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28 Machine learning for prediction and
inference

28.1 Introduction

Microeconometrics studies tend to focus on estimation of one or more regression model
parameters β, and subsequent statistical inference on β or relevant marginal effects that
are a function of β.

A quite different purpose of statistical analysis is prediction. For example, we may
wish to predict the probability of twelve-month survival following hip or knee replace-
ment surgery. In that case we are interested in obtaining a good prediction ŷ of the
dependent variable y.

In principle nonparametric methods such as kernel regression can provide a flexible
way to obtain predictions. But these methods suffer from the curse of dimensionality
if there are many potential regressors. The machine learning literature has proposed a
wide range of alternative techniques for prediction, where the term machine learning is
used as the machine, here the computer, selects the best predictor using only the data
at hand, rather than via a model specified by the researcher who has detailed knowledge
of the specific application.

Machine learning entails data mining that can lead to overfitting the sample at
hand. To guard against overfitting, models are assessed on the basis of out-of-sample
prediction using cross validation or by penalizing model complexity using information
criteria or other penalty measures. We begin by presenting cross validation and penalty
measures.

We then present various techniques for prediction that are used in the machine
learning literature. We focus on shrinkage estimators, notably the LASSO. Additionally
a brief review is provided of principal components for dimension reduction, and neural
networks, regression trees and random forests for flexible nonlinear models. There is
no universal best method for prediction, though for some specific data types, such as
images or text, one method may work particularly well. Often an ensemble prediction
that is a weighted average of predictions from different methods performs best.

The machine learning literature has focused on prediction of y. The recent econo-
metrics literature has developed methods that use machine learning methods as an in-
termediate input to the ultimate goal of estimating and performing inference on model
parameter(s) of interest. This is a very active area of research.
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A leading inference example of machine learning methods is inference on α in the
partial linear model y = d′α + x′γ + u where machine learning methods are used
to determine the best set of controls x. A second leading example is instrumental
variables estimation with many potential instruments and/or controls. Then we wish
to select only a few variables to avoid the weak instrument problems that can arise with
many instruments. These and related examples cover many applied microeconometrics
applications and the development of methods for valid inference with machine learning
as an input promises to be revolutionary.

The econometrics inference literature to date has emphasized use of the LASSO, and
Stata 16 has introduced a suite of commands for prediction and inference using the
LASSO. For these reasons we emphasize the LASSO. We expect that additional methods,
notably random forests and neural nets, will be increasingly used in microeconometric
studies.

28.2 Measuring the predictive ability of a model

There are several ways to measure the predictive ability of a model. Ideally such mea-
sures penalize model complexity and control for in-sample overfitting.

Traditionally econometricians have used penalty measures such as in-sample adjusted
R2 and in-sample information criteria. The machine learning literature instead empha-
sizes out-of-sample predictive ability using cross validation. An introductory treatment
is given in James, Witten, Hastie, and Tibshirani (2013, chaps. 5, 6.1).

28.2.1 Generated data example

The example used in much of this chapter is one where the continuous dependent variable
y is regressed on three correlated normally distributed regressors, denoted x1, x2 and
x3. The actual data generating process for y is a linear model with an intercept and
x1 alone. Many of the methods can be adapted for other types of data such as binary
outcomes and counts.

The data are generated using commands presented in chapter 5, notably the drawnorm
command to generate correlated normally distributed regressors with correlation 0.5 and
the rnormal() function to obtain normally distributed errors. The DGP for y is a linear
model with intercept 2 and slope coefficient 1 for variable x1. We have

. * Generate three correlated variables (rho = 0.5) and y linear only in x1

. qui set obs 40

. set seed 12345

. matrix MU = (0,0,0)

. scalar rho = 0.5

. matrix SIGMA = (1,rho,rho \ rho,1,rho \ rho,rho,1)

. drawnorm x1 x2 x3, means(MU) cov(SIGMA)

. generate y = 2 + 1*x1 + rnormal(0,3)
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Summary statistics and correlations for the variables are

. * Summarize data

. summarize

Variable Obs Mean Std. dev. Min Max

x1 40 .3337951 .8986718 -1.099225 2.754746
x2 40 .1257017 .9422221 -2.081086 2.770161
x3 40 .0712341 1.034616 -1.676141 2.931045
y 40 3.107987 3.400129 -3.542646 10.60979

. correlate
(obs=40)

x1 x2 x3 y

x1 1.0000
x2 0.5077 1.0000
x3 0.4281 0.2786 1.0000
y 0.4740 0.3370 0.2046 1.0000

OLS estimation of y on x1, x2 and x3 yields the following

. * OLS regression of y on x1-x3

. regress y x1 x2 x3, vce(robust)

Linear regression Number of obs = 40
F(3, 36) = 4.91
Prob > F = 0.0058
R-squared = 0.2373
Root MSE = 3.0907

Robust
y Coefficient std. err. t P>|t| [95% conf. interval]

x1 1.555582 .5006152 3.11 0.004 .5402873 2.570877
x2 .4707111 .5251826 0.90 0.376 -.5944086 1.535831
x3 -.0256025 .6009393 -0.04 0.966 -1.244364 1.193159

_cons 2.531396 .5377607 4.71 0.000 1.440766 3.622025

Only variable x1 is statistically significant at level 0.05. This is very likely given the DGP

depends on only x1, but it is by no means certain. Due to randomness we expect that
variable x2, or variable x3, will be statistically significant at level 0.05 in five percent of
similarly generated datasets.

28.2.2 Mean squared error

In general we predict at point x0 using ŷ0 = ĝ(x0), where for OLS ŷ0 = x′
0β̂. We wish

to estimate the expected prediction error E{(y0 − ŷ0)2}.

The standard criterion used for continuous dependent variable is minimization of
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the mean squared error (MSE) of the predictor

MSE = 1
N

∑N

i=1
(yi − ŷi)

2. (28.1)

If the MSE is computed in sample, it under-estimates the true prediction error. One
way to see this under-estimation is that with N independent regressors including the
intercept, OLS necessarily produces a perfect fit with R2 = 1 and MSE = 0. By contrast,
the true prediction error will generally be greater than zero.

A second way to see this under-estimation is to note that if y = Xβ + u then
the OLS residual vector û = y − Xβ̂ = (I − M)u where M = X(X′X)−1X. Since
(I−M) < I in the matrix sense it follows that on average |ûi| < |ui| so the OLS residual
on average is smaller than the true unknown error. For similar reasons with independent
homoskedastic errors the unbiased estimator of σ2 is s2 = 1

N−K

∑N
i=1(yi − ŷi)2 and not

the smaller 1
N

∑N
i=1(yi − ŷi)2.

Several methods seek to adjust MSE for model size. These include information cri-
teria that penalize MSE for model size, and cross-validation measures that estimate the
model on a subsample and compute MSE for the remainder of the sample.

We focus on using MSE as the measure of predictive ability. For continuous data
other measures can be used such as the mean absolute error 1

N

∑N
i=1|yi − ŷi|. For

likelihood-based models the log-likelihood may be used. For generalized linear models
the deviance may be used. For binary outcomes the number of incorrect classifications is
commonly used if interest lies in predicting the actual outcome y, rather than Pr(y = 1).

28.2.3 Information criteria and related penalty measures

Two standard measures that penalize model fit for model size are Akaike’s information
criterion (AIC) and the Bayesian information criterion (BIC). The general formulas for
these measures were presented in section 13.8.2.

Specializing to the classical linear regression model under i.i.d. normal errors, the
fitted log-likelihood equals N ln 2π + N + ln MSE, leading to

AIC = N ln 2π + N + ln MSE + 2K

BIC = N ln 2π + N + ln MSE + (ln N) × K,

where K is the number of regressors including the intercept. Models with smaller AIC

and BIC are preferred, so AIC and BIC are penalized measures of MSE. BIC has a larger
penalty for model size than AIC, so BIC leads to smaller models and might be preferred
when more parsimonious models are desired.

A related information measure is Mallow’s Cp measure

Cp = (N × MSE/σ̂2) − N + 2K,
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where σ̂2 =
∑N

i=1(yi − ỹi)2/(N − p) and ỹi is the OLS prediction from the largest model
under consideration that has p regressors including the intercept. Models with smaller
Cp are preferred. Selecting a model on the basis of minimum Cp is asymptotically
equivalent to minimizing AIC.

Another penalty measure that is often used is adjusted R2, denoted R
2
, which can

be expressed as

R
2

= 1 −
MSE × N/(N − K)

TSS/(N − 1)
,

where TSS =
∑N

i=1(yi − ȳi)2. Again MSE is penalized for model size since R
2

is a
decreasing function of K. However, this penalty is relatively small. In the classical
linear regression model with homoskedastic normally distributed errors it can be shown
that, for nested models, choosing the larger model if it has higher R

2
is equivalent to

choosing the larger model if the F -statistic for testing joint significance of the additional
regressors exceeds one. The usual critical values used in such a test are substantially
greater than one.

To enable comparison of all eight possible models that are linear in parameters and
regressors we first define the regressor lists for each model.

. * Regressor lists for all possible models

. global xlist1

. global xlist2 x1

. global xlist3 x2

. global xlist4 x3

. global xlist5 x1 x2

. global xlist6 x2 x3

. global xlist7 x1 x3

. global xlist8 x1 x2 x3

The following code provides a loop that estimates each model and computes the
various penalized fit measures. Note that the global macro defining the kth regressor
list needs to be referenced as ${xlist‘k’} rather than simply $xlist‘k’. We have

. * Full sample estimates with AIC, BIC, Cp, R2adj penalties

. qui regress y $xlist8

. scalar s2full = e(rmse)^2 // Needed for Mallows Cp

. forvalues k = 1/8 {
2. qui regress y ${xlist`k´}
3. scalar mse`k´ = e(rss)/e(N)
4. scalar r2adj`k´ = e(r2_a)
5. scalar aic`k´ = -2*e(ll) + 2*e(rank)
6. scalar bic`k´ = -2*e(ll) + e(rank)*ln(e(N))
7. scalar cp`k´ = e(rss)/s2full - e(N) + 2*e(rank)
8. display "Model " "${xlist`k´}" _col(15) " MSE=" %6.3f mse`k´ ///

> " R2adj=" %6.3f r2adj`k´ " AIC=" %7.2f aic`k´ ///
> " BIC=" %7.2f bic`k´ " Cp=" %6.3f cp`k´

9. }
Model MSE=11.272 R2adj= 0.000 AIC= 212.41 BIC= 214.10 Cp= 9.199
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Model x1 MSE= 8.739 R2adj= 0.204 AIC= 204.23 BIC= 207.60 Cp= 0.593
Model x2 MSE= 9.992 R2adj= 0.090 AIC= 209.58 BIC= 212.96 Cp= 5.838
Model x3 MSE=10.800 R2adj= 0.017 AIC= 212.70 BIC= 216.08 Cp= 9.224
Model x1 x2 MSE= 8.598 R2adj= 0.196 AIC= 205.58 BIC= 210.64 Cp= 2.002
Model x2 x3 MSE= 9.842 R2adj= 0.080 AIC= 210.98 BIC= 216.05 Cp= 7.211
Model x1 x3 MSE= 8.739 R2adj= 0.183 AIC= 206.23 BIC= 211.29 Cp= 2.592
Model x1 x2 x3 MSE= 8.597 R2adj= 0.174 AIC= 207.57 BIC= 214.33 Cp= 4.000

The MSE, which does not penalize for model size, is smallest for the largest model with
all three regressors. The penalized measures all favor the model with an intercept and
x1 as the only regressors. More generally different penalties may favor different models.

28.2.4 splitsample command

The preceding example used the same sample for both estimation and measurement of
model fit. Cross validation instead estimates the model on one sample, called a training
sample, and measures predictive ability based on a different sample, called a test sample
or holdout sample or validation sample. This approach can be applied to a range of
models, and to loss functions other than mean-squared error.

Mutually exclusive samples of pre-specified size can be generated using the splitsample
command that creates a variable identifying the different samples. For example, the
sample can be split into five equally sized mutually exclusive samples as follows

. * Split sample into five equal size parts using splitsample command

. splitsample, nsplit(5) generate(snum) rseed(10101)

. tabulate snum

snum Freq. Percent Cum.

1 8 20.00 20.00
2 8 20.00 40.00
3 8 20.00 60.00
4 8 20.00 80.00
5 8 20.00 100.00

Total 40 100.00

For replicability the rseed() option is used. The variable snum identifies the five sam-
ples. The alternative split() option allows splitting in specified ratios. For example,
split (1 1 2) will split the sample into subsamples of, respectively, 25%, 25% and
50% of the sample. The cluster() option enables sample splitting by cluster. If data
are missing then it is best to include as an argument a list of relevant variables to en-
sure that the splits are on the sample with nonmissing observations. This is especially
important if, for example, observations with missing values appeared at the end of the
dataset.
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28.2.5 Single split cross validation

We begin with the simplest approach of single split validation. We randomly divide the
original sample into two parts: a training sample on which the model will be fitted and
a test sample which will be used to assess the fit of the model.

It is common to use a larger part of the original sample for estimation and a smaller
part for assessing predictive ability. The following code creates an indicator variable for
a training sample of 80% of the data (dtrain==1) and a test sample of 20% of the data
(dtrain==0).

. * Form indicator for training data (80% of sample) and test data (20%)

. splitsample, split(1 4) values(0 1) generate(dtrain) rseed(10101)

. tabulate dtrain

dtrain Freq. Percent Cum.

0 8 20.00 20.00
1 32 80.00 100.00

Total 40 100.00

We fit each of the eight potential regression models on the 32 observations in the
training sample, and compute the MSE separately for the 32 observations in the training
sample (an in-sample MSE) and for the 8 observations in the test sample (an out–of-
sample MSE).

