Э. Колин Кэмерон, Правин К. Триведи
МИКРОЭКОНОМЕТРИКА: МЕТОДЫ И ИХ ПРИМЕНЕНИЯ
Книга 1
Э. КОЛИН КЭМЕРОН
профессор экономики
в Калифорнийском
университете в Дэвисе

ПРАВИН К. ТРИВЕДИ
профессор экономики
Гарвардского университета,
профессор экономики
в Индианском университете
в Блумингтоне

Директор университетского
Центра по количественным
исследованиям в социальных
науках. Преподавал
в университете штата
Огайо, в Индианском
университете, в Блуминтоне
и ряде австрийских
и европейских университетов.
Автор публикаций
по микроэкономике
в ведущих экономических
и эконометрических журналах.
Советор Правина Триведи
по книге «Регрессионный
анализ счетных данных».

Преподавал в Австралийском
национальном университете
и в Саутгемптонском университете,
а также в ряде европейских
университетов. Его исследования
по микроэкономике
опубликованы во многих
ведущих эконометрических
журналах и журналах экономики
заряоохранения. Советор Колина
Кэмерона по книге «Регрессионный
анализ счетных данных»,
член редакционного совета
«Эконометрического журнала»
(Econometrics Journal) и «Журнала
прикладной эконометрики» (Journal
of Applied Econometrics).
A. Colin Cameron,
Pravin K. Trivedi

MICROECONOMETRICS:
METHODS
AND APPLICATIONS

The MIT Press
Cambridge, Massachusetts
Оглавление

Книга 1

Предисловие ... 1

Часть 1. Предварительные сведения ... 3

Глава 1. Обзор ... 7
1.1. Введение ... 7
1.2. Основные аспекты микроконометрии 9
1.2.1. Дискретность и непрерывность .. 9
1.2.2. Более высокая реальность ... 10
1.2.3. Более высокая насыщенность информации 11
1.2.4. Микроконометрические основания 11
1.2.5. Декоррелирование и нелинейность 12
1.2.6. Дополнительные темы .. 15

Глава 2. Причинно-следственные и статистические модели 24
2.1. Введение ... 24
2.2. Структурные модели ... 26
2.3. Экологенность ... 28
2.3.1. Условная низкоконечность .. 29
2.3.2. Экологенные переменные .. 29
2.4. Линейная модель одновременных уравнений 30
2.4.1. Система одновременных уравнений 30
2.4.2. Причины интерпретация в СИОУ 32
2.4.3. Неизвестных модели и модели скрытых переменных 33
2.4.4. Интерпретация структурных отношений 34
2.5. Идентификация ... 35
2.6. Модели с одним переменным .. 38
2.7. Модели потенциального результата 38
2.7.1. Причинно-следственная модель Рубина 40
4.4.2. Оценка МНК

Оценка МНК определяется как оценка, минимизирующая сумму квадратов ошибок

\[\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - x_i \beta)^2 = (y - X\beta)^T (y - X\beta) \] \hspace{1cm} (4.9)

Приравнивание производной по \[\beta \] к нулю и выражение \[\beta \], можно получить оценку МНК,

\[\hat{\beta}_{\text{OLS}} = (X^T X)^{-1} X^T y. \] \hspace{1cm} (4.10)

Более общий результат представлен в Упражнении 4.5, где предполагается, что существует матрица, обратная к \((X^T X)^{-1} \), если ранг \((X^T X)^{-1} \) не равен, вместо обратной матрицы можно использовать псевдообратную. В этом случае оценка МНК все так же является минимумом линейного прогноза \(y \) при данных \(x \), если используется квадратичная функция потерь, но множество других линейных комбинаций \(x \) также найдут эту оптимальную оценку.

4.4.3. Идентификация

Оценку МНК всегда можно вычислить при условии, что \(X^T X \) невырождена.

Более интересным является вопрос, что \(\hat{\beta}_{\text{OLS}} \) может нам сказать о данных.

