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1. Introduction Introduction

1. Introduction

o Consider straightforward OLS estimation in linear regression model.
@ Suppose estimator f is consistent for .
@ Concerned with getting the correct standard errors ofB

> default: if errors are i.i.d. (0,02)

> heteroskedastic-robust: if errors are independent (0, 0',2)

> heteroskedastic and autocorrelation-robust (HAC): if errors are serially
correlated

» cluster-robust: if errors are correlated within cluster and independent
across clusters

* this talk.
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1. Introduction Introduction

Why is this important?
1. Cluster-robust standard errors can be much bigger than default or
heteroskedastic-robust.

2. So failure to control for clustering

» overstates t statistics and understates p-values
» provides too narrow confidence intervals

@ 3. This arises often especially in the empirical / public labor literature
using quasi-experimental methods.

@ 4. There are subtleties - not always straightforward to implement.
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Example 1: Individuals in Cluster

e Example: How do job injury rates effect wages? Hersch (1998).

» CPS individual data on male wages.
» But there is no individual data on job injury rate.
> Instead aggregated data on occupation injury rates 211

@ OLS estimate model for individual i in occupation g
Yig = "‘+X§gﬁ+7 X Zg + Uig.

@ Problem:

> the regressor zg (job injury risk in occupation g) is perfectly correlated
within cluster (occupation)

* by construction

> and the error ujg is (mildly) correlated within cluster

* if model overpredicts for one person in occupation j it is likely to
overpredict for others in occupation j.
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@ Simpler model, nine occupations, N = 1498.

@ Summary statistics

oooovariable |00000000bsOO00000OMean0000Std.0Dev.0000000Min00000000Max

000000000 nw [000000149800002.45519900000.5596540001.1394340004.382027
0o000occrate |000000149800003.20827400002.9901790000.46177300010.78546
0oooO0potexp |0000001498000019.91288000011.2233200000000000000000053.5
00bOpotexpsq |00000014980000522.40170000516.90580000000000000002862.25
0pooooobDeduc |0D000001498000012.9729600002.3520560000000000300000000020

0000000union |0D0000014980000.13217620000.33879540000000000000000000001
0000nonwhite |00000014980000.10080110000.30116570000000000000000000001
00000O0northe |00000014980000.25033380000.43334990000000000000000000001
00000000midw |0D0000014980000.26835780000.44325280000000000000000000001
0oooo00Owest |(00000014980000.208945300000.4066910000000000000000000001

0ooo00occ_id |000000149800000182.506000099.743370000000006300000000343
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@ Same OLS regression with different se's estimated using Stata

> (1) iid errors, (2) het errors, (3,4) clustered errors

global covars potexp potexpsq educ union nonwhite northe midw west

regress Inw occrate $covars

estimates store one__iid

regress Inw occrate $covars, vce(robust)

estimates store one_het

regress Inw occrate $covars, vee(cluster occ_id)

estimates store one_ clu

xtset occ_id

xtreg Inw occrate $covars, pa corr(ind) vce(robust)

estimates store one_ xtclu

estimates table one_iid one het one clu one_xtclu, ///
b(%10.4f) se(%10.4f) p(%10.3f) stats(N N _clust rank F)
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@ Same OLS coefficients but

> cluster-robust standard errors (columns 3 and 4) when cluster on
occupation are 2-4 times larger than default (column 1) or
heteroskedastic-robust (column 2)

» and p-values in the last two columns differ substantially: t(8) versus
N(0,1)

oooOvariable |0O0Oone_iid00O000one_hetO00000one_clud00000one_xtclu

gobO00occrate

nooooopotexp

O00Opotexpsq

goooooo0educ

goooodO0union

000000.0448
0oooo0.0044
0oooooo0.000
0oooo0.0420
00ooo0.0039
0ooooo0.000
0ooooo0.0006
0oooo0.0001
0ooooo0.000
0oopoo0.0840
0oooo0.0055
0ooooo0.000
0oopno0.2557
000000.0362
0ooooo0.000
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0ooooono0.000
0oooo0.2557
0o0ooo0.0336
0ooooono0.000

000000.0448
0oooo0.0164
0oooooo0.026
0ooooo0.0420
0oooo0.0073
0oooooo.000
0poooo0.0006
0oooo0.0001
0oooooo0.000
0ooooo0.0840
00ooo0.0175
0poooooo.001
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@ And cluster-robust variance matrix is rank deficient

gooononwhite

goooodnorthe

0ooooooomidw

ooopooo0Owest

oopooooO_cons

000000.1057
000000.0391
00o0ono00.007
0ooo0o0.0501
0o00000.0326
0ooooo0.125
000000.0124
00oon0.0319
0000n00.698
000000.0402
0oooo00.0339
0ooo0o000.236
0o00000.9679
0oo0o00.0876
00ooono0.000

0oooo0.1057
0o0ooo0.0369
0oooon0.004
0ooop0.0501
0oooo00.0340
0ooooono.141
0ooono0.0124
0oooon0.0329
0oooop0.707
00oo0o0.0402
0ooo00.0347
0000000.246
0ooo00.9679
0ooooo0.1014
0ooooon0.000

0oooo0.1057
0ooo0o0.0502
0ooooon0.068
ooooo0.0501
0oooo0.0225
opoooono0.057
0ooooo0.0124
0oooo0.0300
0ooooon0.691
00oo0o0.0402
0oooo0.0370
0ooooono0.309
0oooo0.9679
0pooo0.2461
0ooooo0.004

0ooono0.1057
0oooo0.0501
0ooooo0.035
0oooo0.0501
0ooo0o00.0224
0ooooo00.025
0oooo0.0124
0poono0.0299
0ooonoo0.679
0ooono0.0402
0oo0oo00.0369
000o0o000.276
0oo0o000.9679
0ooo000.2453
0pooooo0.000

00000000000N
00000ON_clust
pooooooorank
00000000000F

00ooooo1498

0ooo10.0000
0o0po095.2130

0000oono01498

0ooo010.0000
0o0o089.0902

00o0ooo01498
0oooo9.0000
0oooo8.0000
gooooooooo.
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@ Moulton (1986, 1990) is key paper to highlight the larger standard
errors when cluster

> due to regressors correlated within cluster and errors correlated within
cluster.