. * Single split validation - training and test MSE for the 8 possible models

. forvalues k = 1/8 {
2. qui reg y ${xlist`k´} if dtrain==1
3. qui predict y`k´hat
4. qui gen y`k´errorsq = (y`k´hat - y)^2
5. qui sum y`k´errorsq if dtrain == 1
6. scalar mse`k´train = r(mean)
7. qui sum y`k´errorsq if dtrain == 0
8. qui scalar mse`k´test = r(mean)
9. display "Model " "${xlist`k´}" _col(16) ///

> " Training MSE = " %7.3f mse`k´train " Test MSE = " %7.3f mse`k´test
10. }

Model Training MSE = 10.124 Test MSE = 16.280
Model x1 Training MSE = 7.478 Test MSE = 13.871
Model x2 Training MSE = 8.840 Test MSE = 14.803
Model x3 Training MSE = 9.658 Test MSE = 15.565
Model x1 x2 Training MSE = 7.288 Test MSE = 13.973
Model x2 x3 Training MSE = 8.668 Test MSE = 14.674
Model x1 x3 Training MSE = 7.474 Test MSE = 13.892
Model x1 x2 x3 Training MSE = 7.288 Test MSE = 13.980

. drop y*hat y*errorsq

As expected, the in-sample MSE (where we normalize by N) decreases as regressors are
added, and is minimized at 7.288 when all three regressors are included.

But when we instead consider the out-of-sample MSE we find that this is minimized
at 13.871 when only x1 is a regressor. Indeed the model with all three regressors has
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the fifth highest out-of-sample MSE, due to in-sample overfitting.

28.2.6 K-fold cross validation

The results from single-split validation depend on how the sample is split. For example,
in the current example different sample splits due to different seeds can lead to out-
of-sample MSE being minimized by models other than that with x1 alone as regressor.
K-fold cross validation (CV) reduces this limitation by forming more than one split of
the full sample.

Specifically the sample is randomly divided into K groups or folds of approximately
equal size. In turn one of the K folds is used as the test dataset while the remaining
K − 1 folds are used as the training set. Thus when fold 1 is the test dataset the model
is fit on folds 2 to K, when fold 2 is the test dataset the model is fit on fold 1 and folds
3 to K, and so on. The following shows the case K = 5

Fit on folds Test on fold
j = 1 2,3,4,5 1
j = 2 1,3,4,5 2
j = 3 1,2,4,5 3
j = 4 1,2,3,5 4
j = 5 1,2,3,4 5

Then the cross-validation measure is the average of the K MSEs

CVK = 1
K

∑K

j=1
MSE(j), (28.2)

where MSE(j) is the MSE for fold j based on OLS estimates obtained by regression using
all data except fold j.

As the number of folds increases the training set size increases so bias decreases.
At the same time the fitted models overlap so test set predictions are more highly
correlated leading to greater variance in the estimate of the expected prediction error
E{(y0− ŷ0)2}. The consensus is that K = 5 or K = 10 provides a good balance between
bias and variance; most common is to set K = 10.

With so few observations we use K = 5 and obtain the MSE for each fold.

. * Five-fold cross validation example for model with all regressors

. splitsample, nsplit(5) generate(foldnum) rseed(10101)

. matrix allmses = J(5,1,.)

. forvalues i = 1/5 {
2. qui reg y x1 x2 x3 if foldnum != `i´
3. qui predict y`i´hat
4. qui gen y`i´errorsq = (y`i´hat - y)^2
5. qui sum y`i´errorsq if foldnum ==`i´
6. matrix allmses[`i´,1] = r(mean)
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7. }

. matrix list allmses

allmses[5,1]
c1

r1 13.980321
r2 6.4997357
r3 9.3623792
r4 6.413401
r5 12.23958

To obtain the CV5 measure we convert the matrix allmses to a variable and obtain
its mean.

. * Compute the average MSE over the five folds and standard deviation

. svmat allmses, names(vallmses)

. qui sum vallmses1

. display "CV5 = " %5.3f r(mean) " with st. dev. = " %5.3f r(sd)
CV5 = 9.699 with st. dev. = 3.389

The resulting CV5 measure is 9.699. The MSE’s do vary considerably over the five folds
with standard deviation 3.389 that is large relative to the average.

The user-written crossfold command (Daniels 2012) performs K-fold cross valida-
tion. Applying this to all eight potential models, using K = 5 and the same split for
each model we obtain

. * Five-fold cross validation measure for all possible models

. forvalues k = 1/8 {
2. set seed 10101
3. qui crossfold regress y ${xlist`k´}, k(5)
4. matrix RMSEs`k´ = r(est)
5. svmat RMSEs`k´, names(rmse`k´)
6. qui generate mse`k´ = rmse`k´^2
7. qui sum mse`k´
8. scalar cv`k´ = r(mean)
9. scalar sdcv`k´ = r(sd)

10. display "Model " "${xlist`k´}" _col(16) " CV5 = " %7.3f cv`k´ ///
> " with st. dev. = " %7.3f sdcv`k´
11. }

Model CV5 = 11.960 with st. dev. = 3.561
Model x1 CV5 = 9.138 with st. dev. = 3.069
Model x2 CV5 = 10.407 with st. dev. = 4.139
Model x3 CV5 = 11.776 with st. dev. = 3.272
Model x1 x2 CV5 = 9.173 with st. dev. = 3.367
Model x2 x3 CV5 = 10.872 with st. dev. = 4.221
Model x1 x3 CV5 = 9.639 with st. dev. = 2.985
Model x1 x2 x3 CV5 = 9.699 with st. dev. = 3.389

The crossfold command reports for each fold RMSE, the square root of the mean-
squared error, rather than MSE. To compute the CV5 measure we retrieve the RMSE’s
stored in matrix r(est) and calculate the average of the squares of the RMSE’s.

The cross validation measure is lowest for the model with x1 the only regressor.
However, it is only slightly higher in the model with both x1 and x2 included. Recall
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that the folds are randomly chosen, so that with different seed we would obtain different
folds, different CV values, and hence might find that, for example, the model with both
x1 and x2 included has the minimum CV.

Due to the randomness in K-fold cross validation, some studies use a one standard
error rule that chooses the smallest model with CV within one standard deviation of
the model with minimum CV. Applying that rule in this particular example favors
(marginally) an intercept-only model since 9.138 + 3.069 = 12.207 > 11.960.

Once the preferred model is obtained by cross validation it is fit using the entire
sample. Note that the data-mining to obtain a preferred model introduces issues similar
to those raised by pre-test bias; see section 11.3.8. Section 28.8 provides examples of
special settings, methods and assumptions for which it is possible to ignore the data
mining.

Cross validation is easily adapted to estimators other than OLS, and to other loss
functions such as mean absolute error 1

N

∑N
i=1|yi− ŷi|. Information criteria have the ad-

vantage of being less computationally demanding and can yield results not too dissimilar
from those obtained using cross validation.

28.2.7 Leave-one-out cross validation

Leave-one-out cross validation (LOOCV) is the special case of K-fold cross-validation
with K = N . Then N models are estimated, in each model (N − 1) observations are
used in training and the remaining observation is used for validation. So we drop each
observation in turn, estimating a model without that observation and then using the
fitted model to predict the dropped observation.

The user-written loocv command (Barron 2014) implements LOOCV. Note, however,
that it is quite slow as it is written to apply to any Stata estimation command and does
not take advantage of the great computational savings that are possible in the special
case of OLS.

For the model with x1 the only regressor we obtain

. * Leave-one-out cross validation

. loocv regress y x1

Leave-One-Out Cross-Validation Results

Method Value

Root Mean Squared Errors 3.0989007
Mean Absolute Errors 2.5242994
Pseudo-R2 .15585569

. display "LOOCV MSE = " r(rmse)^2
LOOCV MSE = 9.6031853

The MSE from LOOCV is 3.09892 = 9.603, similar to the CV5 measure of 9.699.
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LOOCV is not as good for measuring global fit as the N folds are highly correlated
with each other, leading to higher variance than if K = 5 or K = 10. LOOCV is used
especially for nonparametric regression where concern is with local fit; see section 27.2.4.
Assuming a correctly specified likelihood model, model selection on the basis of LOOCV

is asymptotically equivalent to using AIC.

28.2.8 Best subsets selection and stepwise selection

The best subsets method sequentially determines the best fitting model for models with
one regressor, with two regressors, and so on up to all p potential regressors. Then
K-fold cross-validated MSE or a penalty measure such as AIC or BIC is computed for
these p best fitting models of different sizes. In theory there are 2p models to estimate,
but this is greatly reduced by using a method called the leaps-and-bounds algorithm.

Stepwise selection methods, introduced in section 11.3.7, entail less computation
than the best subsets method. For example, with p potential regressors the stepwise
forwards procedure requires p + (p − 1) + ∙ ∙ ∙ + 1 = p(p + 1)/2 regressions.

The user-written vselect command (Lindsey and Sheather 2010) implements best
subsets and stepwise selection methods for OLS regression with predictive ability mea-
sured using any of adjusted R2, AIC, BIC or AICC where AICC is a bias-corrected version
of AIC that equals AIC+2(K+1)(K+2)/(N−K−2). The vselect command, however,
does not cover K-fold cross validated MSE.

The default for the vselect command is to use the best subsets method. We obtain

. * Best subset selection with community-contributed add-on vselect

. vselect y x1 x2 x3, best

Response : y
Selected predictors: x1 x2 x3

Optimal models:

# Preds R2ADJ C AIC AICC BIC
1 .2043123 .5925225 204.2265 204.8932 207.6042
2 .1959877 2.002325 205.5761 206.7189 210.6427
3 .1737073 4 207.5735 209.3382 214.329

predictors for each model:

1 : x1
2 : x1 x2
3 : x1 x2 x3

For models of a given size all measures reduce to minimizing MSE, while the various
models give different penalties for increased model size. The best fitting model with
one, two and three regressors are those with, respectively, regressors x1, (x1,x2), and
(x1,x2,x3). All the penalized measures favor the model with just x1 and an intercept
as regressor.

The forwards (or backwards) option of the vselect command implements forwards
(or backwards) selection. Then one additionally needs to specify which of the various
penalty measures is used as model selection criterion. The fix option of the vselect
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command enables specifying regressors that should be included in all models, and the
command permits weighted regression.

The user-written gvselect command (Lindsey and Sheather 2015) implements best
subsets selection for any Stata command that reports a fitted log-likelihood. Then the
best fitting model of a given size is that with the highest fitted log-likelihood, and the
best model overall is that with the smallest AIC or BIC.

28.3 Shrinkage Estimators

The linear model can be made quite flexible by including as regressors transformations
of underlying variables such as polynomials and interactions. Nonetheless the machine
learning literature has introduced other models and other estimation methods that can
predict better than OLS.

In this section we present shrinkage estimators, most notably the LASSO, that shrink
parameter estimates towards zero. The resultant reduction in variability may be suffi-
ciently large enough to offset the induced bias leading to lower MSE.

To see this potential gain, consider a scalar unbiased estimator θ̂ with E(θ̂) = θ

and Var(θ̂) = v. Then MSE(θ̃) = v since the mean squared error equals variance plus
squared bias

E{(θ̂ − θ)2} = E[{θ̂ − E(θ̂)}2] + {E(θ̂) − θ}2 (28.3)

Now define the shrinkage estimator θ̃ = aθ̂ where 0 ≤ a ≤ 1. Then Var(θ̃) = Var(aθ̂) =
a2v and Bias(θ̃) = E(θ̃)− θ = (a− 1)θ, so MSE(θ̃) = a2v + (a− 1)2θ2. In the case that
θ̃ shrinks all the way to zero (a = 0), θ̃ has lower MSE than θ̂ if θ2 < v. And if θ̃ = 0.9θ̂

then θ̃ has lower MSE than θ̂ for θ2 < 19v. The potential reduction in MSE of θ̃ carries
over directly to the predictor ỹ = x0θ̃.

Shrinkage methods are also called penalized or regularized methods. Many shrinkage
estimators can also be interpreted in a Bayesian framework as weighted sums of a
specified prior and sample maximum likelihood estimator. In some other cases the
shrinkage estimator may be a limiting form of such an estimator.

We focus on shrinkage for linear regression with MSE loss. But shrinkage estimators
can be applied to other settings with different loss functions, such as ML estimation for
the logit model.

We present the leading shrinkage estimators: ridge regression shrinks all parameters
towards zero, the LASSO sets some parameters to zero while other parameters are shrunk
towards zero, and the elastic net combines ridge regression and LASSO. An introductory
treatment is given in James et al. (2013, chap. 6.2).
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28.3.1 Ridge regression

The ridge estimator of Hoerl and Kennard (1970), also known as Tikhonov regulariza-
tion, is a biased estimator that reduces MSE by retaining all regressors but shrinking
parameter estimates towards zero.

The ridge estimator β̂λ of β minimizes

Qλ(β) = 1
N

∑N

i=1
(yi − x′

iβ)2 + λ
∑p

j=1
κjβ

2
j (28.4)

where λ ≥ 0 is a tuning parameter that needs to be provided and p is the number of
regressors. Different values of the penalty parameter λ lead to different ridge estimators.
The regressors x are standardized and some simpler methods set κj = 1 for all j.

The first term in the objective function is the sum of squared residuals minimized
by the OLS estimator. The second term is a penalty that for given λ is likely to increase
with the number of regressors p.

The resulting ridge estimator when all κj = 1 can be expressed as

β̂λ= (X′
X + λNIp)

−1X′y (28.5)

where p is the number of regressors. This estimator is a shrinkage estimator as it
shrinks the OLS estimator β̂ = (X′X)−1X′y, the special case λ = 0, towards 0. In the
simplest case that the regressor matrix X is orthonormalized so that X′X = Ip, the OLS

estimator is X′y and the ridge estimator is X′y/(1 + λ) which shrinks all coefficients
towards zero by the same multiplicative factor. For a given specification a shrinkage
factor that would lower the mean square error of the prediction can be shown to exist;
the practical task is to estimate it.

When the basic ridge regression is used it is customary to standardize the regressors
to have zero mean and unit variance. Some references and ridge regression programs
assume that the dependent variable has been standardized to have zero mean. In that
case yi is replaced with yi − ȳ and, without loss of generality, the intercept can be
dropped. The following code standardizes the regressors and demeans the dependent
variable.

