler divergence, due to the inclusion of

regressors. Under further conditions concerning the conditional mean function it can

also be interpreted as the fraction of uncertainty explained by the fitted model.
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1. Introduction

For the standard linear regression model the familiar coefficient of determination, R-

squared (R2) is a widely used goodness-of-fit measure whose usefulness and limitations

are more or less known to the applied researcher. Application of this measure to

nonlinear models generally leads to a measure that can lie outside the [0,1] interval and

decrease as regressors are added. Alternative R2 type goodness-of-fit summary statistics

have been constructed for particular nonlinear models using a variety of methods. For

binary choice models, such as logit and probit, there is an abundance of measures; see

Maddala (1983) and Windmeijer (1995). For censored latent models such as the binary

choice and tobit models, it is possible to avoid nonlinearity by obtaining an

approximation of the usual R2 for the linear latent variable model; see McKelvey and

Zavoina (1976), Laitila (1993), and Veall and Zimmermann (1992, 1994). For other

nonlinear regression models R2 measures are very rarely used.

Desirable properties of an R-squared include interpretation in terms of the

information content of the data, and sufficient generality to cover a reasonably broad

class of models. We propose an R-squared measure based on the Kullback-Leibler

divergence for regression models in the exponential family. This measure can be

applied to a range of commonly-used nonlinear regression models: the normal for

continuous dependent variable y ∈ (-∞,∞); exponential, gamma and inverse-Gaussian

for continuous y ∈ (0,∞); logit, probit and other Bernoulli regression models for discrete

y = 0, 1; binomial (m trials) for discrete y = 0, 1,..., m; Poisson and geometric for discrete

y = 0, 1, 2, ...

The exponential family regression model is described in section 2. In section 3, the R2

measure based on the Kullback-Leibler divergence is presented. This measures the

proportionate reduction in uncertainty due to the inclusion of regressors. Interpretation

of the measure in terms of the fraction of uncertainty explained by the fitted model is

given in section 4. Examples are presented in section 5. Extensions and other goodness-

of-fit statistics are discussed in section 6. Section 7 contains an application to a gamma

model for accident claims data. Section 8 concludes.

2. Exponential family regression models

Following Hastie (1987), assume that the dependent variable Y has distribution in

the one-parameter exponential family with density
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where θ is the natural or canonical parameter, b(θ) is the normalizing function, and h(.)

is a known function. Different b(θ) correspond to different distributions. The mean of Y,

denoted µ, can be shown to equal the derivative b′(θ), and is monotone in θ. Therefore,

the density can equivalently be indexed by µ, and expressed as

General statistical theory for regression models based on the exponential family is

given in Wedderburn and Nelder (1972), Gourieroux et al. (1984) and White (1993). The

standard reference for applications is McCullagh and Nelder (1989). Regressors are

introduced by specifying µ to be a function of the linear predictor η = x′β, where x is a

vector of regressors, and β is an unknown parameter vector. Models obtained by various

choices of b(θ) and functions of η are called generalized linear models. More specialized

results are obtained by choice of the canonical link function, for which η = θ, i.e. θ in (1)

is set equal to x′β. 

Binary choice models are an example of exponential family regression models. Then

Y is Bernoulli distributed with parameter µ and density fµ(y) = µy(1-µ)1-y, y = {0,1}. This

can be expressed as (1) with θ = log(µ/(1-µ)) and b(θ) = log(1+exp(θ)). The logit

regression model specifies µ = exp(x′β)/(1+exp(x′β)), while the probit regression model

specifies µ = Φ(x′β), where Φ is the standard normal cumulative distribution function.

The logit model corresponds to use of the canonical link function.

The parameter vector β is estimated by the maximum likelihood (ML) estimator β̂,

based on the i.i.d. sample {(yi,xi), i=1,..,n}. The estimated mean for an observation with

regressor x is denoted  = µ(x′β̂). Throughout we assume that the model includes a

constant term. The estimated mean from ML estimation of the constant only model is

denoted 0.