@ The different p-values in columns 3 and 4 arise when there are few
clusters

> use t(8) not N(0,1)

@ The rank deficiency of the overall F-test is explained below

> individual t-statistics are still okay.
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Example 2: Difference-in-Differences in State-Year Panel

Example 2: Difference-in-Differences State-Year Panel

@ Example: How do wages respond to a policy indicator variable d;
that varies by state?

> e.g. dis = 1 if minimum wage law in effect

@ OLS estimate model for state s at time t
Vis = &+ X B+ 7 X dis + Ugs.

@ Problem:
> the regressor d;s is highly correlated within cluster
* typically dys is initially 0 and at some stage switches to 1

> the error uys is (mildly) correlated within cluster

* if model underpredicts for California in one year then it is likely to
underpredict for other years.
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Example 2: Difference-in-Differences in State-Year Panel

@ Again find that default OLS standard errors are way too small

> should instead do cluster-robust (cluster on state)

@ The same problem arises if we have data in individuals (/) in states
and years

Yits = & + X;mﬁ +9 X dis + Ujts

> in that case should also cluster on state.

@ Bertrand, Duflo & Mullainathan (2004) key paper that highlighted
problems for DiD

> in 2004 people either ignored the problem or with its data erroneously
clustered on state-year pair and not state.
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Example 2: Difference-in-Differences in State-Year Panel
Outline

Introduction

Cluster-Robust Inference for OLS
Cluster-Specific Fixed Effects
What to Cluster Over?
Multi-way Clustering

Few Clusters

Extensions (beyond OLS)

Empirical Example

0000000 O0CO

Conclusion
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SUTTER
2. Cluster-Robust Inference for OLS

o Clustered errors: y;; = xfgﬁ + ujg with uj, correlated with error for
any observation in group g and uncorrelated with error for any
observation in other groups.

@ Key result is that then the incorrect default OLS variance estimate
should be inflated by

Tj ~1 +pxjpu(Ng - 1)'

v

(1) P is the within cluster correlation of x;

> (2) p,, is the within cluster error correlation
(3) Ng is the average cluster size.
Need both (1) and (2) and it also increases with (3).

~

o Cluster-robust estimate of V[B] is natural extension of White's (1980)
heteroskedastic-robust estimate

v

v

> but requires number of groups G — co .

@ Potentially more efficient feasible GLS is possible and can also be
robustified.
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2.1 Iaiien
2.1 Intuition

@ Suppose we have univariate data y; ~ (i, 0?).
@ We estimate y by y and

Varly] = Var[ Zy,} - [z > cov<y,,y,>].

i=1j=

o Given independence over i this simplifies to Var[y] = 402.

e Now suppose observations are equicorrelated with Cov(y;, yj) = p(72

o |l p 1 ;
for i # j so Varly| =0 | © _ . Then
: P
. N N
Varly] = T 21 Var(y;) + '21 2 Cov(y,-,yj)
i= =1j=1;j#

= &[No?+ N(N—1)pc?] = Lo?{1+ (n—1)p}.
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2. Cluster-Robust Inference 2.1 Intuition

@ So independent errors
Var[y] = £0°.
o Equicorrelated errors
Var[y] = xo?{1+ (N — 1)p}.
@ The variance is 1 4+ (N — 1)p times larger!.
@ Reason: An extra observation is not providing a new independent

piece of information.
@ Note that the effect can be large

» if p = 0.1 (so R? of y; on y; is 0.01)
» and N =81
> then Var[y] = 9 x 402 is 9 times larger!
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2. Cluster-Robust Inference 2.2 Clustered Errors

2.2 OLS with Clustered Errors

@ Model for G clusters with N, individuals per cluster:

Vg =X B+ug, i=1..N;,g=1..6,

yg :Xgﬁ‘l‘llg, g8 = ].,...,G,
y =XB+u.

@ OLS estimator

-~ G N _ G N,
B = (Zg:1 it XigXig) l(zg:1 D XigYig)
G _ G
= (Zgzl X/gxg) 1(Zg:1 Xlgyg)
= (X'X)"'Xly.
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2. Cluster-Robust Inference 2.2 Clustered Errors

o As usual
B = B+ (XX)'Xu
= B+ (XX) T, Xeug).
@ Assume independence over g and correlation within g
Eluigujgr|Xig, Xjgr] = 0, unless g = g

o Then B 2 N[B, V[B]] with asymptotic variance

Avar[B] = (E[X'X])~ l(ng lE[X/gugu’ng])(E[X’X])_l

# o (EX'X])~
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22 Qlssiared B
Consequences - KEY RESULT FOR INSIGHT

@ Suppose equicorrelation within cluster g

1 i=j
P, 1FJ

Corluig, ujg|xig, Xjg] = {

> this arises in a random effects model with
Ujg = &g +€jg, where ag and g, are i.i.d. errors.
> an example is individual 7 in village g or student i in school g.

@ The incorrect default OLS variance estimate should be inflated by

T = 1+piju(Ng - 1)'

v

(1) Px; is the within cluster correlation of x;

> (2) p, is the within cluster error correlation

> (3) Ny is the average cluster size.