. * Standardize regressors and demean y

. foreach var of varlist x1 x2 x3 {
2. qui egen double z`var´ = std(`var´)
3. }

. qui summarize y

. qui generate double ydemeaned = y - r(mean)

. summarize ydemeaned z*

Variable Obs Mean Std. dev. Min Max

ydemeaned 40 -3.33e-17 3.400129 -6.650633 7.501798
zx1 40 2.63e-17 1 -1.594598 2.693921
zx2 40 2.62e-17 1 -2.34211 2.80662
zx3 40 -2.98e-17 1 -1.688912 2.764129
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The Stata commands presented below for shrinkage estimation automatically standard-
ize regressors. Then the preceding code is unnecessary.

There are several ways to choose the value of the penalty parameter λ. It can be
determined by cross-validation, and algorithms exist to quickly compute β̂λ for many
values of λ. Alternatively penalty measures such as AIC may be used. Then the penalty
based on the number of regressors p may be replaced by the effective degrees of freedom
which for ridge regression can be shown to equal

∑p
j=1λj/(λj + λ) where λj are the

eigenvalues of X′X.

28.3.2 Least absolute shrinkage and selection operator (LASSO)

The least absolute shrinkage and selection operator (LASSO) estimator, due to Tibshirani
(1999), reduces MSE by setting some coefficients to zero. Additionally the coefficients
of retained variables are shrunk towards zero. Unlike ridge regression, the LASSO can
be used for variable selection.

The LASSO estimator β̃λ of β minimizes

Qλ(β) = 1
N

∑N

i=1
(yi − x′

iβ)2 + λ
∑p

j=1
κj |βj | (28.6)

where λ ≥ 0 is a tuning parameter that needs to be provided and p is the number of
potential regressors. Different values of the penalty parameter λ lead to different LASSO

estimators. The regressors x are standardized and some simpler implementations set
κj = 1 for all j,

The first term in the objective function is the sum of squared residuals minimized by
the OLS estimator. The second term is a penalty measure based on the absolute value
of the parameters, unlike the ridge estimator which uses the square of the parameters.

There is no explicit solution for the resulting LASSO estimator. It can be shown
that the LASSO estimator sets all but k ≤ p of the βj coefficients to zero, where k is a
decreasing function of λ, while also shrinking non-zero coefficients towards zero.

To see that some βj may equal zero, suppose there are two regressors. The combi-
nations of β1 and β2 for which the sum of squared residuals

∑N
i=1(yi−β1x1i−β2x2i)2 is

constant defines an ellipse. Different values of the sum of squared residuals correspond
to different ellipses, given in figure 28.1 and the OLS estimator is the centroid of the
ellipses. In general the LASSO can be shown to equivalently minimize

∑N
i=1(yi − x′

iβ)2

subject to the constraint that
∑p

j=1κj |βj | ≤ s, where higher values of s correspond
to lower values of λ. Specializing to the case p = 2, and letting κ1 = κ2 = 1, the
LASSO constraint |β1| + |β2| ≤ s defines the diamond-shaped region in the left panel of
figure 28.1 and we are likely to wind up at one of the corners where β1 = 0 or β2 = 0.
By contrast the ridge estimator constraint β2

1 + β2
2 ≤ s defines a circle and a corner

solution is very unlikely.

It is very important to note that LASSO picks the best fitting linear combination x′β
subject to the LASSO constraint, rather than the best variables x. This is especially



28.3.3 Elastic net 1277

Figure 28.1. Lasso versus ridge

the case when variables are correlated, such as when potential regressors include powers
and interactions of underlying variables. Thus the exact variables selected will vary in
repeated samples or if there is a different partition of the data into K folds.

For prediction, LASSO works best when a few of the potential regressors have βj 6= 0
while most βj = 0. By comparison, ridge regression works best when many predictors
are important and have coefficients of standardized regressors that are of similar size.
The LASSO is suited to variable selection, whereas ridge regression is not.

Hastie, Tibshirani, and Friedman (2009, chap. 3.8) discuss several penalized or
regularized estimators that can be viewed as variations of the LASSO, including the
grouped LASSO, the smoothly clipped absolute deviation SCAD penalty and the Dantzig
selector. The LASSO estimator is a special case of a more general method called least-
angle regression. The user-written lars command Mander (2014) implements least-
angle regression; the a(lasso) option obtains LASSO estimates.

A thresholded or relaxed LASSO performs an additional modified LASSO using only
those variables chosen by the initial LASSO. The adaptive LASSO presented in sec-
tion 28.4.4 is an example.

28.3.3 Elastic net

In many applications variables can be highly correlated with each other. The LASSO

penalty will drop many of these correlated variables, while the ridge penalty shrinks the
coefficients of correlated variables towards each other.

The elastic net combines ridge regression and LASSO. This can improve the MSE, but
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will retain more variables than the LASSO. The elastic net has objective function

Qλ,α(β) = 1
2N

∑N

i=1
(yi − x′

iβ)2 + λ
∑p

j=1
κj{α|βj | +

(1−α)
2 β2

j } (28.7)

The ridge penalty averages correlated variables while the LASSO penalty leads to spar-
sity. Ridge is the special case α = 0 and LASSO is the special case α = 1.

28.3.4 Finite sample distribution of LASSO-related estimators

A model selection method is consistent if asymptotically it correctly selects the correct
model from a selection of candidate models. A model selection method is conservative if
asymptotically it always selects a model that nests the correct model. Selecting a model
on the basis of minimum BIC is a consistent model selection procedure, while selecting
a model on the basis of minimum AIC is conservative (Leeb and Pötscher 2005).

A statistical model selection and estimation method is said to have an oracle property
if it leads to consistent model selection and a subsequent estimator that is asymptotically
equivalent to the estimator that could be obtained if the true model was known so that
model selection was unnecessary.

For example, suppose yi = αx1i + βx2i + ui and the true model is one with either
β = 0 or β 6= 0. A consistent model selection method correctly determines whether
or not β = 0. Let α̂ be the estimator of α that first uses a model selection method
to determine whether or not β = 0 and then estimates whichever model is selected.
Then α̂ has the oracle property if its asymptotic distribution is the same as that for the
infeasible estimator of α that directly fits the true model without initial model selection.

The LASSO is a consistent model selection procedure, but does not have the oracle
property due to its bias. The adaptive LASSO presented in section 28.4.4 is one of several
variations of LASSO that does have the oracle property.

Unfortunately the oracle property is an asymptotic property that while potentially
useful in some settings such as recognizing numbers on a license plate, does not carry over
to the finite sample settings that economists encounter. Our models do not fit perfectly
and we expect that with more observations it is possible to detect more variables that
predict the outcome of interest. Leeb and Pötscher (2005), for example, consider the
preceding example where β is of order O(1/

√
N). Then even though asymptotically

the oracle property may still hold, α̂ has a complicated finite sample distribution that
is affected by the first stage determination of whether or not β = 0. In fact α̂ has
MSE that can be very large and even larger than that if we simply estimated both α
and β without first determining whether or not β = 0. Mathematically this difference
between finite sample and asymptotic performance is a consequence of the asymptotic
convergence not being uniform with respect to parameters.

As a result we cannot perform standard inference on LASSO or post-LASSO OLS

coefficient estimates. Instead if inference on parameters is desired some model structure
is required and more complicated estimation methods need to be used. These are
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presented in sections 28.8 and 28.9.

28.4 Prediction using LASSO, ridge and elasticnet

We present an application of prediction for linear models using the LASSO and the
related shrinkage estimators – ridge and elastic net. These methods can be adapted to
binary outcome models (logit and probit) and exponential mean models (Poisson), and
we provide a logit example.

28.4.1 The lasso command

LASSO estimates can be obtained using the lasso command that has syntax

lasso model depvar [(alwaysvars)] othervars [if ] [in] [weight], options

The model is one of linear, logit, probit, or poisson. The variables alwaysvars
are variables to be always included while the LASSO selects among the othervars vari-
ables. The penalty λ can be determined by cross validation (option cv), adaptive cross
validation (option adaptive), BIC (option bic), or by a plug-in formula (option plugin).
For cross validation the options include folds(#) for the number of folds. The plug-
in methods are intended for non-prediction use of the LASSO; see section 28.8. Other
options set tolerances for optimization.

For clustered data the option cluster(clustervar ) defines the objective function to
be the average over clusters of the within-cluster sums of squared residuals. So (12.6)
becomes

Qλ(β) =
1
G

∑G

g=1

{
1

Ng

∑Ng

i=1
(yig − x′

igβ)2
}

+ λ
∑Ng

j=1
κj |βj |

Cross validation then selects folds at the cluster level, which requires a considerable
number of clusters.

The lasso command output focuses on determination of the penalty λ. Postestima-
tion commands lassoinfo, lassoknots, lassoselect, cvplot, lassocoef, coefpath,
lassogof, and bicplot provide additional information. These commands are illustrated
below.

The elasticnet command has syntax, options and postestimation commands sim-
ilar to those for the lasso command. Ridge estimates can be obtained using the
elasticnet command with option alpha(0). Stata also includes a sqrtlasso com-
mand which is seldom used and is not covered here.
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28.4.2 Lasso linear regression example

We apply the lasso linear command to the current data example. Since there are
only 40 observations we use 5-fold cross validation rather than the default of 10 folds.
The five folds are determined by a random number generator, so for replicability we
need to set the seed.

. * Lasso using 5-fold cross validation

. lasso linear y x1 x2 x3, selection(cv) folds(5) rseed(10101)

5-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 1.591525 no. of nonzero coef. = 0
Folds: 1...5 CVF = 11.85738
Grid value 2: lambda = 1.450138 no. of nonzero coef. = 1
Folds: 1...5 CVF = 11.60145
Grid value 3: lambda = 1.321312 no. of nonzero coef. = 1
Folds: 1...5 CVF = 11.2296

(output omitted )
Grid value 10: lambda = .688933 no. of nonzero coef. = 1
Folds: 1...5 CVF = 9.829713
Grid value 11: lambda = .6277301 no. of nonzero coef. = 2
Folds: 1...5 CVF = 9.739804

(output omitted )
Grid value 20: lambda = .2717294 no. of nonzero coef. = 2
Folds: 1...5 CVF = 9.393794
Grid value 21: lambda = .2475897 no. of nonzero coef. = 2
Folds: 1...5 CVF = 9.393523
Grid value 22: lambda = .2255945 no. of nonzero coef. = 2
Folds: 1...5 CVF = 9.40661
Grid value 23: lambda = .2055533 no. of nonzero coef. = 2
Folds: 1...5 CVF = 9.420332
Grid value 24: lambda = .1872925 no. of nonzero coef. = 2
Folds: 1...5 CVF = 9.434326
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 40
No. of covariates = 3

Selection: Cross-validation No. of CV folds = 5

--------------------------------------------------------------------------
| No. of Out-of- CV mean
| nonzero sample prediction

ID | Description lambda coef. R-squared error
---------+----------------------------------------------------------------

1 | first lambda 1.591525 0 0.0519 11.85738
20 | lambda before .2717294 2 0.1666 9.393794

* 21 | selected lambda .2475897 2 0.1666 9.393523
22 | lambda after .2255945 2 0.1655 9.40661
24 | last lambda .1872925 2 0.1630 9.434326

--------------------------------------------------------------------------
* lambda selected by cross-validation.

The default grid for λ is a decreasing logarithmic grid of 100 values with λj =
λ1 × 10−4(j−1)/99, j = 2, ..., 100, where λ1 is the smallest value at which no variables
are selected. Here λ1 = 1.591525 and, for example, λ2 = λ1 × 10−4/99 = 1.591525 ×
.97700996 = 1.450138.
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The output shows that reducing the penalty to λ2 = 1.450 led to the inclusion of
a regressor, and reducing the penalty to λ11 = 0.628 led to the inclusion of a second
regressor. The CV objective function continued to decline to a minimum value of 9.394
at λ21 = 0.248. The results are only listed to the 24th largest grid value of λ, rather
than all 100 grid point values, as the minimum CV value has already been attained by
then.

28.4.3 Lasso post estimation commands example

The lassoknots command provides a summary of the values of λ at which variables are
selected or deselected. Additionally it lists which variables were selected or deselected.

. * List the values of lambda at which variables are added or removed

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 1.450138 1 11.60145 A x1
11 .6277301 2 9.739804 A x2

* 21 .2475897 2 9.393523 U
24 .1872925 2 9.434326 U

* lambda selected by cross-validation.

In this example once a variable is selected it remains selected. Option alllambdas
gives results for all knots and option display() can produce additional statistics at
each listed knot such as the number of nonzero coefficients and AIC.

The lassoselect command enables specifying a particular value for the optimal
value λ* following LASSO with option selection(cv), The command lassoselect
ID=11 will change the selected λ* to that with ID=11 (here λ*= 0.6277301). And
lassoselect 0.50 will set λ* to the grid value closest to 0.50 (here λ13 = 0.5211525).

The cvplot command plots the CV objective function against λ on a logarithmic
scale or reverse logarithmic scale (the default), or plots the CV objective function against
∑

j |β̂j |.

. * Plot the change in the penalized objective function as lambda changes

. cvplot, saving(graph1, replace)
file graph1.gph saved

The plot is given in the first panel of figure 28.2 and shows that CV decreases as the
penalty λ decreases until λ = 0.248 at which point CV begins to increase.

The coefpath command provides a similar plot for the standardized coefficients of
each selected variable.

. * Plot how estimated coefficients change with lambda

. coefpath, xunits(rlnlambda) saving(graph2, replace)
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Figure 28.2. Plots of CV value and coefficients as λ changes

file graph2.gph saved

The plot is given in the second panel of figure 28.2. In this example once a variable is
selected it remains selected.

The lassoinfo command provides a summary of the lasso estimation.

. * Provide a summary of the lasso

. lassoinfo

Estimate: active
Command: lasso

No. of
Dependent Selection Selection selected
variable Model method criterion lambda variables

y linear cv CV min. .2475897 2

The lassocoef command with the display(coef, ) option can provide three dif-
ferent sets of estimates for in-sample regression of y on the lasso-selected regressors.

Standardized coefficients (the default) are the estimates from LASSO of y on the
standardized regressors. These are the estimates directly obtained by the LASSO at λ*.

. * Lasso coefficients for the standardized regressors

. lassocoef, display(coef, standardized)

active

x1 1.206056
x2 .2715635

_cons 0

Legend:
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b - base level
e - empty cell
o - omitted

Penalized coefficients are the preceding standardized LASSO estimates re-scaled so
that the standardization of variables is removed. These estimates can be interpreted in
terms of the original data, before standardization.