Мы обращаем внимание на возможность с помощью оценки МНК идентифицировать (см. раздел 2.5) условное математическое ожидание \(E(y|x) \) для линейной модели параметров \(\beta \) идентифицировано, если:

1. \(E(y|x) = X\beta \) и
2. \(X\beta = X\beta^2 \), если и только если \(\beta^{(1)} = \beta^{(2)} \).

Первое условие, что условное математическое ожидание правильно специфицировано, гарантирует, что \(\beta \) само по себе представляет интерес; второе условие эквивалентно тому, что матрица \(X^T X \) невырождена, то есть тому самому условию, которое требовалось для существования единственной оценки МНК (4.10).

4.4.4. Распределение оценки МНК

Мы обращаем внимание на асимптотические свойства оценки МНК. Условия состоятельности оценки, мы используем оценку МНК, чтобы получить предельное распределение оценки. В этом случае статистические выводы могут быть сделаны, если состоятельно оценка корректирована матрицей сигнала. Данный анализ широко использует асимптотическую теорему, обзор которой дан в Приложении A.

Состоятельность

Свойства оценки зависят от процесса, результатом которого являются имеющиеся данные — процесс, порождающего данные, \(\{d_t\} \), и процесс, порождающий данные \(y_t \) (уравнение \(y_t = X_t \beta + \epsilon_t \)). Мы предполагаем, что процесс порождающий данные задан уравнением \(y_t = X_t \beta + \epsilon_t \).

В некоторых случаях, описывающихся в главах 5 и 6 и Приложении A к \(\beta \) часто добавляется \(\epsilon_t \), так что

\[\beta_{\text{OLS}} = \left(X^T X \right)^{-1} X^T y. \] \hspace{1cm} (4.11)

Тогда

\[\beta_{\text{OLS}} = \beta + \left(X^T X \right)^{-1} \epsilon_t. \] \hspace{1cm} (4.12)

Приведенная перекомбинированная в правой части состоит в том, что \(N^{-1} X^T X = N^{-1} \left(\Sigma_t x_t x_t^T \right) \) является средним значением, которое сходится по вероятности к конечной непрерывной матрице, если \(x_t \) удовлетворяет предположениям, которые позволяют применить закон больших чисел к \(x_t x_t^T \) (см. подробности в разделе 4.4.8). Тогда

\[\lim_{N \to \infty} \beta_{\text{OLS}} = \beta + \left(\lim_{N \to \infty} N^{-1} X^T X \right) \epsilon_t = \beta + \epsilon_t. \] \hspace{1cm} (4.13)

Согласно теореме Саргоева (Теорема А.3) Оценка МНК состоятельна для \(\beta \) (то есть \(\lim_{N \to \infty} \beta_{\text{OLS}} = \beta \)).

Предельное распределение

При условии состоятельности предельное распределение \(\beta_{\text{OLS}} \) вырождается со всей вероятностью, сосредоточенной в точке \(\beta \). Чтобы получить предельное распределение, \(\beta_{\text{OLS}} \) нужно умножить на \(N^{1/2} \), поскольку это масштабирование приведет к случайной величине, которая при стандартных предположениях для пространственной регрессии асимптотически имеет непрерывную, но конечную дисперсию. Тогда вместо (4.11) получаем

\[\sqrt{N}(\beta_{\text{OLS}} - \beta) = \left(N^{-1} X^T X \right)^{-1} N^{-1/2} \epsilon_t. \] \hspace{1cm} (4.14)

Доказательство состоятельности основывалось на предположении, что \(\lim_{N \to \infty} X^T X \) существует, конечный и непрерывный. Мы предполагаем, что можно применить центральную предельную теорему к \(N^{-1} \epsilon_t \), тогда в пределе получается именно нормальное распределение с конечной ненормированной ковариацией (Теорема А.17), что предполагается в правой части (4.14) предполагает нормальное распределение. Подробности приведены в разделе 4.4.8.

85