3. R-squared based on the Kullback-Leibler divergence

A standard measure of the information content from observations in a density f(y) is

the expected information, or Shannon's entropy, E[log(f(y))]. This is the basis for the

standard measure of discrepancy between two densities, the Kullback-Leibler

divergence (Kullback (1959)). Recent surveys are given by Maasuomi (1993) and Ullah

(1993).

θ θ θf (y) =  [ y -  b( )]h(y),exp (1)

µ µ µf (y) =  [c( )y - d( )]h(y).exp
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Consider two densities, denoted fµ1(y) and fµ2(y) that are parameterized only by the

mean. In this case the general formula for the Kullback-Leibler (KL) divergence is

where a factor two is added for convenience, and Eµ1 denotes expectation taken with

respect to the density fµ1(y). K(µ1,µ2) is the information of µ1 with respect to µ2 and is a

measure of how close µ1 and µ2 are. The term divergence rather than distance is used

because it does not in general satisfy the symmetry and triangular properties of a

distance measure. However, K(µ1,µ2) ≥ 0 with equality iff fµ1 ≡ fµ2. For the densities

defined in (1) it follows that

In addition to fµ1(y) and fµ2(y) we also consider the density fy(y), for which the mean

is set equal to the realized y. Then the KL divergence K(y,µ) can be defined in a manner

analogous to (2) as

The random variable K(y,µ) is a measure of the deviation of y from the mean µ. For the

exponential family, Hastie (1987) and Vos (1991) show that the expectation in (3) drops

out and

In the estimated model, with n individual estimated means i = µ(xi′β̂), the estimated

KL divergence between the n-vectors y and  is equal to twice the difference between the

maximum log likelihood achievable, i.e. the log likelihood in a full model with as many

parameters as observations, l(y;y), and the log-likelihood achieved by the model under

investigation, l(;y):

Let 0 denote the n-vector with entries 0, the fitted mean from ML estimation of the

constant only model. We interpret K(y,0) as the estimate of the information in the sample

data on y potentially recoverable by inclusion of regressors. It is the difference between

the information in the sample data on y, and the estimated information using 0, the best

K( , )  2 E [f (y) / f (y)],1 2 1 1 2
µ µ µ µ µ≡ log (2)

K( , ) =  2[( - )  -  (b( ) - b( ))].1 2 1 2 1 1 2µ µ θ θ µ θ θ

K(y, )  2 E [f (y) / f (y)] =  f (y) [f (y) / f (y)]dy.y y y yµ µ µ≡ ∫log log (3)

K(y, ) =  2 [f (y) / f (y)].yµ µlog

(4)
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point estimate when data on regressors are not utilized, where information is measured

by taking expectation with respect to the observed value y. By choosing 0 to be the MLE,

K(y,0) is minimized. The R-squared we propose is the proportionate reduction in this

potentially recoverable information achieved by the fitted regression model:

This measure can be used for fitted means obtained by any estimation method. In the

following proposition we restrict attention to ML estimation (which minimizes K(y,)).

Proposition 1: For ML estimates of exponential family regression models based on the

density (1), RL defined in (5) has the following properties.  

1. RL is nondecreasing as regressors are added.

2. 0 ≤ RL ≤ 1.

3. RL is a scalar multiple of the likelihood ratio test for the joint significance of the

explanatory variables.

4. RL equals the likelihood ratio index 1 - l(;y)/l(0;y) if and only if l(y;y) = 0.

5. RL measures the proportionate reduction in recoverable information due to the

inclusion of regressors, where information is measured by the estimated Kullback-

Leibler divergence (4).

Proof:

1. The MLE minimizes K(y,) which will therefore not increase as regressors are added.

2. The lower bound of 0 occurs if inclusion of regressors leads to no change in the fitted

mean, i.e.  = 0, and the upper bound occurs when the model fit is perfect.

3. Follows directly from re-expressing RL as 2[l(;y)-l(0;y)]/K(y,0).

4. Follows directly from re-expressing RL as [1 - l(;y)/l(0;y)][l(0;y)/(l(0;y)-l(y;y)].

5. See the discussion leading up to (5).

Properties 1 and 2 are standard properties often desired for R-squared measures.

Property 3 generalizes a similar result for the linear regression model under normality.