. * Lasso coefficients for the unstandardized regressors

. lassocoef, display(coef, penalized) nolegend

active

x1 1.35914
x2 .2918877

_cons 2.617622

The penalized coefficients are similar to the standardized coefficients because in this
example the variables x1 and x2 had variances close to one.

Postselection coefficients are obtained by OLS regression of y on the LASSO selected
regressors, here x1 and x2. These are sometimes referred to as post-LASSO OLS estimates.
Belloni and Chernozhukov (2013) find that the post-LASSO OLS estimator has lower bias
and rate of convergence at least as good as the LASSO estimator, and this is the case
even if the LASSO fails to include some relevant variables.

. * Post-selection estimated coefficients for the unstandardized regressors

. lassocoef, display(coef, postselection) nolegend

active

x1 1.544198
x2 .4683922

_cons 2.533663

As expected, the LASSO penalized estimates of the coefficients of the selected variables
(1.359 and 0.292) were smaller than these OLS estimates.

The lassogof command provides the goodness of fit with penalized coefficients (the
default) or with postselection coefficients. We have

. * Goodness-of-fit with penalized coefficients and postselection coefficients

. lassogof, penalized

Penalized coefficients

MSE R-squared Obs

8.679274 0.2300 40

. lassogof, postselection

Postselection coefficients
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MSE R-squared Obs

8.597958 0.2372 40

The postselection estimator is OLS which maximizes R2 since it minimizes the sum of
squared residuals. The lasso added a penalty which necessarily leads to smaller in-
sample R2. The difference here between 0.2372 and 0.2300 is not great.

Finally we verify that the postselection estimates are indeed obtained by OLS of y
on the lasso-selected variables.

. * Compare to OLS with the lasso selected regressors

. regress y x1 x2, noheader

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 1.544198 .6305617 2.45 0.019 .2665582 2.821837
x2 .4683922 .6014166 0.78 0.441 -.7501936 1.686978

_cons 2.533663 .5159805 4.91 0.000 1.488188 3.579139

28.4.4 Adaptive lasso

The adaptive LASSO (Zou 2006) is a multi-step LASSO method that usually leads to
fewer variables being selected compared to the basic CV method.

The preceding analysis set κj = 1 in (28.6). Adaptive LASSO also begins with regular
CV LASSO (or CV Ridge) with κj = 1. Adaptive LASSO then does a second LASSO that
excludes variables with β̂j = 0 and for the remainder sets κj = 1/|β̂j |δ with default
δ = 1 which favors variables with a larger coefficient as they receive a smaller penalty.
The default is to have one adaptive step but additional adaptive steps can be requested.

For the current example with one adaptive step we obtain

. * Lasso linear using 5-fold adaptive cross validation

. qui lasso linear y x1 x2 x3, selection(adaptive) folds(5) rseed(10101)

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

26 3.945214 1 11.60145 A x1
* 52 .3512089 1 9.160539 U

57 .2205694 2 9.210699 A x2
95 .0064297 2 9.172378 U

* lambda selected by cross-validation in final adaptive step.

Now the optimal choice of λ leads to only x1 being selected.

The selection(none) option fits at each value of λ on the grid but does not select
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an optimal value of λ.

. qui lasso linear y x1 x2 x3, selection(none) folds(5)

. lassoknots

No. of
nonzero In-sample Variables (A)dded, (R)emoved,

ID lambda coef. R-squared or left (U)nchanged

2 1.450138 1 0.0382 A x1
11 .6277301 2 0.1908 A x2
52 .0138423 3 0.2372 A x3
62 .0054597 3 0.2373 U

Note: No lambda selected. lassoselect can be used to select lambda.

For example, all three variables are selected if λ ≤ 0.0138423.

The selection(bic) option uses the Bayesian information criterion, computation-
ally faster than using cross validation, with the number of parameters set to the number
of nonzero coefficients. The default is to evaluate the BIC at the penalized coefficients;
the selection(bic, postselection) option instead evaluates at the postselection co-
efficients. The BIC is computed using a quasi-likelihood function that assumes indepen-
dence of observations, so care is needed in using it with clustered data.

The selection(plugin) option uses a plugin iterative procedure to determine λ*.
This option is intended for use in estimation, rather than prediction, and is presented
in section 28.8.

28.4.5 elasticnet command and ridge regression

The elasticnet command, for ridge and elastic net estimation, has syntax, options
and postestimation commands similar to those for the lasso command.

For the elastic net objective function given in (28.7), ridge regression is the special
case α = 0 and LASSO is the special case α = 1. Similarly, for the elasticnet command
the option alpha(0) implements ridge regression and the option alpha(1) implements
LASSO.

We begin with ridge regression, using the option alpha(0). Using five-fold cross-
validation to obtain the optimal λ we have

. * Ridge estimation using the elasticnet command and selected results

. qui elasticnet linear y x1 x2 x3, alpha(0) rseed(10101) folds(5)

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

alpha ID lambda coef. error or left (U)nchanged

0.000
1 1591.525 3 11.9595 A x1 x2



1286 Chapter 28 Machine learning for prediction and inference

x3
* 93 .3052401 3 9.54017 U
100 .1591525 3 9.566065 U

* alpha and lambda selected by cross-validation.

. lassocoef, display(coef, penalized) nolegend

active

x1 1.139476
x2 .4865453
x3 .0958546

_cons 2.659647

. lassogof, penalized

Penalized coefficients

MSE R-squared Obs

8.70562 0.2277 40

The ridge coefficient estimates are on average shrunken towards zero compared to the
OLS slope estimates of, respectively, 1.555, 0.471 and -0.026, given in section 28.2. And
R2 has fallen from 0.2373 to 0.2277.

For elastic net regression the elasticnet command performs a two-dimensional grid
search over both λ and α. The default for λ is the same logarithmic grid with 100 points
as used by lasso, while α = 0.5, 0.7, 1.0. For this example the defaults led to α = 1 so
elastic net reduced to LASSO. We specify a narrower grid that leads to α = 0.95.

. * Elastic net estimation and selected results

. qui elasticnet linear y x1 x2 x3, alpha(0.9(0.05)1) rseed(10101) folds(5)

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

alpha ID lambda coef. error or left (U)nchanged

1.000
4 1.450138 1 11.60145 A x1

13 .6277301 2 9.739804 A x2
26 .1872925 2 9.434326 U

0.950
29 1.591525 1 11.73019 A x1
38 .688933 2 9.81611 A x2

* 48 .2717294 2 9.3884 U
51 .2055533 2 9.425887 U

0.900
53 1.675289 1 11.74015 A x1
62 .7561031 2 9.900317 A x2
76 .2055533 2 9.431641 U

* alpha and lambda selected by cross-validation.
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. lassocoef, display(coef, penalized) nolegend

active

x1 1.329744
x2 .2908281

_cons 2.627567

. lassogof, penalized

Penalized coefficients

MSE R-squared Obs

8.693386 0.2288 40

The optimal values of α = 0.95 and λ = .2717 lead to selection of x1 and x2. The
penalized coefficient estimates and MSE are close to the lasso estimates, the case α = 1.
In real-life examples with many more regressors we expect a bigger difference.

28.4.6 Comparison of shrinkage estimators

The results across several shrinkage model estimates can be compared using the postes-
timation commands lassocoef, lassogof, and lassoinfo.

First. save model results using the estimates store command.

. * Fit various models and store results

. qui regress y x1 x2 x3

. estimates store OLS

. qui lasso linear y x1 x2 x3, selection(cv) folds(5) rseed(10101)

. estimates store LASCV

. qui lasso linear y x1 x2 x3, selection(adaptive) folds(5) rseed(10101)

. estimates store LASADAPT

. qui lasso linear y x1 x2 x3, selection(plugin) folds(5)

. estimates store LASPLUG

. qui elasticnet linear y x1 x2 x3, alpha(0) selection(cv) folds(5) rseed(10101)

. estimates store RIDGECV

. qui elasticnet linear y x1 x2 x3, alpha(0.9(0.05)1) rseed(10101) folds(5)

. estimates store ELASTIC

We compare in-sample model fit and the specific variables selected. The comparison
below uses penalized coefficient estimates for standardized variables. For unpenalized
postselection estimates of unstandardized variables use lassogof option postselection
and lassocoef option display(coef, postselection).

. * Compare in-sample fit and selected coefficients of various models

. lassogof OLS LASCV LASADAPT LASPLUG RIDGECV ELASTIC

Penalized coefficients
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Name MSE R-squared Obs

OLS 8.597403 0.2373 40
LASCV 8.679274 0.2300 40

LASADAPT 8.755573 0.2232 40
LASPLUG 10.23264 0.0922 40
RIDGECV 8.70562 0.2277 40
ELASTIC 8.693386 0.2288 40

. lassocoef OLS LASCV LASADAPT LASPLUG RIDGECV ELASTIC, display(coef) nolegend

OLS LASCV LASADAPT LASPLUG RIDGECV ELASTIC

x1 1.555582 1.206056 1.462431 .3693423 1.011134 1.179972
x2 .4707111 .2715635 .452667 .2705777
x3 -.0256025 .0979251

_cons 2.531396 0 0 0 0 0

CV LASSO selects x1 and x2, while adaptive LASSO which provides a bigger penalty than
CV LASSO selects only x1. Ridge by construction retains all variables, while the elastic
net in this example selected x1 and x2.

All methods have similar in-sample MSE and R2, aside from plugin LASSO. The plugin
LASSO, see section 28.8.5, is designed to select the variables that best approximate those
in the true model and is expected to predict well out of sample. The plugin LASSO did
indeed pick only x1, the model for the DGP of this example.

28.4.7 Shrinkage for logit, probit and Poisson models

In principle the LASSO, ridge and elastic net penalties can be applied to objective func-
tions other than the sum of squared residuals used for linear regression.

In particular, for generalized linear models the objective function uses the sum of
squared deviance residuals, defined in section 13.8.3, rather than the sum of squared
residuals. The lasso and elasticnet commands can also be applied to logit, probit
and Poisson models.

The squared residual (yi−x′
iβ)2 in (28.4), (28.6) and (28.7) is replaced by the squared

deviance residual. For logit this term is 2[yi lnΛ(x′
iβ) + (1− yi) ln{1−Λ(x′

iβ)}], where
Λ(z) = ez/(1 + ez). For probit we use 2[yi lnΦ(x′

iβ) + (1 − yi) ln{1 − Φ(x′
iβ)}] where

Φ(∙) is the standard normal c.d.f. For Poisson we use 2{yix′
iβ − exp(x′

iβ) − vi}, where
vi = 0 if yi = 0 and vi = yi ln(yi) − yi otherwise.

The related Stata commands in the case of LASSO are, respectively, lasso logit,
lasso probit and lasso poisson,

To illustrate the method for a binary variable, we convert y to a variable dy that
takes value 1 if y > 3, and implement LASSO for a logit model with λ determined by
five-fold CV.
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. * Lasso for logit example

. qui generate dy = y > 3

. qui lasso logit dy x1 x2 x3, rseed(10101) folds(5)

. lassoknots

No. of
nonzero CV mean Variables (A)dded, (R)emoved,

ID lambda coef. deviance or left (U)nchanged

2 .2065674 1 1.407613 A x1
* 24 .0266792 1 1.192646 U

26 .0221495 2 1.192865 A x2
30 .0152668 3 1.194545 A x3
31 .0139106 3 1.195055 U

* lambda selected by cross-validation.

The optimal λ leads to selection of only x1.

For a count example we create a Poisson variable ycount that takes values between
0 and 7 and whose mean depends on only x1. LASSO with five-fold CV yields

. * Lasso for count data example

. qui generate ycount = rpoisson(exp(-1 + x1))

. qui lasso poisson ycount x1 x2 x3, rseed(10101) folds(5)

. lassoknots

No. of
nonzero CV mean Variables (A)dded, (R)emoved,

ID lambda coef. deviance or left (U)nchanged

2 1.012329 1 2.191141 A x1
* 25 .119132 1 .8257619 U

29 .0821131 2 .8334985 A x3

* lambda selected by cross-validation.

Again the optimal λ leads to selection of only x1.

28.5 Dimension reduction

Dimension reduction methods reduce the number of regressors from p to m < p linear
combinations of regressors. Thus given initial model y = β0 + Xβ + u, where X is
N × p, we form matrix Z = XA, where A is p×m and Z is N ×m. Then we estimate
the model y = γ0 + Zγ + v.

Here we present principal components, a long-standing method that uses only X
to form A (unsupervised learning). A related method is partial least squares, which
additionally uses the relationship between y and X to form A (supervised learning).
Principal components is the method most often used in econometrics studies and can
be used in a very wide range of applications.
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28.5.1 Principal components

The principal components method selects the linear combinations of regressors, called
principal components, as follows. The first principal component has the largest sample
variance among all normalized linear combinations of the columns of X. The second
principal component has the largest sample variance subject to being orthogonal to the
first, and so on. More formally the jth principal component is the N × 1 vector Xhj

where hj is the eigenvector corresponding to λj , the jth largest eigenvalue of X′X.

The principal components are not invariant to the scaling of X and it is common
practice to apply principal components to data that has been standardized to have mean
zero and variance one. Let X∗ denote the regressor matrix after this standardization.
The Stata pca command computes the principal components. The default option is the
correlation option that is equivalent to automatically standardizing the data before
analysis. So with this default option there is no need to first standardize the regressors.
We obtain

. * Principal components using default option that first standardizes the data

. pca x1 x2 x3

Principal components/correlation Number of obs = 40
Number of comp. = 3
Trace = 3

Rotation: (unrotated = principal) Rho = 1.0000

Component Eigenvalue Difference Proportion Cumulative

Comp1 1.81668 1.08919 0.6056 0.6056
Comp2 .727486 .27165 0.2425 0.8481
Comp3 .455836 . 0.1519 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Unexplained

x1 0.6306 -0.1063 -0.7688 0
x2 0.5712 -0.6070 0.5525 0
x3 0.5254 0.7876 0.3220 0

The output includes the three eigenvalues and three eigenvectors. The data are stan-
dardized automatically so each of the three variables has variance one and the sum of
the variances is three. The variance of each principal component equals the correspond-
ing eigenvalue, so the first principal component has variance 1.81668 and explains a
fraction 1.81668/3 = 0.6056 of the total variance.