Need both (1) and (2) and it also increases with (3)

>
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2. Cluster-Robust Inference 2.2 Clustered Errors

@ Theory: Kloek (1981), Scott and Holt (1982).

@ Practice: Moulton (1986, 1990) showed that the variance inflation
can be large even if p, is small

> especially with a grouped regressor (same for all individuals in group)
so that p, = 1.

» CPS data example:
Ng =81, p, =1 and_pu =0.1
=T~ 1+ijpu(Ng_1) =1+1x01x80=09.

* true standard errors are three times the default!

@ So should correct for clustering even in settings where not obviously a
problem.
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2.3 The Cluster-Robust Variance Matrix Estimate
2.3 The Cluster-Robust Variance Matrix Estimate

@ Recall for OLS with independent heteroskedastic errors
Avar[B] = (E[X'X]) (I E[ufxix]]) (E[X'X]) !
can be consistently estimated (White (1980)) as N — oo by
VIB] = (X'X) (T B xixt) (X'X)

o Need 12, L 02x;x! —NZ,NlE[uxx]iO

> not 32 2 E[u?]
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VAN G TEEERCTEN I 2.3 The Cluster-Robust Variance Matrix Estimate

o Similarly for OLS with independent clustered errors
Avar[B] = (E[X'X]) "} (g1 E[Xpugul X, ]) (EX'X]) !

can be consistently estimated as G — oo by the cluster-robust
variance estimate (CRVE)

Ver[B] = (X'X) 71 (D1 Xjuighy Xg ) (X'X) 7.

» Stata uses Uy = cliy = c(yg — XgB) where c = & N-L ~ G _
g g Ye = Rg IN G-1

x|

Colin Cameron Univ. of California - Davis (K Robust Inference with Clustered Errors September 30 2016 21 /63



2. Cluster-Robust Inference 2.3 The Cluster-Robust Variance Matrix Estimate

@ The CRVE was

proposed by White (1984) for balanced case

proposed by Liang and Zeger (1986) for grouped data

> proposed by Arellano (1987) for FE estimator for short panels (group
on individual)

> Hansen (2007a) and Carter, Schnepel and Steigerwald (2013) also
allow Ng — oo.

> popularized by incorporation in Stata as the cluster option (Rogers
(1993)).

> also allows for heteroskedasticity so is cluster- and heteroskedastic-

robust.

v

v

@ Stata with cluster identifier id_clu

> regress y x, vce(cluster id_clu)
> xtreg y x, pa corr(ind) vce(robust)

* after xtset id_clu
* from version 12.1 on Stata interprets vce (robust) as cluster-robust for
all xt commands.
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24 ezl GLS
2.4. Feasible GLS with Cluster-Robust Inference

Potential efficiency gains for feasible GLS compared to OLS.

Specify a model for O, = E[uguy|X,], e.g. within-cluster
equicorrelation.
e Given O 2 (), the feasible GLS estimator of Bis

5 G A-—1 16 A—1
Brois = <Zg:]_ Xngg Xg) Zg:l X;'Qg Ye-

Default V[Bre s] = (X'Q1X) ! requires correct ).
To guard against misspecified () use cluster-robust

Ver[Brors) = (XO7'X) - (X, XeOp 0, 0;1%, ) (XO7'X)

> where Uy =yg — XgBFGLS and Q) = Diag[ﬁg]
> assumes ug and uy are uncorrelated, for g # h
> and needs G — oo.
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PRNCTEISNCIE AN I 2.4 Feasible GLS

FGLS Examples

@ Example 1 - Moulton setting
> Random effects model: y;, = xf-g,B +agteg
* xtreg, re vce(robust)
» Richer hierarchical linear model or mixed model
* Stata 13: mixed, vce(robust)

@ Example 2 - BDM setting

> AR(1) error ujy = pu; 1 +€jr and g i.id.

» xtreg y x, pa corr(ar 1) vce(robust)

» Stata allows a range of correlation structures
@ Puzzle - why is FGLS not used more?

» Easily done in Stata with robust VCE if G — o0
> Unless FE's present and Ng small (see later).
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PINGTELEECTEA SN 2.5 Implementation of OLS and FGLS

2.5 The CRVE can be rank deficient

° VCR[B] can be rank deficient

> rjmk is as most minimum of K and G — 1
» B =C'C, where C' = [X]ti; --- X[;lig] is K x G
> and Xllﬁl—i-"'—l-xlcﬁc =0

@ For example if have 15 clusters (say states)

» Cannot jointly test significance of 20 occupation dummies
» But can test joint significance of 14.

@ The test of overall joint statistical significance is not computable if
G <K

» but tests on individual coefficients are still okay.
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2.5 1725 Qe iy
2.6 Pairs Cluster Bootstrap

@ Do the following steps for each of B bootstrap samples:

> (1) form G clusters {(y7,X7), ..., (&, X% )} by resampling with
replacement G times from the original sample of clusters
> (2) compute B, (estimate of B) in the b bootstrap sample.

o Compute the variance of the B estimates Bl, EB as

=~

Vernoo Bl = 53 Loy By~ B)(By — B

where g =B71y? Bb and B > 400.
@ Pairs cluster bootstrap has no asymptotic refinement.

» But can compute these if Stata doesn't provide a CRVE.
» Also can do even if usual CRVE is rank deficient?