The relationship between likelihood ratio tests and the Kullback-Leibler divergence is

fully developed in Vuong (1989). Property 4 is of interest as the likelihood ratio index,

which measures the proportionate reduction in the log-likelihood due to inclusion of

KL
2

0

R  =  1 -  
K( , )

K( , )
.

y

y

$

$
µ
µ

(5)
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regressors, is sometimes proposed as a general pseudo R-squared measure. Equality

occurs for the Bernoulli model, but in general the likelihood ratio index differs and, for

other discrete dependent variable models, is more pessimistic regarding the

contribution of regressors, as l(y;y) ≤ 0. In the continuous case, large values (positive or

negative) of the likelihood ratio index can arise if l(0;y) is close to zero (positive or

negative). By contrast, RL will always be bounded by zero and one. The final property

establishes an information-theoretic basis for RL.

An interesting aspect is that the expression for K(y,) in (4) equals the definition of the

deviance, given in, for example, McCullagh and Nelder (1989, p.33). Therefore RL can be

interpreted as being based on deviance residuals, defined as the signed square root

individual contributions to the deviance. Deviance residuals have been found very

useful for diagnostic checking in generalized linear models, see e.g. Pregibon (1981);

Landwehr et al. (1984); and Williams (1987), and RL is related to the analysis of deviance

the same way as R2 in the standard linear model is related to the analysis of variance.

4. Pythagorean decomposition for RL

In the linear regression model, the usual R-squared can be interpreted not only as the

proportionate reduction in the total sum of squares due to inclusion of regressors, but

also as the fraction of the total sum of squares explained by the regression model. This

result rests on the decomposition of the total sum of squares into explained sum of

squares and residual sum of squares. Such a decomposition of the sum of squares does

not generally hold for exponential family regression models, which is one reason for not

applying the linear regression model R-squared to other models.

For a widely used subclass of exponential family regression models that use the

canonical link, RL has the desirable property of interpretation in terms of explained KL

divergence between the fitted model and the constant-only model. 

Proposition 2: For the exponential family models that use the canonical link, i.e. θ = x′β

in (1),  RL defined in (5) can be equivalently expressed as:

where K(,0) is the estimated KL divergence defined in (2) between models with fitted

means  and 0, and so RL measures the fraction of uncertainty explained by the fitted
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model.

Proof: Let the vector 1 = µ(x1′β̂), and 2 = µ(x2′β̂), with x2 nested in x1. For models that use

the canonical link, the KL divergence exhibits the Pythagorean property (see Hastie

(1987, pp. 19-20) and Simon (1973)):

Proposition 2 follows, using the particular decomposition K(y,0) = K(,0) + K(y,).

For models that do not use the canonical link, the deviance, denoted D(y,), can be

decomposed as

where the term LD(,0) is called likelihood displacement (see Cook (1986), and Vos

(1991)). LD(.,.) is not strictly speaking a deviance since it does not involve the likelihood

for the saturated model. For these models, RL can be interpreted as measuring the

fraction of empirical uncertainty explained by the model, as LD(,0) is an estimate of K(,0)

and D(y,) = K(y,).

5. Examples

The formulae for RL for a range of exponential family regression models are given in

Table 1. The models are defined in, for example, McCullagh and Nelder (1989, p.30).

The column RL is the measure defined in (5). The final column gives the conditional

mean, as a function of η = x′β, corresponding to the canonical link, in which case

Proposition 2 also holds and RL can be simplified in certain cases.

For the normal distribution, with σ2 known (or using the same estimator for the two

models), RL given in Table 1 equals the usual coefficient of determination in the linear

model. Proposition 2 applies to the linear regression model, but not to nonlinear models

under normality since these do not use the canonical link.

For the linear model with non-spherical disturbances (Var(y) =  σ2V, with V known),

the KL divergence can be shown to be given by

and RL is

K( , ) =  K( , ) +  K( , ).2 1 2 1y y$ $ $ $µ µ µ µ

D( , ) =  LD( , ) +  D( , ),0 0y y$ $ $ $µ µ µ µ

K( , ) =  ( - ) V ( - ),-1y y y$ $ $µ µ µ′
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where ιι is the vector of ones, and 0 = (ιι′V-1ιι)-1ιι′V-1y. So in this case, RL is equal to the definition as

given by Buse (1973).