Note that the same results are obtained if we use the previously standardized vari-
ables zx1-zx3 and the covariance option, specifically command pca zx1 zx2 zx3,
covariance.

The post-estimation predict command constructs variables equal to the three prin-
cipal components. We obtain
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. * Compute the 3 principal components and their means, st.devs., correlations

. predict pc1 pc2 pc3
(score assumed)

Scoring coefficients
sum of squares(column-loading) = 1

Variable Comp1 Comp2 Comp3

zx1 0.6306 -0.1063 -0.7688
zx2 0.5712 -0.6070 0.5525
zx3 0.5254 0.7876 0.3220

. summarize pc1 pc2 pc3

Variable Obs Mean Std. dev. Min Max

pc1 40 -3.35e-09 1.347842 -2.52927 2.925341
pc2 40 -3.63e-09 .8529281 -1.854475 1.98207
pc3 40 2.08e-09 .6751564 -1.504279 1.520466

. correlate pc1 pc2 pc3
(obs=40)

pc1 pc2 pc3

pc1 1.0000
pc2 0.0000 1.0000
pc3 -0.0000 -0.0000 1.0000

The principal components have mean zero, standard deviation equal to the square root
of the corresponding eigenvalue, for example

√
1.81668 = 1.3478, and are uncorrelated.

The principal components are computed applying the relevant eigenvectors to the
standardized variables. For example, the first principal component is computed as
follows

. * Manually compute the first principal component and compare to pc1

. generate double pc1manual = 0.6306*zx1 + 0.5712*zx2 + 0.5254*zx3

. summarize pc1 pc1manual

Variable Obs Mean Std. dev. Min Max

pc1 40 -3.35e-09 1.347842 -2.52927 2.925341
pc1manual 40 -9.02e-18 1.347822 -2.529204 2.925356

The principal components are obtained without any consideration of regression on
a variable y. If we regress y on all p principal components we necessarily get the same
predicted values of y and the same R2 as if we regress y on all of the original p regressors.
The hope is that if we regress y on just, say, the first m < p principal components then
we obtain fit better than that obtained by arbitrarily picking m regressors and not much
worse than if we used all p regressors. There is no guarantee this will happen, but in
practice it often does.

The following example gives correlations of the dependent variable with fitted values
from regression on, respectively, all three regressors, the first principal component, x1,
x2, and x3. Recall that the square of these correlations equals R2 from the corresponding
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OLS regression.

. * Compare R from OLS on all three regressors, on pc1, on x1, on x2, on x3

. qui regress y x1 x2 x3

. predict yhat
(option xb assumed; fitted values)

. correlate y yhat pc1 x1 x2 x3
(obs=40)

y yhat pc1 x1 x2 x3

y 1.0000
yhat 0.4871 1.0000
pc1 0.4444 0.9122 1.0000
x1 0.4740 0.9732 0.8499 1.0000
x2 0.3370 0.6919 0.7700 0.5077 1.0000
x3 0.2046 0.4200 0.7082 0.4281 0.2786 1.0000

There is some loss in fit due to using only the first principal component. The correlation
has fallen from 0.4871 to 0.4444, corresponding to a fall in R2 from 0.237 to 0.197. Re-
gression on x1 alone has better fit, as expected since the DGP in this example depended
on x1 alone, while regressions on x2 alone and on x3 alone do not fit nearly as well as
regression on the first principal component.

28.6 Machine learning methods for prediction

The term machine learning is used as the machine, here the computer, selects the best
predictor using only the data at hand, rather than via a model specified by the researcher
who has detailed knowledge of the specific application. The terms machine learning,
statistical learning and data science are to some extent interchangeable.

The LASSO and other shrinkage estimators are leading examples of methods used in
machine learning. In this section we present additional machine learning methods.

The machine learning literature distinguishes between supervised learning, where an
outcome variable y is observed, and unsupervised learning, where no outcome variable is
observed. Within supervised learning distinction is made between an outcome measured
on a cardinal scale, most often continuous, and an outcome that is categorical. The latter
case is referred to as classification.

Machine learning methods are often applied to big data, where the term big data
can mean either many observations or many variables. It includes the case where the
number of variables exceeds the number of observations, even if there are relatively few
observations.

By allowing potential regressors to include powers and interactions of underlying
variables, a linear (in parameters) model used by shrinkage estimators such as the LASSO

may actually explain the outcome sufficiently well. Other machine learning methods,
such as neural networks and regression trees, do not transform the underlying variables
but instead fit models that can be very nonlinear in these underlying variables.
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The following overview summarizes some additional methods for prediction, many
from the machine learning literature. Some of these methods are illustrated in the
subsequent application section. The presentation is very dense and more advanced than
much of the other material in this book. Little detail is provided on these methods,
such as determination of necessary tuning parameters akin to λ for the LASSO, though
see chapter 27 for nonparametric and semiparametric methods. For more details see,
for example, James et al. (2013) or Hastie et al. (2009).

28.6.1 Supervised learning for continuous outcome

We have continuous outcome y that, given predictors x, is predicted by function g(x).
OLS uses g(x) = x′β, or more precisely g(x) = z′β where the regressors z are speci-
fied functions of x such as transformations and interactions. For simplicity we do not
distinguish between the underlying variables x and the regressors z formed from x.

A quite general model for g(x) is a fully nonparametric model such as kernel re-
gression or local polynomial regression, with the function g(∙) unspecified. Such models
can be estimated using the npregress command; see section 27.2.5. But this yields
imprecise estimate of g(∙) for high-dimensional x, a problem referred to as the curse of
dimensionality, and the method is not suited to prediction outside the domain of x.

The econometrics literature has sought to overcome the curse of dimensionality by
fitting semiparametric models that reduce the dimensionality of the nonparametric com-
ponent, enabling estimation and inference on the parametric component. The leading
examples – partial linear, single-index and generalized additive models – were presented
in sections 27.6-27.8. These semiparametric models are used to obtain estimates of pa-
rameters or partial effects, rather than for prediction per se. In section 28.8 we present
estimation of key parameters in a partial linear model using LASSO to select control
variables.

28.6.2 Neural networks

Neural networks lead to quite flexible nonlinear models for g(x). These models introduce
a series of hidden layers between the outcome y and the regressors x. Deep learning
methods use neural networks.

For example, a neural network with two layers introduces an intermediate layer
between input variables x and the output y. The intermediate layer is composed of
M intermediate units or hidden variables zm,m = 1, ...,M , that are each a nonlinear
transformation of a linear combination of the inputs x, so zm = g(α0m + x′αm) for
specified function g(∙).

Initial research often used the sigmoid function g(v) = 1/(1+ e−v). More recently it
is common to use rectified linear units with g(v) = max(0, v). The output is then a linear
combination of the M hidden units, or a transformation of this linear combination, so
E(y|x) = h(t) where t = β0 + z′β and usually h(t) = t. Given g(v) = 1/(1 + e−v)
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and h(t) = t a two-layer neural network reduces to the nonlinear model E(y|x) =
β0 +

∑M
m=1 βj/{1 + e−(α0m+x′αm)}. If MSE is the loss function then estimation of the

various α and β parameters is a nonlinear least squares problem.

More complicated neural net models add additional hidden layers. There is a ten-
dency to overfit and a ridge regression type penalty may be used. There is an art to
estimation of neural network models as they entail several tuning parameters – the
number of layers, the number of hidden variables in each layer, the function g(∙), and a
penalty term for overfitting.

28.6.3 Regression trees

Regression trees sequentially split regressors x into regions that best predict y. The
prediction of y at a given value x0 that falls in a region R* is then the average of y
across all observations for which x ∈ R*. This is equivalent to regression of y on a set
of mutually exclusive indicator variables where each indicator variable corresponds to a
given region of x values.

Suppose we first split on the jth variable xj at point s. Defining regions R1(j, s) =
{x|xj < s} and R2(j, s) = {x|xj ≥ s}, the MSE is 1

N

∑N
i:xi∈R1(j,s)(yi − ȳR1)2 +

1
N

∑
i:xi∈R2(j,s)(yi − ȳR2)2. The first split is based on a search over regressors xj , j =

1, ..., p and split points s to obtain (j, s) that minimizes this MSE. We then next search
over possible splits of R1 and R2, with possible split on any of the p regressors, and
choose the additional split that minimizes MSE, and so on.

After K splits the MSE is 1
N

∑K
k=1

∑
i:xi∈Rk(yi − ȳRk)2 where Rk denotes the kth

terminal node. The prediction for x0 ∈ Rk is then the average of y over all xi ∈ Rk.
So ĝ(x0) = {

∑K
k=1

∑
i:xi∈Rk 1(x ∈ Rk)yi}/{

∑K
k=1

∑
i:xi∈Rk 1(xi ∈ Rk)}, where 1(A)

is an indicator function equal to one if event A occurs and equal to zero otherwise.

Implementation requires specification of the depth of the tree and the minimum
number of observations in the terminal nodes of the tree. The method takes a so-called
greedy approach that determines the best split at each step without looking ahead and
picking a split that could lead to a better tree in some future step. As a result changes
in the residual sum of squares is not used as a stopping criteria as better splits may still
be possible. Instead it is best to overfit with more splits than may be ideal, and then
prune back using a penalty function such as λ|T | where |T | is the number of terminal
nodes.

Simple regression trees have the advantage of interpretability if there are few re-
gressors. However, predictions from a single regression tree have high variance. For
example, splitting the sample into two can lead to two quite different trees.
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28.6.4 Bagging

Bagging and boosting are general methods for improving prediction that work especially
well for regression trees.

Bagging, a shortening of “bootstrap aggregating”, reduces prediction variance by
obtaining predictions for several different samples and averaging these predictions. The
different samples are obtained by bootstrap that randomly chooses N observations with
replacement from the original sample of N observations.

Specifically, for each of the b = 1, ..., B bootstrap samples we obtain a large tree and
prediction ĝb(x), and then use the average prediction ĝbag(x) = 1

B

∑B
b=1 ĝb(x). Since

sampling is with replacement, some observations will appear in the bootstrap multiple
times while others will not appear at all. The observations not in a bootstrap sample
can be used as a test sample – this replaces cross-validation.

28.6.5 Random forests

The B bagging estimates will be correlated since the bootstrap samples have consid-
erable overlap. This is especially the case for regression trees since if a regressor is
especially important it will appear near the top of the tree in every bootstrap sample.

A random forest adjusts bagging for regression trees as follows: within each bootstrap
sample each time a split is considered only a random sample of m < p predictors is used
in deciding the next split. Compared to a single regression tree this adds m as an
additional tuning parameter; often m is set to the first integer greater than

√
p.

Random forests are related to kernel and k-nearest neighbors as they use a weighted
average of nearby observations. Random forests can predict better as they have a data-
driven way of determining which nearby observations get weight; see Lin and Jeon
(2012).

28.6.6 Boosting

Boosting methods construct multiple predictions from reweighted data using the original
sample, rather than by bootstrap resampling, and use as predictor a combination of
these predictions. There are many boosting algorithms.

A common boosting method for regression trees for continuous outcomes sequentially
updates the initial tree by applying a regression tree to residuals obtained from the
previous stage. Specifically, given the bth stage model with predictions ĝb(x), fit a
decision tree ĥb(x) to residuals rb, defined below, rather than to the outcome y. Then
update ĝb+1(x) = ĝb(x) + λĥb(x), where λ is a penalty parameter, and update the
residuals rb+1 = rb − λĥb(x). The boosted prediction is ĝboost(x) = 1

B

∑B
b=1 ĝb(x).
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28.6.7 Supervised learning for categorical outcome (classification)

Digital license plate recognition provides an example of categorical classification. Given
a digital image of a number or letter we aim to correctly categorize it.

With K categories let y take values 1, 2, ...,K . The standard loss function used is
the error rate that counts up the number of wrong classifications. Then

Error rate = 1
N

∑N
i=11(ŷi 6= yi), (28.8)

where the indicator function 1(A) = 1 if event A happens and equals 0 otherwise.

One method to predict y is to apply a standard parametric model for categorical
data such as binary logit in the case of two categories, or more generally multinomial
logit, that yields predicted probabilities of being in each category. Then allocate the ith

observation to the category with the highest predicted probability. In the case of binary
logit with outcome y taking values 1 or 2 we let ŷi = 2 if the predicted probability
P̂ (yi = 2) > 0.5 and let ŷi = 1 otherwise.

The following methods are felt to lead to classification with lower error rate than
methods based on directly modelling Pr(y = k|x).

Discriminant analysis specifies a joint distribution for (y,x). For linear discriminant
analysis with K categories, in the kth category we suppose x|y = k ∼ N(μk,Σ) and
define πk = Pr(y = k). Then obtain an expression for Pr(y = k|x) from Bayes theorem,
evaluate this at sample estimates for μk,Σ, and πk, k = 1, 2, ...,K , and assign the ith

observation to category k with the largest estimated Pr(yi = k|xi). The procedure is
called linear discriminant analysis because the resulting classification rule can be shown
to be a linear function of x.

Quadratic discriminant analysis amends linear discriminant analysis by supposing
x|y = k ∼ N(μk,Σk), so additionally the variance of x varies across categories. The
procedure is called quadratic discriminant analysis because the resulting classification
rule can be shown to be a quadratic function of x.

The preceding classifiers are restrictive as they define a boundary that is linear or
quadratic. For example if K = 2 then a linear classifier predicts y = 2 according to
whether or not x′a > b for model determined coefficients a and b. This rules out more
flexible classifiers such as predicting y = 2 if x lies in a closed region and predicting
y = 1 if x lies outside this closed region. A support vector machine allows such nonlinear
boundaries; leading examples use what is called a polynomial kernel or a radial kernel.

The discrim command includes linear, quadratic and k-nearest neighbors discrimi-
nant analysis. For support vector machines see the user-written svmachines command
(Guenther and Schonlau 2016).
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28.6.8 Unsupervised learning (cluster analysis)

In unsupervised learning there is no observed outcome y, only predictors x. The goal
is to form one or more groups or clusters for which the predictors x take similar values.
An example is determining several types of individual personality on the basis of a range
of psychometric measures.