@ Also cluster jackknife.
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3. Cluster-Specific Fixed Effects Models: Summary

e Now yj, = xi-gﬁ + g + ujg = xf-gﬁ +ye, agdhig + ujg.
@ 1. FE's do not in practice absorb all within—cluster correlation of wj;
> still need to uce cluster-robust VCE
@ 2. Cluster-robust VCE is still okay with FE's (if G — o)
> Arellano (1987) for Ng small and Hansen (2007a, p.600) for Ng — o
o 3. If Ny small use xtreg, fe not reg i.id_clu
> as reg or areg uses wrong degrees of freedom
@ 4. FGLS with fixed effects needs to bias-adjust for &, inconsistent

> Hansen (2007b) provides bias-corrected FGLS for AR(p) errors

> Brewer, Crossley and Joyce (2013) implement in DiD setting

» Hausman and Kuersteiner (2008) provide bias-corrected FGLS for
Kiefer (1980) error model

@ 5. Need to do a modified Hausman test for fixed effects.
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4.1 Factors Determining What to Cluster Over
4.1 Factors Determining What to Cluster Over

It is not always obvious how to specify the clusters.
Moulton (1986, 1990)

> cluster at the level of an aggregated regressor.

e Bertrand, Duflo and Mullainathan (2004)

> with state-year data cluster on states (assumed to be independent)
rather than state-year pairs.

Pepper (2002)

> cluster at the highest level where there may be correlation
» e.g. for individual in household in state may want to cluster at level of
the state if state policy variable is a regressor.
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42 Clusiaing Bwe @ Sy Desi:
4.2 Clustering Due to Survey Design

Clustering routinely arises with complex survey data.

Then the loss of efficiency due to clustering is called the design effect

This is the inverse of the variance inflation factor given earlier
Long literature going back to 1960's

CRVE is called the linearization formula

Shah, Holt and Folsom (1977) is early reference.

Yy VvV VY

o Complex survey data are weighted
» often ignore assuming conditioning on x handles weighting
And stratified

» this improves estimator efficiency somewhat

Bhattacharya (2005) gives a general GMM treatment.

Colin Cameron Univ. of California - Davis (K Robust Inference with Clustered Errors September 30 2016 29 / 63



CIWNEVSR NGO THETMOIIAAN 4.2 Clustering Due to Survey Design

@ Econometricians reasonably

> 1. Cluster on PSU or higher
» 2. Sometimes weight and sometimes not
> 3. Ignore stratification (with slight loss in efficiency)

@ Survey software controls for all three.

» Stata svy commands

@ Econometricians use regular commands with vce(cluster) and
possibly [pweight=1/prob]

Colin Cameron Univ. of California - Davis (K Robust Inference with Clustered Errors September 30 2016 30 / 63



5. Multi-way Clustering

e Example: How do job injury rates effect wages? Hersch (1998).

» CPS individual data on male wages N = 5960.
» But there is no individual data on job injury rate.
> Instead aggregated data:

* data on industry injury rates for 211 industries
* data on occupation injury rates for 387 occupations.

@ Model estimated is
Yigh = &+ x:'ghﬂ + 9 X rind,-g + 6 X rocci, + Uigh-

@ What should we do?

» Ad hoc robust: OLS and robust cluster on industry for % and robust
cluster on occupation for 4.

> Non-robust: FGLS two-way random effects: ujgp = €5 + €5+ €igp; €g,
€hy Eigh i.i.d.

» Two-way robust: next
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5.1 Te-ray Gsie-Reus: YEE
5.1 Two-way Cluster-Robust
@ Robust variance matrix estimates are of the form
Avar[B] = (X'X)*B(X'X)~
o For one-way clustering with clusters g = 1, ..., G we can write

B=xY, JN:1 x;X:U;U;1[i, j in same cluster g]

> where T; = y; — x:B and
> the indicator function 1[A] equals 1 if event A occurs and 0 otherwise.
o For two-way clustering with clusters g =1,...,Gand h=1,...,. H
B = YV, Y1 X[ T;1;1[i, j share any of the two clusters]
= YN, Zjl-v_l X;X;U;U;1[i,j in same cluster g]
+Y N oYN X X/ 0;t;1[i,j in same cluster h]

— Zi:l ijl x,-xju,-ujl[i,j in both cluster g and h].
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S TRWEVRE TS EREEN 5.1 Two-way Cluster-Robust VCE

@ Obtain three different cluster-robust “variance” matrices for the
estimator by

» one-way clustering in, respectively, the first dimension, the second
dimension, and by the intersection of the first and second dimensions

» add the first two variance matrices and, to account for
double-counting, subtract the third.

» Thus

Vawo-way [B] = V6 [B] + Vi [B] = VerulBl.
@ Theory presented in Cameron, Gelbach, and Miller (2006, 2011),
Miglioretti and Heagerty (2006), and Thompson (2006, 2011)

» Extends to multi-way clustering.

@ Early empirical applications that independently proposed this method
include Acemoglu and Pischke (2003).
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CAVITRVEVRE TS SIEal 5.2 Implementation

5.2 Implementation

o If V[B] is not positive-definite (small G, H) then

» Decompose \A/[B] = UAU'; U contains eigenvectors of V, and A =
Diag[A1, ..., A4] contains eigenvalues.
» Create AT = Diag[)ﬁr, /\j] with Ajr = max (O,Aj), and use

VBl = uatU

» Stata add-on cgmreg.ado implements this.

@ Also Stata add-on xtivreg2.ado has two-way clustering for a variety
of linear model estimators.

o Fixed effects in one or both dimensions

» Theory has not formally addressed this complication

> Intuitively if G — o0 and H — oo then each fixed effect is estimated
using many observations.

» In practice the main consequence of including fixed effects is a
reduction in within-cluster correlation of errors.
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52 i Emem s
Application

@ Example 1: Hersch data

> Relatively small difference versus one-way
» But can simultaneously handle both ways rather than one-way cluster
on industry for 4 and one-way cluster on occupation for 4.

o Example 2: DiD

» We have found little difference if cluster two-way on state and time
versus just one-way on state.
» Studies in finance view this as important.