Table 1. RL for exponential family regression models

Distribution KL Divergence RL Canonical Linka

Normal Σ(y-µ)2/σ2

1-
(y - )

(y - y )

2

2

Σ
Σ

$µ

µ=η

Bernoulli -2Σ{ylogµ+(1-y)log(1-µ)}

1-
( ) + (1- ) (1- )

n{y (y) + (1- y) (1- y)}

∑ $ log $ $ log $

log log

µ µ µ µ µ
η

η
=

( )

1+ ( )

exp

exp

Binomial (m)

2 {y (
y

) + (m - y) (
m- y

m-
)}∑ log log

µ µ 1-
( ) + (m - ) (m- )

n{y (y) + (m - y) (m - y)}

∑ $ log $ $ log $

log log

µ µ µ µ µ
η

η
=

( )

1+ ( )

exp

exp

Poissonb 2Σ{ylog(y/µ)-(y-µ)}

1-
y (y / ) - (y - )

y (y / y)

∑
∑
log $ $

log

µ µ

µ=exp(η)

KL
2 0

-1
0

0
-1

0

-1

0
-1

0

R  =  
( - ) V ( - )

( - ) V ( - )
 =  1 -  

( - ) V ( - )

( - ) V ( - )
,

$ $ $ $

$ $

$ $

$ $
µ ιµ µ ι µ

ι µ ι µ
µ µ

ι µ ι µ
′
′

′
′y y

y y

y y
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Geometricb

2 (
y

- (y 1) (
+1

1
)}log

µ µ
1-

y (
y

) - (y +1) (
y +1

+1
)

y (
y

y
) - (y +1) (

y +1

y +1
)

∑

∑

log
$

log
$

log log

µ µ µ
η
η

=
( )

1- ( )

exp

exp

Exponential -2Σ{log(y/µ)+(y-µ)/µ}

1-
(y / ) + (y - ) /

(y / y)

∑
∑

log $ $ $

log

µ µ µ

µ=η-1

Gammac -2νΣ{log(y/µ)+(y-µ)/µ}

1-
(y / ) + (y - ) /

(y / y)

∑
∑

log $ $ $

log

µ µ µ

µ=η-1

Inv. Gaussian Σ(y-µ)2/(µ2y) µ=η-2

Notes: a η=x′β;   b ylog(y)=0 for y=0;   c ν is the scale parameter

For Bernoulli regression models, where y takes only the values 0 or 1, many R2

measures have been proposed. See, for example, Maddala (1983, pp. 37-41) and

Windmeijer (1995), or the output from the econometrics package SHAZAM. For these

models, l(y;y) = 0, so that by property 4 in Proposition 1, RL given in Table 1 is equal to

the likelihood ratio index proposed by McFadden (1974)1; Efron (1978) for one way

ANOVA; Pregibon (1984), who explicitly derives his measure based on deviances; and

                                               
     1 HAUSER (1978) gave an information theory interpretation of the likelihood ratio index for Bernoulli and
multinomial models similar to that here.
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Christensen (1990). Proposition 2 applies to the logit model, but not to the probit model.

An R2 measure is rarely reported for the Poisson model. RL given in Table 1 equals

one of the R2 measures proposed for this model by Cameron and Windmeijer (1995). It

differs from the likelihood ratio index, reported by the statistical package STATA. The

standard Poisson regression model specifies µ = exp(x′β), which is the canonical link so

that Proposition 2 applies. 

Table 1 also lists RL for the binomial, geometric, exponential, gamma and inverse-

Gaussian regression models. For these models we have been unable to find specific R2

measures in the literature.

The analysis can be extended to a p-dimensional dependent variable with density in

the p-parameter exponential family. Necessary results for such generalization are given

in Simon (1973). Of particular interest is the multinomial distribution, used for example

in multi-choice regression models such as multinomial and nested logit. In this case

l(y;y) = 0, so that RL equals the likelihood-ratio index analyzed by Hauser (1978).