Principal components, introduced in section 28.5.1, provides one method. Then the
first principal component defines the first group, the second principal component defines
the second group, and so on.

K-means clustering forms K distinct clusters for which the sum of within clus-
ter variation is minimized. A common measure of variation is Euclidean distance in
which case we choose clusters C1, ..., CK to minimize

∑K
k=1 W (Ck) where W (Ck) =

1
Nk

∑
i,i′∈Ck

∑p
j=1(xij − xi′j)2, and Nk is the number of observations in cluster Ck.

Hierarchical clustering methods are sequential methods that start with many clusters
that are combined to form fewer clusters, or that start with one cluster and then split
clusters to form more clusters, until an optimal number of clusters is obtained.

The cluster kmeans command implements K-means clustering for continuous, bi-
nary and mixed data using many different measures of distance.

28.7 Prediction application

We compare various methods of prediction using the chapter 3 data on natural logarithm
of health expenditures. Several of the methods illustrated employ with little explanation
user-written programs whose use requires additional reading.

28.7.1 Training and holdout samples

The sample is split into two parts. A training sample is used to select and estimate the
preferred predictor within a class of predictors, such as LASSO. A test sample or hold-
out sample of the remaining observations is then used to compare the out-of-sample
predictive ability of these various predictors.

The basic variables are 5 continuous variables and 14 binary variables. From these we
can create 188 interacted variables - 20 from continuous variables and their own second-
order interactions, 28 from the 14 binary variables, and 140 from the interactions of the
binary and continuous variables.

. * Data for prediction example: 5 continuous and 14 binary variables

. qui use mus203mepsmedexp, clear

. keep if ltotexp != .
(109 observations deleted)

. global xlist income educyr age famsze totchr

. global dlist suppins female white hisp marry northe mwest south ///
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> msa phylim actlim injury priolist hvgg

. global rlist c.($xlist)##c.($xlist) i.($dlist) c.($xlist)#i.($dlist)

The sample is split into a training and fitting sample that uses 80% of the observa-
tions (train==1) and a holdout sample of 20% of the observations (train==0).

. splitsample ltotexp, generate(train) split(1 4) values(0 1) rseed(10101)

. tabulate train

train Freq. Percent Cum.

0 591 20.00 20.00
1 2,364 80.00 100.00

Total 2,955 100.00

Note that here the sample is completely observed, as a preceding command dropped
observations with missing values of ltotexp, the only variable with missing values. So
including a list of variables such as ltotexp in the splitcommand is actually unnecessary.

28.7.2 Various predictors

We obtain estimates using only the training sample (train==1). The subsequent
predict command provides predictions for the entire sample, so it provides predictions
for both train==1 and train==0.

The first predictor is obtained by OLS regression of ltotexp on the 19 basic variables
using the training sample. Most variables are statistically significant at the 5% level.

. * OLS with 19 regressors

. regress ltotexp $xlist $dlist if train==1, noheader vce(robust)

Robust
ltotexp Coefficient std. err. t P>|t| [95% conf. interval]

income .0010653 .0010664 1.00 0.318 -.0010259 .0031565
educyr .0431495 .0081645 5.29 0.000 .027139 .0591599

age .0025177 .0040582 0.62 0.535 -.0054403 .0104757
famsze -.0635828 .0285771 -2.22 0.026 -.1196218 -.0075437
totchr .3220218 .0208646 15.43 0.000 .2811068 .3629368

suppins .1547863 .0523682 2.96 0.003 .0520934 .2574791
female -.0643839 .052321 -1.23 0.219 -.1669842 .0382164
white .1773761 .1474569 1.20 0.229 -.1117833 .4665356
hisp -.1031283 .1030525 -1.00 0.317 -.3052118 .0989552

marry .1491644 .0571793 2.61 0.009 .0370372 .2612917
northe .2805731 .0794206 3.53 0.000 .1248312 .436315
mwest .3296948 .0760097 4.34 0.000 .1806417 .478748
south .1997139 .0670176 2.98 0.003 .068294 .3311338

msa .0677191 .0572256 1.18 0.237 -.044499 .1799372
phylim .2661041 .0627222 4.24 0.000 .1431074 .3891008
actlim .39576 .0698797 5.66 0.000 .2587277 .5327924
injury .1305469 .0607895 2.15 0.032 .0113402 .2497537

priolist .3835745 .077633 4.94 0.000 .2313381 .535811
hvgg -.0965534 .0505962 -1.91 0.056 -.1957713 .0026646



28.7.2 Various predictors 1299

_cons 5.823748 .3754025 15.51 0.000 5.087593 6.559903

. qui predict y_small

A second predictor fits an OLS regression on the full set of 188 interacted variables.

. * OLS with 188 potential regressors and 104 estimated

. qui regress ltotexp $rlist if train==1

. qui predict y_full

From suppressed output the coefficients of 104 of the 188 variables are identified.

The third and fourth predictors we consider are penalized and postselection estimates
of the coefficients from a LASSO with tuning parameter λ determined by adaptive 10-
fold cross-validation. Note that for each of the ten folds this uses 90% of the 2,364
observations in the training sample for fitting and the remaining 10% for determining
the best value of λ based on predictive ability.

. * LASSO with 188 potential regressors leads to 32 selected

. qui lasso linear ltotexp $rlist if train==1, selection(adaptive) ///
> rseed(10101) nolog

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

51 17.76327 1 1.76889 A totchr
59 8.438993 2 1.55272 A 0.actlim
66 4.400098 3 1.473914 A 1.priolist#c.educyr
71 2.76339 4 1.430335 A 0.phylim#c.famsze
73 2.294215 6 1.415289 A 1.marry#c.educyr

1.suppins#c.age
78 1.440834 7 1.386716 A 0.hvgg#c.totchr
80 1.196205 9 1.380092 A 1.mwest#c.totchr

1.injury#c.educyr
84 .824498 10 1.369338 A 1.mwest#c.famsze
85 .7512519 11 1.367485 A 0.female#c.totchr
87 .6237025 12 1.364392 A 0.priolist#c.totchr
89 .5178088 13 1.361144 A 0.marry#c.totchr
90 .4718081 14 1.359738 A 1.northe#c.educyr
91 .4298939 15 1.35839 A 0.actlim#c.totchr
92 .3917033 16 1.356668 A 0.priolist#c.famsze
95 .2963092 17 1.352067 A 1.south#c.educyr
96 .2699859 18 1.350489 A 0.white#c.famsze
99 .2042345 20 1.346719 A 1.female#c.income

1.phylim#c.educyr
100 .1860908 21 1.346044 A 0.actlim#c.famsze
101 .169559 23 1.345632 A 1.actlim#c.famsze

1.northe#c.totchr
103 .1407709 25 1.344879 A 0.south#c.famsze

0.injury#c.totchr
104 .1282652 26 1.344431 A 0.suppins#c.income
105 .1168705 27 1.344094 A 1.hvgg#c.educyr
106 .106488 28 1.343763 A 0.priolist
107 .0970279 29 1.343447 A 1.hisp#c.income
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108 .0884082 30 1.343113 A 0.suppins#c.totchr
110 .0733981 31 1.342763 A 1.mwest#c.income
112 .0609364 32 1.341704 A 1.msa#c.educyr

* 120 .0289497 32 1.339496 U
121 .0263779 33 1.339525 A 1.hvgg#c.famsze
128 .0137535 34 1.340677 A 0.suppins#c.famsze
130 .0114184 35 1.341051 A 1.actlim#c.income
132 .0094797 36 1.341602 A 0.msa
135 .0071711 38 1.342449 A 1.hisp#c.age

1.south#c.totchr
136 .006534 37 1.342685 R 1.msa#c.educyr
138 .0054246 36 1.343111 R 0.actlim#c.famsze
139 .0049427 37 1.343368 A 1.mwest#c.age
143 .0034068 39 1.34451 A 1.msa#c.educyr

1.northe#c.income
144 .0031042 38 1.344751 R totchr
145 .0028284 39 1.344983 A 0.actlim#c.famsze
147 .0023482 40 1.345372 A totchr
149 .0019495 40 1.345694 U

* lambda selected by cross-validation in final adaptive step.

. qui predict y_laspen // use penalized coefficients

. qui predict y_laspost, postselection // use post selection OLS coeffs

The adaptive LASSO leads to 32 selected variables. Many are interactions such as
0.actlim#c.totchr, the number of chronic conditions for individuals without an activ-
ity limitation. We then calculate two predictors. The first uses the penalized coefficients
which are the LASSO coefficient estimates. The second uses coefficients obtained by OLS

regression on the 32 regressors selected by the LASSO.

By comparison the option selection(cv) leads to 42 selected variables and the
option selection(bic) leads to 17 selected variables.

As a clustered example, for illustrative purposes we add the option cluster(age).
Then cross validation selects 46 variables, adaptive lasso selects 34 variables and BIC

selects zero variables.

A fifth predictor regresses ltotexp on the first five principal components of the 19
underlying variables.

. * Principal components using the first 5 principal components of 19 variables

. qui pca $xlist $dlist if train==1

. qui predict pc*

. qui regress ltotexp pc1-pc5 if train==1

. qui predict y_pca

A sixth predictor is a neural network on the 19 underlying variables, computed
using the user-written brain command (Doherr 2018). The option hidden(10 10), for
example, specifies two hidden layers with 10 hidden units in each layer. We fit a neural
network with just one hidden layer and 10 units in that layer. Using program defaults
we obtain

. * Neural network with 19 variables and two hidden layers each with 10 units
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. brain define, input($xlist $dlist) output(ltotexp) hidden(10)
Defined matrices:

input[4,19]
output[4,1]
neuron[1,30]
layer[1,3]
brain[1,211]

. qui brain train if train==1, iter(500) eta(2)

. brain think y_neural

A seventh predictor is a random forest. The user-written rforest command (Schon-
lau and Zou 2020) estimates random forests for regression and classification. The
type(reg) option specifies that the tree is for regression and not for classification, the
depth(10) option limits the depth of the tree to be no more than 10 and the lsize(5)
option sets the minimum number of observations per leaf to 5. Other options are set at
their default values. This includes setting numvars, the number of variables randomly
selected for each tree, to the square root of the number of predictors; here 5 as it is the
first integer to exceed

√
19.

. * Random forest with 19 variables

. qui rforest ltotexp $xlist $dlist if train==1, ///
> type(reg) iter(200) depth(10) lsize(5)

. qui predict y_ranfor

Finally, the user-written boost command (Schonlau 2005) accommodates boosting
and bagging regression trees for linear, logistic and Poisson regression. The command
is a C++ plugin that must first be loaded into Stata. For details on the method and
program see Schonlau (2005).

We use the program defaults for boosted regression trees

. * Boosting linear regression with 19 variables

. program boost_plugin, plugin using("C:\users\ccameron\ado\plus\b\boost64.dll")

. qui boost ltotexp $xlist $dlist if train==1, ///
> distribution(normal) trainfraction(0.8) maxiter(100) predict(y_boost)

28.7.3 Comparison of predictors

We compare the prediction performance of the various predictors both in sample and
out of sample.

. * Training MSE and test MSE for the various methods

. qui regress ltotexp

. qui predict y_noreg

. foreach var of varlist y_noreg y_small y_full y_laspen y_laspost y_pca ///
> y_neural y_ranfor y_boost {

2. qui gen `var´errorsq = (`var´ - ltotexp)^2
3. qui sum `var´errorsq if train == 1
4. scalar mse`var´train = r(mean)
5. qui sum `var´errorsq if train == 0
6. qui scalar mse`var´test = r(mean)
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7. display "Predictor: " "`var´" _col(21) ///
> " Train MSE = " %5.3f mse`var´train " Test MSE = " %5.3f mse`var´te
> st

8. }
Predictor: y_noreg Train MSE = 1.821 Test MSE = 2.063
Predictor: y_small Train MSE = 1.339 Test MSE = 1.492
Predictor: y_full Train MSE = 1.262 Test MSE = 1.509
Predictor: y_laspen Train MSE = 1.298 Test MSE = 1.491
Predictor: y_laspost Train MSE = 1.297 Test MSE = 1.493
Predictor: y_pca Train MSE = 1.397 Test MSE = 1.545
Predictor: y_neural Train MSE = 1.211 Test MSE = 1.808
Predictor: y_ranfor Train MSE = 1.047 Test MSE = 1.574
Predictor: y_boost Train MSE = 1.459 Test MSE = 1.664

The in-sample MSE is smallest for the most flexible models, notably random forests
and neural networks.

By comparison the out-of-sample MSE in this example is lowest for the simpler
models, notably OLS with just 19 regressors and the LASSO estimators.

The results here for neural networks, random forest and boosting are based mainly
on use of default options. More careful determination of tuning parameters for these
methods could be expected to improve their predictive ability.

28.8 Machine learning for inference in partial linear model

Machine learning methods can lead to better prediction than the regression methods
historically employed in applied microeconometrics. But much microeconometric re-
search is instead aimed at estimating the partial effect of a single variable or one or a
few parameters, or estimation of one or a few parameters, after controlling for the effect
of many other variables.

Machine learning methods have the potential to control for these other nuisance
variables, but any consequent statistical inference on the parameters or partial effects
of interest needs to control for the data mining of machine learning. As noted in
section 28.3.4 we cannot directly perform inference on LASSO and related estimators;
we cannot naively use the LASSO.

Instead a semiparametric approach is taken where a model depends in part on pa-
rameters of interest and in part on “nuisance” functions of other variables. If estimation
is based on a moment condition that satisfies an orthogonalization property defined in
section 28.8.8 then inference on the parameters of interest may be possible.

The leading example to date is the estimation of parameters in a partial linear
model, using LASSO under the sparsity assumption that only a few of the many potential
control variables are relevant. We focus on this case, and the associated Stata commands
introduced in version 16.
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28.8.1 Partial effects in the partial linear model

We consider a setting where interest lies in measuring the partial effect on y of a change
in variable(s) d, controlling for additional control variables.