@ Example 3: Country-pair international trade volume

» Two-way cluster on country 1 and country 2 leads to much bigger
standard errors (Cameron et al. 2011)

> Cameron and Miller (2012) find that two-way still doesn't pick up all
correlations.

> Instead other methods including Fafchamps and Gubert (2007).
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BV ITRWEVAETSS-al 5.3 Feasible GLS

5.3 Feasible GLS

@ Two-way random effects
> Yigh = xf-ghﬁ +ag +0p + &g with iid. errors
> xtmixed y x || _all: R.idl || id2: , mle.
> but cannot then get cluster-robust variance matrix

@ Hierarchical linear models or mixed models

> richer FGLS

> Yig = XigBg + ujg

> By = Wgy +vj where ujg and vg are errors.
> see Rabe-Hesketh and Skrondal (2012)
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54 Sppeitel Canid B
5.4 Spatial Correlation

@ Two-way cluster robust related to time-series and spatial HAC.
o In general B in preceding has the form ¥_; Yw (i) x,-xj/-ﬁ,-ﬁj.

» Two-way clustering: w (i,j) = 1 for observations that share a cluster.

> White and Domowitz (1984) time series: w (i, ) = 1 for observations
“close” in time to one another.

> Conley (1999) spatial: w (/,) decays to 0 as the distance between
observations grows.

@ The difference: White & Domowitz and Conley use mixing conditions
to ensure decay of dependence in time or distance.

» Mixing conditions do not apply to clustering due to common shocks.
> Instead two-way robust requires independence across clusters.
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54 Sppeitel Canid B
Spatial Correlation Consistent VE

@ Driscoll and Kraay (1998) panel data when T — o0

generalizes HAC to spatial correlation

errors potentially correlated across individuals

correlation across individuals disappears for obs > m time periods apart
then w (it, js) =1 —d (it,js) /(m+ 1) with sum over i, j,s and t

and d (it,js) = |t —s| if |t —s| < m and d (it, js) = 0 otherwise.
Stata add-on command xtscc, due to Hoechle (2007).

vV v vV VY VY

e Foote (2007) contrasts various variance matrix estimators in a
macroeconomics example.

o Petersen (2009) contrasts methods for panel data on financial firms.

@ Barrios, Diamond, Imbens, and Kolesér (2012) state-year panel on
individuals with spatial correlation across states. And use
randomization inference.
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6. Few Clusters

6. Inference with Few Clusters

One-way clustering, and focus on the Wald “t-statistic”
BBy

SE .
CRVE assumes G — oo. What if G is small?

At a minimum use CRVE with rescaled error u; = \/cuy,

>Wherec:c%orc:3%x%:cg—l

And use T(G — 1) critical values

w =

> Stata does this for regress but not other commands..

But tests still over-reject with small G.
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6. Few Clusters

@ Inference with few clusters

> arises often in practice e.g. have only ten states
» standard methods in e.g. Stata over-reject
> this is an active area of research.

@ Three approaches

» 1. Finite sample bias correction to the CRVE
> 2. Wild cluster bootstrap (with asymptotic refinement)
» 3. Better t critical values

@ A related distinct problem is one treated cluster and many control
clusters.
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CRNGETNETSETE 6.1 The Basic Problem with Few Clusters

6.1 The Basic Problem with Few Clusters

OLS overfits with T systematically biased to zero compared to w.
» e.g. OLS with iid normal errors E[t'ti] = (N — K)o?, not No?.

Problem is greatest as G gets small - “few" clusters.
@ How few is few?

> balanced data; G < 20 to G < 50 depending on data
> unbalanced data: G less than this.

@ Unusual case. If N is too small with cross-section data, usually
everything is statistically insignificant.
@ With clustered data if G is small we may still have statistical

significance if N, is small.
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CRETNEITEETE 6.2 Solution 1: Bias-Corrected CRVE

6.2 Solution 1: Bias-Corrected CRVE

Simplest is u; = \/clig, already mentioned.
CR2VE generalizes HC2 for heteroskedasticity
» ut

5 = [In, — Hgg] 71/2lig where Hgg = Xg (X'X) 71X}
» gives unbiased CRVE if errors iid normal

CR3VE generalizes HC3 for heteroskedasticity

> i = /G/(G —1)[ly, — Hgg] 'tig where Hgg = Xg (X'X) ' X}
> same as Jackknlfe

@ Finite sample Wald tests

> at least use T(G — 1) p-values and critical values and not A/[0, 1]
» Example G = 10

* t=1.96 has p = 0.082 using T(9) versus p = 0.05 using N[0, 1]

» ad hoc reasonable correction used by Stata.
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N EETRETEEE 6.3 Solution 2: Cluster Bootstrap with Asymptotic Refinement

6.3 Solution 2: Cluster Bootstrap with Asymptotic
Refinement

e Cameron, Gelbach and Miller (2008)

Test Hy : B = /3(1) against H; : By # .5(1) using w = (B — ‘B(l))/sﬁl
perform a cluster bootstrap with asymptotic refinement

then true test size is & + O(G~3/2) rather than usual « + O(G™1)
hopefully improvement when G is small

wild cluster percentile-t bootstrap is best

better than pairs cluster percentile-t bootstrap .

v

vV Y VY VY
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6.3 Solution 2: Cluster Bootstrap with Asymptotic Refinement
Wild Cluster Bootstrap
@ Obtain the OLS estimator B and OLS residuals ug, g =1, ..., G.
> Best to use residuals that impose Hj.