6. Discussion

Different interpretations of the coefficient of determination in the linear regression

model, RLS, lead to different R2 measures for nonlinear models, each with some, but not

all, of the properties possessed by RLS. A number of the possible general approaches are

given in, for example, Magee (1990) and Veall and Zimmermann (1992, 1994). The most

easily interpretable measures are based on residual sums of squares, 1-Σi(yi-i)2/Σi(yi-)2 or

explained sums of squares Σi(i-)2/Σi(yi-)2. But in nonlinear models these two measures

may fall outside the unit interval, decrease as regressors are added and differ from each

other.2

A number of proposed measures, including RL, are related to LRT, the likelihood

ratio test statistic for the joint significance of the slope parameters. In particular, a

general measure proposed by Kent (1983) and Magee (1990) is

Kent argued that LRT/n is an estimate of the expected Kullback-Leibler information

gain, the expectation being with respect to regressors x, and chose this particular

                                               
     2 In the special case that the nonlinear model is based on a linear latent variable model, Veall and
Zimmermann (1992, 1994) advocate estimating the latter measure for the underlying latent variable. This
approach cannot be applied to most of the models considered here.

LRT
2R  =  1- (LRT / n).exp (6)
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Magee

independently proposed R  on grounds that in the linear model it equals RLS

variance σ  is treated as an unknown parameter that is estimated by n-1 i( i- )2

fitted model and by n-1 i( i- 2 in the constant Magee (1990) also proposed a

measure based on a 

where W is the Wald test statistic for joint significance of the slope parameters. In the

 equals RLS σ2

parameter.

This different treatment of the scale parameter needs to be 

discussion of RL

is known. This includes Bernoulli, Poisson, geometric and exponential, which have no

scale parameter, and binomial for which the scale parameter (the number of trials m) is

L is easily extended if the

multiplicative in the scale parameter, in which case it cancels out from

numerator and denominator in R . From Table 1 this is the case for the normal (σ

unknown) and gamma (ν RT assumes

σ2

under normality, (6) yields RRT -exp(Σ {(y -i 2-( i- 2}/{n 2}) rather than R .

For exponential family models with known (or no) scale parameter, 

RT takes maximum value of 1 -K(y 0)/n) when R =1. So a measure

with upper bound of one is

2 measure for the logit model given by Cragg and 

(1970) and discussed in Maddala (1983, pp.39

generate an R2

increases as regressors are added. R  has the additional advantage of interpretation in

terms of both proportionate reduction in recoverable information and proportion of

Magee (1990) notes, R does not necessarily increase when

W
2R  =  

W

n + W
,

LRT
2

KL
2R  =  1 -  (- R K( , ) / n),exp $y 0µ

LRTu
2R  =  

1 -  (-LRT / n)

1 -  (-K( , ) / n)
.

exp

exp $y 0µ
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regressors are added, and another drawback of the measure is the potential invariance

of W to the parameterization of the model.

An interesting question is generalization of RL to any model specification estimated

by maximum likelihood. By (4)

where lfit, l0 and lmax denote, respectively, the log-likelihood in the fitted model, the

log-likelihood in the intercept-only model, and the maximum log-likelihood achievable.

Thus RL equals the fraction of the maximum potential likelihood gain (starting with a

constant-only model) achieved by the fitted model. This definition works well in cases

such as exponential family models with known scale parameter where lmax is

well-defined. But in other cases, such as the normal with σ2 unknown, lmax is not

defined.3 Even where lmax is defined, it should be noted that it does not necessarily equal

the log-likelihood evaluated at µµ = y.4

7. Application

To illustrate the behaviour of RL and other R2 measures we perform an analysis of

the cost of claims for damage to an owner's car for privately owned vehicles with

comprehensive cover. The data used is the same as in Baxter et al. (1980) (see also

McCullagh and Nelder (1989, p.298)). The data set consists of cell average cost of claims

for each of 123 cells, where the cells are determined by eight categories of policy-holders

age, four categories of vehicle age and four categories of car group (cells with no claims

are excluded). A gamma distribution is assumed, with log-likelihood

conditional mean µi = (xi′β)-1, corresponding to the canonical link function for gamma;