A partial linear model for linear regression specifies

y = d′α + g(xc) + u (28.9)

where xc denotes selected control variables and g(∙) is a flexible function of xc. The
parameter α can be given a causal interpretation with the selection-on-observables-
only assumption that E(u|d,xc) = 0. The goal is to obtain a root-N consistent and
asymptotically normal estimator of the partial effect α.

The partial linear model was introduced in section 27.6. There g(∙) was unspecified
and estimation was by semiparametric methods that required that there be few controls
xc in order to avoid the curse of dimensionality.

LASSO methods due to Belloni, Chernozhukov, and Hansen (2014) and related papers
instead allow for complexity in g(∙) by specifying g(xc) ' x′γ + r, where x consists of
xc and flexible transformations of xc such as polynomials and interactions and r is an
approximation error. The starting point is then that

y = d′α + x′γ + r + u. (28.10)

The LASSO is used in creative ways, detailed in this section, to select a subset of
the few variables in the high-dimensional x, and to construct regressors in a consequent
regression that yields an estimate of α that is root-N consistent and asymptotically
normal, despite the data mining.

The estimate of α is often called a causal estimate, because if the model is well
specified with a good set of controls then an assumption of selection on observables only
may be reasonable. But the method is also applicable without a causal interpretation.

A key assumption, called the sparsity assumption, is that only a small fraction of
the x variables are relevant. Let p be the number of potential control variables (x)
and s be the number of variables in the true model, where p and s may grow with
N though at rates considerably less than N . The precise sparsity assumption varies
with the model and estimation method. For the partialing-out estimator, for example,
the sparsity assumption is that s/(

√
N/ ln p) is small. Additionally, the approximation

error r is assumed to satisfy
√

1
N

∑N
i=1 r2

i ≤ c
√

s
N for some c > 0.

In this section we present Stata commands that yield three different LASSO-based
estimators of α.

28.8.2 Partial linear model application

We consider the same example as in section 28.7, with the change that we are interested
in estimating the partial effect of having supplementary health insurance, so d in (28.10)
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is the single binary variable suppins.

. * Data for inference on suppins example: 5 continuous and 13 binary variables

. qui use mus203mepsmedexp, clear

. keep if ltotexp != .
(109 observations deleted)

. global xlist2 income educyr age famsze totchr

. global dlist2 female white hisp marry northe mwest south ///
> msa phylim actlim injury priolist hvgg

. global rlist2 c.($xlist2)##c.($xlist2) i.($dlist2) c.($xlist2)#i.($dlist2)

For later comparison we fit by OLS models without and with all the interactions
terms.

. * OLS on small model and full model

. qui regress ltotexp suppins $xlist2 $dlist2, vce(robust)

. estimates store OLSSMALL

. qui regress ltotexp suppins $rlist2, vce(robust)

. estimates store OLSFULL

. estimates table OLSSMALL OLSFULL, keep(suppins) b(%9.4f) se stats(N df_m r2)

Variable OLSSMALL OLSFULL

suppins 0.1706 0.1868
0.0469 0.0478

N 2955 2955
df_m 19.0000 99.0000

r2 0.2682 0.3028

Legend: b/se

In this example there is little change in the coefficient of suppins going from a model
with 19 regressors to a model with 99 identified regressors, and the gain in R2 is modest.
Supplementary insurance is associated with a 17%-19% increase in health spending and
the estimates are highly statistically significant.

28.8.3 Partialing-out estimator

The partialing-out method is obtained in several steps. First, for scalar regressor d
perform a LASSO of d on x and obtain a residual ud from OLS regression of d on the
selected variables. Second, perform a LASSO of y on x, and obtain a residual uy from
OLS regression of y on the selected variables. Finally, obtain α̂ by OLS regression of uy

on ud.

More generally if there are K key regressors of interest then perform K separate
LASSOs of each dk on x, and K subsequent OLS regressions on the selected variables to
obtain K separate residuals. The estimates α̂1,...,α̂K are obtained by OLS regression of
uy on all K residuals.
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The partialing-out method is qualitatively similar to the Robinson differencing esti-
mator presented in section 27.6 that instead used residuals from kernel regression. The
method here requires a sparsity assumption that the number of nonzero coefficients in
the true model is small relative to the sample size N and grows at rate no more than√

N . More precisely s/(
√

N/ ln p) should be small where p is the number of potential
control variables and s is the number of variables in the true model.

The partialing-out estimator does not extend to nonlinear models. Instead the semi
option provides a variation, termed semipartialing-out. First, ud is obtained as for
partialing out. Second, perform a LASSO of y on d and x and obtain a residual uy from
OLS regression of y on d and the selected x variables. Finally, obtain α̂ by IV regression
of uy on d with instruments ud. For further details see [LASSO] poregress methods and
formulas.

28.8.4 The poregress command and related commands

Partialing-out LASSO estimates can be obtained using the poregress command that
has syntax

poregress depvar varsofinterest [if ] [in], options

The control variables are specified with option controls([(alwaysvars)] othervars) where
alwaysvars are controls to always be included and othervars are variables selected or de-
selected by the lasso. The penalty λ can be determined by a plug-in formula (the default
option selection(plugin)), by cross validation (option selection(cv)), by adaptive
cross validation (option selection(adaptive)), or by BIC (option selection(bic)).
For cross validation methods the rseed(#) option should be used.

The vce(cluster) option provides cluster-robust standard errors. Additionally if
the selection(cv) or selection(adaptive) options are used then the cross validation
determines folds at the cluster level and the LASSO objective functions use the average
of within-cluster averages.

The related commands xporegress and dsregress for the linear model; pologit,
xpologit, and dslogit for binary outcomes; popoisson, xpopoisson, and dspoisson,
for count data; and poivregress and xpoivregress for IV estimation in the linear
model have similar syntax.

Postestimation commands lassoinfo, lassoknots, cvplot, lassocoef, and coefpath
provide additional information on the fitted models.

28.8.5 Plugin penalty parameter

The default is to use the plug-in formula for λ, developed for use of the LASSO in the
current inference setting, rather than for prediction. The plug-in value of λ leads to
selection of fewer variables than the other methods. A good exposition of the plug-in
formula, and relevant references, is given in (Ahrens, Hansen, and Schaffer 2018).



1306 Chapter 28 Machine learning for prediction and inference

For the linear model with independent heteroskedastic errors Stata sets the penalty
parameter λ = c

√
NΦ(1 − γ

2p ) where c = 1.1 and γ = 0.1/ ln{max(p,N)}. Several
studies find that these are good values for c and γ. The individual loadings for each

regressor are κj =
√

1
N

∑N
i=1(xij ε̂i)2 where xj has been normalized to have mean 0

and variance 1, and ε̂i is a residual obtained by a sequence of first-stage LASSOs that
is detailed in the Stata documentation. These settings are based on linear regression
with heteroskedastic errors. The option selection(plugin, homoskedastic) is used
for homoskedastic errors.

If option vce(cluster) is used then the plugin value is the same as for heteroskedas-
tic errors.

28.8.6 Partialing-out application

In the current application the partialing-out LASSO selects 21 variables and yields coef-
ficient and standard error of suppins quite similar to the OLS results.

. * Partialing-out partial linear model using default plugin lambda

. poregress ltotexp suppins, controls($rlist2)

Estimating lasso for ltotexp using plugin
Estimating lasso for suppins using plugin

Partialing-out linear model Number of obs = 2,955
Number of controls = 176
Number of selected controls = 21
Wald chi2(1) = 15.43
Prob > chi2 = 0.0001

Robust
ltotexp Coefficient std. err. z P>|z| [95% conf. interval]

suppins .1839193 .0468223 3.93 0.000 .0921493 .2756892

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The lassoinfo command lists the number of variables selected by the separate
LASSOs for the dependent variable and the single regressor of interest.

. * Lasso information

. lassoinfo

Estimate: active
Command: poregress

No. of
Selection selected

Variable Model method lambda variables

ltotexp linear plugin .080387 12
suppins linear plugin .080387 9
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In total 21 variables were selected and this exactly equals the sum of variables selected
by the two distinct LASSOs (12 + 9 = 21). So this example is unusual in that the two
sets of selected variables are disjoint.

Since the LASSO is applied to more than one variable, several of the post esti-
mation commands need to name the variable of interest. For the LASSO for the de-
pendent variable relevant commands are lassoknots, for(ltotexp); lassocoef (.,
for(ltotexp)); cvplot, for(ltotexp); and coefpath, for(ltotexp). The last two
commands are only applicable if selection is by CV. For variable suppins use instead
for(suppins).

The partialing-out estimated coefficient of suppins can also be obtained by manually
performing each step of the algorithm. We have

. * Partialing out done manually

. qui lasso linear suppins $rlist2, selection(plugin)

. qui predict suppins_lasso, postselection

. qui generate u_suppins = suppins - suppins_lasso

. qui lasso linear ltotexp $rlist2, selection(plugin)

. qui predict ltotexp_lasso, postselection

. qui generate u_ltotexp = ltotexp - ltotexp_lasso

. regress u_ltotexp u_suppins, vce(robust) noconstant noheader

Robust
u_ltotexp Coefficient std. err. t P>|t| [95% conf. interval]

u_suppins .1839193 .0468223 3.93 0.000 .0921117 .2757268

The postselection option of the LASSO post-estimation predict command is used
here as it predicts by OLS regression on the variables selected by the preceding lasso
command.

28.8.7 Clustered errors application

As an example of clustered data we re-estimated the previous model with option vce(cluster
age). Using the default plugin method to determine the penalty we obtain

. * Cluster-robust partialing-out partial linear model using default plugin lambda

. poregress ltotexp suppins, controls($rlist2) vce(cluster age)

Estimating lasso for ltotexp using plugin
Estimating lasso for suppins using plugin

Partialing-out linear model Number of obs = 2,955
Number of controls = 176
Number of selected controls = 15
Wald chi2(1) = 8.57
Prob > chi2 = 0.0034

(Std. err. adjusted for 26 clusters in age)

Robust
ltotexp Coefficient std. err. z P>|z| [95% conf. interval]



1308 Chapter 28 Machine learning for prediction and inference

suppins .1686531 .0576049 2.93 0.003 .0557496 .2815566

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Note: Lassos are performed accounting for clusters in age.

The estimated coefficient is then 0.1687 with cluster-robust standard error 0.0576.

. * Lasso information

. lassoinfo

Estimate: active
Command: poregress

No. of
Selection selected

Variable Model method lambda variables

ltotexp linear plugin .8343593 8
suppins linear plugin .8343593 7

In total 15 variables were selected, with 8 of these variables coinciding with the 21
selected in the preceding independence case. From output not included, 60 variables
were selected using CV and 41 were selected using adaptive CV.

28.8.8 Orthogonalization

The partialing-out estimator of α in the partial linear model is a two-step estimator.
Unlike many two-step estimators, the asymptotic distribution of the second-step esti-
mator of α is not changed by the first-step estimation. This happens because the second
step estimation is based on a moment condition that satisfies a special orthogonalization
condition.

Define α as parameters of interest and η as nuisance parameters, and suppose con-
sider a two-step estimator that at the first step estimates η̂ and at the second step
estimates α̂ by solving

n∑

i=1

ψ(wi, α, η̂) = 0. (28.11)

where wi denotes all variables. Then the asymptotic distribution of α̂ is unaffected by
first-step estimation of η if the function ψ(∙) satisfies the orthogonalization condition
that

E{∂ψ(wi, α, η)/∂η} = 0. (28.12)

see Cameron and Trivedi (2005, 201) or Wooldridge (2010, 410) The intuition is that
if changing η does not in expectation change ψ(∙) then noise in η̂ will not effect the
distribution of α̂, at least asymptotically.
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Now consider the partial linear model y = αd + g(x) + u, and define η1 = E(d|x)
and η2 = E(y|x). Estimates η̂1 (and η̂2) are obtained by OLS regression of d (and
y) on the components of x selected by the LASSO. The partialing-out estimator of
α is then obtained by OLS regression of (y − η̂2) on (d − η̂1). This corresponds to
solving the population moment condition E{ψ(w, α, η1, η2)} = 0 where ψ(w, α, η1, η2) =
(d − η1){(y − η2) − α(d − η1)}. To see this, recall that the OLS estimator for regression
of y on scalar x solves

∑
i xiui =

∑
i xi(yi − βxi) = 0 with corresponding population

moment condition E{x(y − βx)} = 0.

The orthogonalization condition (28.12) is satisfied since

E{∂ψ(w, α, η1, η2)/∂η1} = E{−(y − η2) + 2α(d − η1)}

E{∂ψ(w, α, η1, η2)/∂η2} = E{−(d − η1)}

and these expectations equal zero using η1 = E(d|x) and η2 = E(y|x).

The orthogonalization result is extraordinarily powerful. The two-step partialing-out
approach can in principle be applied for any two-step estimator satisfying the orthog-
onalization condition, also called Neyman orthogonalization, and in principle the first
step may use machine learners other than the LASSO.

28.8.9 Cross-fit partialing-out estimator

The cross-fit partialing-out estimator is an adaptation of the partialing-out method
that reduces bias by separating the sample used for LASSO predictions of y and the
components of d from the sample used for subsequent estimation of α. The combination
of an orthogonalized moment and cross-fitting is called double machine learning or
debiased machine learning and leads to methods requiring weaker assumptions.

The sample is split into a larger part for the estimation of nuisance components and
a smaller part for estimation of the parameters of interest. For simplicity consider scalar
d and α. The larger sample is used for LASSO of components of d on x (and y on x),
and for subsequent post-selection OLS regression of d (and y) on the selected variables
that yields predictions d̂ = x′π̂d (and ŷ = x′π̂y). The smaller sample is then used to
compute residuals ũd = d − x′π̂d and ũy = y − x′π̂y, and subsequent OLS regression of
ũy on ũd yields estimate α̃.

This method reduces the complications of data mining by using one sample to obtain
the coefficients for π̂d and π̂y and using a separate sample for estimating α̃. Such
sample splitting leads to a more relaxed sparsity assumption that the number of nonzero
coefficients grows at rate no more than N rather than

√
N . More precisely s/(N/ ln p)

should be small where p is the number of potential control variables and s is the number
or variables in the true model.