@ Do B iterations of this step. On the b!" iteration:

@ For each cluster g =1, ..., G, form

Uy = Ug or Uy = —Ug each with probability 0.5

and hence form y; = X’gB + .
This yields wild cluster bootstrap resample {(y7, X1),.... (¥¢. X¢)}
@ Calculate the OLS estimate BI p and its standard error S5 and given
: 1b

. 5% >
these form the Wald test statistic wj; = (B; , — ’Bl)/sﬁib'

© Reject Hy at level « if and only if

* *
w < W[a/z] or w > W[l_“/2],

where W[’;] denotes the qth quantile of wy, ..., wg.
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N EETRETEEE 6.3 Solution 2: Cluster Bootstrap with Asymptotic Refinement

Current Research

e Webb (2013) proposes using a six-point distribution for the weights
dg in Uy = dgug.

> The weights dy have a 1/6 chance of each value in

{-V15,-v1,-V5,V5 V1, V15}.

» Works better with few clusters than two-point
* Two-point cluster gives only 261 different bootstrap resamples.

» Also with few clusters need to enumerate rather than bootstrap.

e MacKinnon and Webb (2013) find that unbalanced cluster sizes
worsens few clusters problem.

» Wild cluster bootstrap does well.
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6.3 Solution 2: Cluster Bootstrap with Asymptotic Refinement
Use the Bootstrap with Caution

@ We assume clustering does not lead to estimator inconsistency
» focus is just on the standard errors.
@ We assume that the bootstrap is valid

> this is usually the case for smooth problems with asymptotically normal
estimators and usual rates of convergence.
> but there are cases where the bootstrap is invalid.

@ When bootstrapping

> always set the seed (for replicability)
» use more bootstraps than the Stata default of 50

* for bootstraps without asymptotic refinement 400 should be plenty.
@ When bootstrapping a fixed effects panel data model
» the additional option idcluster () must be used

* for explanation see Stata manual [R] bootstrap: Bootstrapping
statistics from data with a complex structure.
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6.4 Solution 3: Improved T Critical Values
Solution 3: Improved T Critical Values

@ Suppose all regressors are invariant within clusters, clusters are
balanced and errors are i.i.d. normal
> then yjg = x; B +¢ejg = Vg = Xz B + &g with & i.i.d. normal
» so Wald test based on OLS is exactly T(G — L), where L is the
number of group invariant regressors.

@ Extend to nonnormal errors and group varying regressors

> asymptotic theory when G is small and Ny — co.

» Donald and Lang (2007) propose a two-step FGLS RE estimator yields
t-test that is T(G — L) under some assumptions

> Wooldridge (2006) proposes an alternative minimum distance method.
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CREETREITSETE 6.4 Solution 3: Improved T Critical Values

Current Research (continued)

@ Imbens and Kolesar (2012)

Data-determined number of degrees of freedom for t and F tests
Builds on Satterthwaite (1946) and Bell and McCaffrey (2002).
Assumes normal errors and particular model for Q).

Match first two moments of test statistic with first two moments of x?.
v = ():JGZI Aj)2/(2f=1 12) and A; are the eigenvalues of the G x G
matrix G”G.

Yy vV VvV VY

» Find works better than 2-point Wild cluster bootstrap but they did not
impose Hy.
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INEETRETEETEN 6.4 Solution 3: Improved T Critical Values

o Carter, Schnepel and Steigerwald (2013)

» provide asymptotic theory when clusters are unbalanced
» propose a measure of the effective number of clusters

> G*=G/(1+96)

* where 6 = £ L2 {(vg — 7)?/7*}
* oy = el (X'X) XL X (X'X) T ey
* ey is a K x 1 vector of zeroes aside from 1 in the k" position ifﬁ = Bk
* '7 = é ZgG:I ,)/g'

@ Cluster heterogeneity (6 # 0) can arise for many reasons

> variation in N, variation in X, and variation in "¢ across clusters.

Colin Cameron Univ. of California - Davis (K Robust Inference with Clustered Errors September 30 2016 49 / 63



6. Few Clusters

@ Brewer, Crossley and Joyce (2013)

» Do FGLS as gives both efficiency gains and works well even with few
clusters.
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6.5 Sppeeiel Casz
6.5 Special Cases

Bester, Conley and Hansen (2009)

> obtain T(G — 1) in settings such as panel where mixing conditions
apply.
Ibragimov and Muller (2010) take an alternative approach

> suppose only within-group variation is relevant
> then separately estimate ,Bgs and average
> asymptotic theory when G is small and Ng — oo

A big limitation is assumption of only within variation

» for example in state-year panel application with clustering on state it
rules out z; in yst = X5+ z;7y + €5 where z; are for example time
dummies.

This limitation is relevant in DiD models with few treated groups

» Conley and Taber (2010) present a novel method for that case.
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7. Extensions

@ The results for OLS and FGLS and t-tests extend to multiple
hypothesis tests and IV, 2SLS. GMM and nonlinear estimators.

@ These extensions are incorporated in Stata

» but Stata generally does not use finite-cluster degrees-of-freedom
adjustments in computing test p-values and confidence intervals

* exception is command regress.
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Extensions (continued)

@ 7.1 Cluster-Robust F-tests
@ 7.2 Instrumental Variables Estimators

» |V, 2SLS, linear GMM
» Need modified Hausman test for endogeneity : estat endogenous
» Weak instruments:

* First-stage F-test should be cluster-robust
* use add-on xtivreg2
* Finlay and Magnusson (2009) have Stata add-on rivtest.ado.

@ 7.3 Nonlinear Estimators

> Population-averaged (xtreg, pa) and random effects (e.g. xtlogit,
re) give quite different Bs
> Rarely can eliminate fixed effects if Ny is small.

@ 7.4 Cluster-randomized Experiments
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8. Empirical Example: Moulton Setting

@ Moulton setting
» Cross-section sample with clustering on state.
o BDM setting

» Repeated cross-section data with individual data aggregated to
state-year.

@ Demonstrate

» the impact of clustering on standard errors and test size
» and consider various finite-cluster corrections.
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8. Empirical Example

8.1 Cross-section individual-level data

@ Table 1: Moulton setting.