                                               
     3 Assume that each yi is drawn from N(µi,σ2), where µi = yi and σ2→0. Then the density of each yi, and
hence the log-likelihood for the sample, becomes infinite.
     4 For example, consider the log-normal, log yi~N(θi,1) in which case µi=exp(θi+0.5). The log-density of yi

is maximized w.r.t. θi at θi = log yi, and hence is maximized w.r.t. µi at µi = yiexp(0.5) ≠ yi. For the negative
binomial model, where a similar problem arises, Cameron and Windmeijer (1995) propose setting the scale
parameter to its estimate in the fitted model.

KL
2 fit

0

fit 0

0
R  =  1 -  

l  -  l

l  -  l
 =  

l  -  l

l  -  l
,

max

max max

(7)

i i i i i i i i i{ (- y / - + y + ) -  ( )};∑ ν µ µ ν ν νlog log log log Γ
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and scale parameter νi = ν.wi, where ν is a scalar and the weight wi equals the number of

claims within each cell i. In constructing RL the parameter ν is assumed known and

factors out. By contrast, in computing RRT and R, ν is treated as unknown and needs to

be separately estimated, and LRT is computed as 2{l(,;y)-l(0,0;y)}. For comparative

purposes we additionally calculate R, RRT and RRTu for ν known and equal to 1, which

corresponds to the exponential. The estimation results for the mean µ are independent of

the value of ν.

The results as presented in Table 2 are given for three different models: PA has seven

dummies for categories of policy-holders age; (2) PA+CG additionally includes

dummies for three categories of car group; (3) PA+CG+VA additionally includes

dummies for three categories of vehicle age. The values of the three measures are very

similar for the gamma model with ν estimated, but they differ quite substantially when

ν is set equal to 1 (exponential) in which case R (for the first two models) and RRT (for all

models) are much higher than RL. For the measure based on the Wald statistic these

higher values occur due to the fact that the variances in the exponential model are

smaller than the estimated variances in the gamma model ( < 1) for the first two models.

For the measure based on the likelihood ratio statistic the reason is the smaller value of l(

0,1;y) as compared to l(0,0;y).5 The differences between RRT and RRTu are small due to the

fact that the term 1-exp(-K(y,0)/n) is close to 1.

The R2 measures clearly convey the message that the full model provides a very

good fit for this data. While the R2's may appear high to those familiar with cross-section

data, the full model does actually fit the data well, as even standard weighted nonlinear

least squares, i.e. minimize Σiwi(yi-1/(xi′β))2, produces an R2 = 0.80 in the model with all

                                               
     5 Equivalently, RRT takes on very high values when LRT is computed as 2{l(,;y)-l(0,;y)}.

Table 2. Results R2's for car insurance data

ν estimated ν = 1

VAR RL R RRT R RRT RRTu

PA 0.127 0.138 0.134 0.410 0.487 0.490

PA CG 0.478 0.514 0.496 0.737 0.920 0.925

PA CG VA 0.808 0.800 0.820 0.799 0.986 0.991

PA: policy holder's age;  CG: Car group;  VA: vehicle age.
0 = 0.203;  = 0.231 for PA;  = 0.378 for PA CG;  = 1.004 for PA CG VA.
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categories included.

8. Conclusions

For exponential family regression models, the Kullback-Leibler divergence can be

used to construct an R2 measure of goodness of fit, denoted RL, that measures the

proportionate reduction in uncertainty due to the inclusion of regressors, lies between 0

and 1 and is nondecreasing as regressors are added. RL corresponds to the usual

coefficient of determination in the linear regression under normality. In Bernoulli

models, such as probit and logit, RL coincides with the likelihood ratio index, supporting

use of this index rather than the many other competing R2 measures. RL can also be used

for other regression models in the exponential family, such as Poisson, geometric,

binomial, exponential and gamma, for which R2 measures do not generally appear to be

available. For models with canonical link function, RL can additionally be interpreted as

the fraction of uncertainty explained by the fitted model.
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