» Cross-section individual-level data March 2012 CPS data with
state-level regressor and cluster on state.

» N = 65685 and G = 51.

» Compare various standard errors for OLS and FGLS (RE).

@ Table 2: 20% subsample of data in Table 1.

> Now construct a fake dummy and test Hp : B = 0.

» Do this for G =50, 30, 20, 10 and 6

» S =4000 for G <10 and S = 1000 for G > 10.

» B =399 (okay for Monte Carlo but set higher in practice).
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8. Empirical Example

Table@AMTrossEectiondndividualdevel@ata
Impacts@fitlustering@nd@stimator@hoices®n@stimated@oefficients@ndBtandard@rrors

Estimation@ethod

oLS FGLSHRE)

Slope@oefficient 0.0108 0.0314

Standard@®rrors
Default 0.0042 0.0199
HeteroscedasticRobust 0.0042
ClusterRobustfcluster®nBtate) 0.0229 0.0214
Pairsi@lusteribootstrap 0.0224 0.0216
Number@bservations 65685 65685
Numberitlustersstates) 51 51
ClusterBizeange 519@0%866 519@0®866
Intraclass@orrelation 0.018

Notes:@March012@PS@ata, AromAPUMS@ownload.MefaultBtandard@rrorsforDLS@Essume
errors@refid;@efaultBtandard®rrorsdor®# GLS@ssume@he@RandomEffects@nodelds@orrectly
specified.@he@ootstrap@isesB99&eplications.FAdixed@ffect@nodelds@hotBossible,Bince
thelegressorisinvariant@vithinBtates.
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8. Empirical Example

TableRMTrossBectiondndividualleveldata

MonteTarloejectic uelullthypott | ith@ifferer k I dif jectioninethod:
. i jectionate:
Waldiest@nethod NumbersfTlusters
6 10 20 30 50
DifferentBtandard@rrors@nd@ritical@alues
1 WhiteRobust,T(Nzk)Horritical@alue 0.439 0.457 0.471 0.462 0.498
2 Cluster®nBtate,@(NEk)Hori@riticalWalue 0.215 0.147 0.104 0.083 0.078
3c Btate, [ (G2)ForEritical¥al 0.125 0.103 0.082 0.069 0.075
4 Cl Btate, @ (GR)Hoririti 0.105 0.099 0.076 0.069 0.075
5 Cluster®nBtate, LR 2MbiasRorrection, B (GEL)For@ritical¥alue 0.082 0.070 0.062 0.060 0.065
6 ClusterinBtate, LR3bias@orrection,@(GEL)Horritical¥alue 0.048 0.050 0.050 0.052 0.061
7 Cluster®nBtate,LR2MbiasRorrection,AKBegreesdffreedom 0.052 0.050 0.047 0.047 0.054
8 Clusterin3tate,@(CSSRffective@@lusters) 0.114 0.079 0.057 0.056 0.061
9 Pairs&lusterfbootsti d@rror, 7T (GEL)For@riti 0.082 0.072 0.069 0.067 0.074
Bootstrap@ercentile@Tnethods
10 Pairs®lusterbootstrap 0.009 0.031 0.046 0.051 0.061
11 WildEle ribootstrap,Rad t int@istribution,| 0.097 0.065 0.062 0.051 0.060
12 Wild®l rap, int@istribution,@nidepl le 0.068 0.065 0.062 0.051 0.060
13 Wild®lusterfbootstrap,Rademacher2®oint@istribution, thighthvalu 0041 0064 0062 0051  0.060
14 Wi rap,| i istribution 0.079 0.067 0.061 0.051 0.061
15 Wi d h kil ypothesis 0.086 0.063 0.050 0.053 0.056
16 IK@ffective@OFmean) 33 5.6 9.4 123 16.9
17 IK@ffective@OFH5thpercentile) 2.7 3.7 4.9 6.3 9.6
18 IK@ffective@OFF95thercentile) 3.8 7.2 145 20.8 29.5
19 CSSffective@®@lustersfmean) 4.7 6.6 9.9 12.7 17
20 Aver vation. 1554 2618 5210 7803 13055
h@2012TPSHata,20% | UMSElownload.FForB@andEL0&I usters, B0008MontearloFeplications.EFor20250
clusters,FL000@MonteCarl ications.@h ications.@IK@ffectivedOF"dromA@mbens@ndXolesar
(2013),@ndEICSSRffecti ers"drom@arter,Bch | igerwald§2013),BeeBubsection®|.D.FRowA 1UsesdowestHE
valuefromlinterval,Bvhen®WildBercentileEboc i ifi [RowA2Rses
val.
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8.2 BDM Setting with repreated ¢

o Table 3: BDM setting.

> Panel level state-year data March 1977-2012 CPS data.
> Aggregated from individual level data using Hansen (2007) method

* OLS regress yj;s on regresors X;;s and state-year dummies Dys gives
coefficients yis
* OLS regress yis = ats + 0t + B X dis + ugs
» G=51,T=36 N=G x T =1836,
» Compare various standard errors for FE-OLS and FE-FGLS (AR(1)).

o Table 4: Same data as Table 3.

> Now construct a fake serially correlated dummy and test Hy : B = 0.
» Do this for G = 50, 30, 20, 10 and 6.
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8. Empirical Example

Tabl. ith@ifferencesBinfdifferences@stimation
Impacts®flustering@nd@stimationhoi in ] fficient: Jard@rrors,@BndpRalues
Standard&rrors pBralues
Model: 1 2 3 12 3
OLStho FGLS OLStho FGLS
Estimation@Method: OLSEFE FE__ AR(1) OLSEFE FE_ AR(1)
Slopefoefficient 0.0156  0.0040 [.0042
StandardErrors
1 Default@tandard®rrors, T (NEk)Horritical¥alue 0.0037 0.0062 0.0062 0.000 0.521  0.494
2 White@Robust,BT(NEk)Hor@ritical¥alue 0.0037 0.0055 na 0.000 0.470 na
3 ClusternBtate,@(GEL)ForiEritical¥alue 0.0119 0.0226  0.0084 0.195 0861 0.617
4 ClusterfdnBtate,[CR2biasRorrection,(GAL)Hor@ritical&alue 0.0118 0.0226 na 0.195  0.861 na
5cl [CR2bi rection,@KRegreesdffreedom 0.0118  0.0226 na 0.195  0.861 na
6 PairsziL b d@rror,[(GEL)foriritical¥alue 0.0118 0.0221 0.0086 0.191 0857 0.624
Bootstrap@PercentilefEnethods
7 Pairsilusterbootstrap na na 0.162 0.878
8 WildElusterbootstrap,®Rademacher2@oint@istribution na na 0.742  0.968
9 Wildzl ribootstrap,| bk vint@listribution na na 0722  0.942
10 ImbensKolesarffectivedOF 50 50
11 CEBRffective@lusters 51 51
Numberibservations 1836 1836 1836
Numberf@lustersistates) 51 51 51
Notes:@March997F2012CP SR ata, EromAPUMSE load.@odel 1dBfinclud | rifixed@ffects,And@fakeBolicy”
dummy®ariable&hat@urns®ninE995For@Fandor i cludesFearfixed@ffectsbutotBtatedixed
effects.@heBootstr lications.@Model S,Essuming@nAR(1)2rrorvithin®achBtate [lIKRffective@OF "Hrom

Imbens@ndXolesar{2013),@nd@ CSS@ffective@lusters"dEromTarter,Bchnepel@ndBSteigerwal d§2013),BeeBubsection®|.D.
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8. Empirical Example

Table@mMBtateBearanel@atalvith@ifferencesBinifferences@stimation
MontearloZejection@ates®fEruefullthypothesisdslopeZD)avith@ifferent@@lusters@nd@ifferent@ejection@net
NominalB%[ejection@ates

Estimation@ethod Numbers®fiTlusters
6 10 20 30
WaldTests
1 Default@Btandard@rrors,BT(Nek)Hor@riticalalue 0.589 0.570 0.545 0.526
2 Cluster®nBtate, & (Nek)Hor@riticalWalue 0.149 0.098 0.065 0.044
3 Clustern@tate, [ (GEL)Hor@ritical@alue 0.075 0.066 0.052 0.039
4 ClusternBtate,BT(GER)Hor@riticalalue 0.059 0.063 0.052 0.038
5 Pairslusterootstrap@orBtandard@rror, BT (GEL)Hor@riticalalue 0.056 0.060 0.050 0.036

Bootstrap@ercentile@M@nethods

6 Pairsilusterfbootstrap 0.005 0.019 0.051 0.044
7 Wild&lusterbootstrap,®Rademacher@@oint@istribution 0.050 0.059 0.050 0.036
8 Wild&tlusterbootstrap,@MVebb®BBoint@istribution 0.056 0.059 0.048 0.037

Notes:@archfl99722012PSEata,HromAP UMSRlownload.@MModelsdncludeBtate@ndFeardixed@ffects,Bnd@E fakeboli
dummy®ariable@hat@urns®ndn995For@ERandomBubset@®fthal {dfEheBtates.@orB@ndEO0R| usters,B000@Vontearlo
replications.@or20Z0& usters,FL000AMontefarlo@eplications.@he@ootstraps@iseB99&eplications.
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9. Current Research

9. Current research

@ Andreas Hagemann (2016), “Cluster-Robust Bootstrap Inference in
Quantile Regression Models,” JASA, forthcoming.

» wild cluster bootstrap for quantile regression.
e James G. MacKinnon and Matthew D. Webb (2016), “Randomization
Inference for Difference-in-Differences with Few Treated Clusters”

http://www.carleton.ca/economics/wp-content/uploads/cep16-
11.pdf

» Randomization and bootstrap methods for differences-in-differences
with few clusters.

o James E. Pustejovsky and Elizabeth Tipton (2016), “Small sample
methods for cluster-robust variance estimation and hypothesis testing
in fixed effects models.” http://arxiv.org/pdf/1601.01981v1

» Imbens and Kolesar extended to multiple hypothesis tests.
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9. Current Research

Current research (contined)

@ Rustam Ibragimov and Ulrich K. Miiller (2016), “Inference with Few
heterogeneous Clusters,” R.E.Stat., 83-96.

> Extends Ibragimov and Miiller (2010) from one-sample t-test to
two-sample t-test.
@ Alberto Abadie, Susan Athey, Guido W. Imbens, Jeffrey M.

Wooldridge (2014), “Finite Population Causal Standard Errors,”
NBER Working Paper 20325.

» proposes randomization-based standard errors that in general are
smaller than the conventional robust standard errors.

@ A. Colin Cameron and Douglas L. Miller (2014), "Robust Inference
for Dyadic Data".
http://cameron.econ.ucdavis.edu/research /dyadic_cameron_miller dec

» robust inference for paired data such as cross-country trade.
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10. Conclusion

@ Where clustering is present it is important to control for it.
@ We focus on obtaining cluster-robust standard errors
» though clustering may also lead to estimator inconsistency.
@ Many Stata commands provide cluster-robust standard errors using
option vce ()

> a cluster bootstrap can be used when option vce() does not include
clustering.

@ In practice

> it can be difficult to know at what level to cluster
» the number of clusters may be few and asymptotic theory is in the
number of clusters.
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