The preceding algorithm leads to efficiency loss as only part of the original sample is
used at the second step to estimate α. So K-fold cross validation is used. For clarity set
K = 10. Then for each k = 1, ..., 10 we obtain estimates π̂d,k and π̂y.k using 90% of the
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data and apply these estimates to the remaining 10% of the sample to form residuals ũd,k

and ũy,k. This yields ten sets of residuals, each using 10% of the sample. The default
method for the xporegress command stacks these residuals to form N residuals ũd and
ũy for the full sample; subsequent OLS regression of ũy on ũd yields estimate α̃. The
option technique(dml1) leads to an alternative estimator α̃ =

∑10
k=1 α̃k where α̃k is

obtained by regression of ũy,k on ũd,k in the kth fold.

The xporegress command for cross-fit partialing-out has similar syntax to the
poregress command. We obtain

. * Crossfit partialing out (double/debiased) using default plugin

. xporegress ltotexp suppins, controls($rlist2) rseed(10101) nolog

Cross-fit partialing-out Number of obs = 2,955
linear model Number of controls = 176

Number of selected controls = 31
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 15.66
Prob > chi2 = 0.0001

Robust
ltotexp Coefficient std. err. z P>|z| [95% conf. interval]

suppins .1856171 .0469096 3.96 0.000 .093676 .2775582

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Across the ten folds the number of selected variables ranged from 11 to 14 for
ltotexp and from 7 to 11 for suppins.

. * Summarize the number of selected variables across the ten folds

. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

ltotexp linear plugin 11 13 14
suppins linear plugin 7 9 11

28.8.10 Double selection estimator

The double selection method performs a LASSO of y on x and separate LASSOs of each
component of d on x. Then α̂ is the coefficient of d from OLS regression of y on d and
the union of all components of x selected by the various LASSOs.

The method has the advantage of simplicity. It requires a similar sparsity assump-
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tion to that for the partialing-out estimator, and it is asymptotically equivalent to the
partialing-out estimator.

The dsregress command for double selection estimation has similar syntax to the
xporegress command. We obtain

. * Double selection partial linear model using default plugin

. dsregress ltotexp suppins, controls($rlist2)

Estimating lasso for ltotexp using plugin
Estimating lasso for suppins using plugin

Double-selection linear model Number of obs = 2,955
Number of controls = 176
Number of selected controls = 21
Wald chi2(1) = 15.30
Prob > chi2 = 0.0001

Robust
ltotexp Coefficient std. err. z P>|z| [95% conf. interval]

suppins .1836224 .0469429 3.91 0.000 .091616 .2756289

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient of 0.1836 is very close to the partialing-out estimate of 0.1839.

28.9 Machine learning for inference in other models

Belloni, Chernozhukov, and Wei (2016) extend the methods for the partial linear model
extend to a generalized partial linear model, in which case (28.10) becomes

E(y|d,x) = f(d′α + x′γ) (28.13)

where the function f(∙) is specified. Now the partial effect of a change in d is more
complicated, being α× f ′(d′α + x′γ). Partial effects in this single index model can be
interpreted as in section 13.7.3. In the special case that f(∙) = exp(∙) the partial effects
can be interpreted as semi-elasticities, and for a logit model with f(z) = ez/(1+ ez) the
partial effects can be interpreted in terms of the log-odds ratio; see section 10.5.

In this section we illustrate these extensions. Additionally we present an extension
of the partial linear model to the case where the regressor(s) d are endogenous.

28.9.1 Estimators for exponential conditional mean models

An exponential conditional mean variant of the partial linear model specifies E(y|d,x) =
exp(d′α+x′γ). Because only α is consistently estimated we cannot compute a marginal
effect of a component of d changing but, given the exponential conditional mean speci-
fication, we can interpret each component of α as a semi-elasticity; see section 13.7.3.
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Commands popoisson, xpopoisson and dspoisson extend the methods for the
linear model to the exponential model and have similar syntax to command poregress.

These commands are applicable to any nonnegative dependent variable with expo-
nential conditional mean, and are not restricted to count data. So we could apply this
method with dependent variable totexp, the level of health expenditures.

Nonetheless we illustrate the method for a count, converting totexp to a count that
takes values between 0 and 15. We compare standard Poisson regression estimates with
the partialing-out estimate. We obtain

. * Exponential variant of partial linear model and partialing-out estimator

. generate ycount = floor(sqrt(totexp/500))

. summarize ycount

Variable Obs Mean Std. dev. Min Max

ycount 2,955 2.633841 2.202957 0 15

. qui poisson ycount suppins $xlist2 $dlist2, vce(robust)

. estimates store PSMALL

. qui poisson ycount suppins $rlist2, vce(robust)

. estimates store PFULL

. qui popoisson ycount suppins, controls($rlist2) coef

. estimates store PPOLASSO

. estimates table PSMALL PFULL PPOLASSO, keep(suppins) b(%9.4f) se ///
> stats(N df_m k_controls_sel)

Variable PSMALL PFULL PPOLASSO

suppins 0.0602 0.0645 0.0666
0.0298 0.0299 0.0304

N 2955 2955 2955
df_m 19.0000 99.0000

k_controls~l 22.0000

Legend: b/se

The partialing-out estimator with option coef yields α̂ = 0.0666, so private insurance is
associated with 6.66% higher outcome y. The default is to instead report exponentiated
coefficients such as exp(0.0666) = 1.0689 in which case y is viewed as 1.0689 times
higher.

28.9.2 Estimators for the logit model

A logistic variant of the partial linear model specifies E(y|d,x) = Λ(d′α + x′γ) where
Λ(z) = ez/(1 + ez). Because only α is consistently estimated we cannot compute a
marginal effect of a component of d changing but, given the logistic specification, we
can interpret each component of α as the impact on the log-odds ratio, or equivalently
each exponentiated component of α as the impact on the odds ratio; see section 10.5.
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Commands pologit, xpologit and dslogit extend the methods for the linear
model to the exponential model and have similar syntax to command poregress.

These commands are applicable to any dependent variable that takes value between
zero and one. To illustrate the method for a binary variable, we convert totexp to a
variable that takes value 1 if expenditures exceed $4,000. The standard logit regression
estimates for the odds ratio (option or) are compared to the partialing-out estimate.
We obtain

. * Logit variant of partial linear model and partialing-out estimator

. generate dy = totexp > 4000

. tabulate dy

dy Freq. Percent Cum.

0 1,661 56.21 56.21
1 1,294 43.79 100.00

Total 2,955 100.00

. qui logit dy suppins $xlist2 $dlist2, or vce(robust)

. estimates store LSMALL

. qui logit dy suppins $rlist2, or vce(robust)

. estimates store LFULL

. qui dslogit dy suppins, controls($rlist2) coef

. estimates store LPOLLASSO

. estimates table LSMALL LFULL LPOLLASSO, keep(suppins) b(%9.4f) se ///
> stats(N df_m k_controls_sel)

Variable LSMALL LFULL LPOLLASSO

suppins 0.2498 0.2792 0.2680
0.0898 0.0936 0.0892

N 2955 2955 2955
df_m 19.0000 99.0000

k_controls~l 19.0000

Legend: b/se

The partialing-out estimator with default option or yields estimate exp(α̂) = 0.2680, so
the odds ratio Pr(y = 1|d,x)]/ Pr(y = 0|d,x)] of having medical expenditures exceed-
ing $4,000 is 26.8% higher for those with supplementary insurance compared to those
without supplementary insurance.

28.9.3 Partialing-out for instrumental variables estimation

For IV estimation the most efficient estimator uses all available instruments according
to standard asymptotic theory. But in practice this asymptotic theory can fail in typical
sample sizes when there are too many instruments. This many instruments problem can
arise when a model is considerably over-identified, with many more instruments than
endogenous regressors. But it can also arise in a just-identified model if there are many



1314 Chapter 28 Machine learning for prediction and inference

controls that lead to a low first-stage F -statistic because the marginal contribution of
the instrument(s) becomes slight after inclusion of the many controls.

Chernozhukov, Hansen, and Spindler (2015) extend the partialing-out estimator to
instrumental variables estimation of the linear model with selection of a subset of control
variables from a large number of controls and/or a subset of instruments from a large
number of instruments.

The poivregress command provides partialing-out estimates of α and δ in the
model

y = d′α + w′δ + x′γ + v (28.14)

where d are endogenous variables, w are exogenous variables to always be included, and
x are exogenous control variables that may potentially be included. Additionally there
are instruments z with dim[z] ≥ dim[d].

The poivregress command has syntax

poivregress depvar
[
exovars

]
endovars=instrumvars

[
if
] [

in
]

,

controls(
[
alwaysvars

]
othervars

[
options

]

For simplicity, consider the case of scalar endogenous regressor d and δ = 0. The
partialing-out algorithm is the following.

1. Calculate a partialled-out independent variable as the residual ûyi from OLS re-
gression of y on x̃y, where x̃y denotes the selected variables from a LASSO of y on
x.

2. Calculate a scalar instrument ŭdi as follows. Perform a LASSO of d on x and z and
denote the selected variables as, respectively, x̃d and z̃d. Then obtain a prediction
d̂ from OLS regression of d on x̃d and z̃d. Then calculate the residual ŭdi and
the coefficients β̌ from OLS regression of d̂ on x̆d̂, where x̆d̂ denotes the selected

variables from a LASSO of d̂ on x.

3. Calculate a partialled out endogenous regressor ûdi =di − x̆′
d̂i

β̌).

4. Compute α̂ by IV regression of ûyi on ûdi with ŭdi as the instrument.

As an example we consider a variant of the analysis of Belloni, Chen, Chernozhukov,
and Hansen (2012) based on Acemoglu, Johnson, and Robinson (2001). In this example
the model is just-identified, but there are only 64 observations and 24 potential controls
that could lead to a weak instrument problem.

The goal is to use a cross-section sample of countries to measure the causal effect
on per capita income (logpgp95) of protection against expropriation risk dependent
(avexpr). The mortality rate of early settlers (logem4) is used as an instrument for
avexpr. The global macro x2list includes 24 possible control variables which include
measures of country latitude, temperature, humidity, soil types and natural resources.
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. * Read in Acemoglu-Johnson-Robinson data and define globals

. qui use mus228ajr, clear

. global xlist lat_abst edes1975 avelf temp* humid* steplow deslow ///
> stepmid desmid drystep drywint goldm iron silv zinc oilres landlock

. describe logpgp95 avexpr logem4

Variable Storage Display Value
name type format label Variable label

logpgp95 float %9.0g log PPP GDP pc in 1995, World Bank
avexpr float %9.0g average protection against

expropriation risk
logem4 float %9.0g log settler mortality

. summarize logpgp95 avexpr logem4, sep(0)

Variable Obs Mean Std. dev. Min Max

logpgp95 64 8.062237 1.043359 6.109248 10.21574
avexpr 64 6.515625 1.468647 3.5 10
logem4 64 4.657031 1.257984 2.145931 7.986165

We use command poivregress with plugin bandwidth for the homoskedastic case.

. * Partialling-out IV using plugin for lambda

. poivregress logpgp95 (avexpr=logem4), controls($xlist) selection(plugin, hom)

Estimating lasso for logpgp95 using plugin
Estimating lasso for avexpr using plugin
Estimating lasso for pred(avexpr) using plugin

Partialing-out IV linear model Number of obs = 64
Number of controls = 24
Number of instruments = 1
Number of selected controls = 5
Number of selected instruments = 1
Wald chi2(1) = 8.74
Prob > chi2 = 0.0031

Robust
logpgp95 Coefficient std. err. z P>|z| [95% conf. interval]

avexpr .8798503 .2976286 2.96 0.003 .296509 1.463192

Endogenous: avexpr
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Only five controls are selected. From postestimation command lassocoef(.,for(avexpr))
the first LASSO selected logem4, edes1975 and zinc; from lassocoef(.,for(logpgp95))
the second LASSO selected edes1975 and avelf; and from lassocoef(.,for(pred(avexpr)))
the third LASSO selected edes1975, avelf, temp2, iron and zinc.

From output not given, when all 24 controls are used the regular IV estimate of
avexpr is 0.713 with standard error 0.147. The reason for the smaller standard error of
regular IV is that regular IV used an additional 19 controls that greatly improved model
fit. At the same time, reducing the number of controls in the first-stage estimation led
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to more precise estimation of the first-stage coefficient of the instrument logem4.

The following code manually implements the partialing-out IV estimator for this
example.

. * poivregress estimator in just-identified model obtained manually

. gen y = logpgp95

. gen d = avexpr

. global zlist logem4

. qui lasso linear y $xlist, selection(plugin, hom) // lasso of y on x

. qui predict yhat, postselection

. generate yresid = y - yhat // generate y residual

. qui lasso linear d $xlist $zlist, selection(plugin, hom) // lasso d on x,z

. qui predict dhat, postselection // generate dhat

. qui lasso linear dhat $xlist, selection(plugin, hom) // lasso dhat on x

. predict dhat_hat, postselection
(option xb assumed; linear prediction with postselection coefficients)

. generate dhatresid = dhat - dhat_hat // generate dhat residual

. generate dresid = d - dhat_hat // generate d "residual"

. ivregress 2sls yresid (dresid = dhatresid), noconstant vce(robust)

Instrumental variables 2SLS regression Number of obs = 64
Wald chi2(1) = .
Prob > chi2 = .
R-squared = .
Root MSE = .81396

Robust
yresid Coefficient std. err. z P>|z| [95% conf. interval]

dresid .8798503 .2952943 2.98 0.003 .3010841 1.458617

Instrumented: dresid
Instruments: dhatresid

The estimate equals that from poivregress, while the slight difference in the standard
error is due to different degrees of freedom correction.

Care is needed in using the poivregress command as it is possible that the LASSO

of d on x and z may lead to too few instruments being selected, in which case the
model becomes unidentified. Indeed this happened in the current example when the
default heteroskedastic variant of the plugin value of lambda was used, as then the
single instrument logem4 in this just-identified example was not selected.

Such selection of too few instruments is even more likely to occur with the cross-
fitting xpoivregress command as the variable selection then occurs K times. The
remedy is to use a larger value of the LASSO penalty λ.
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28.9.4 Further discussion

The methods illustrated have been restricted to the partial linear model and generalized
partial linear model using LASSO under the assumption of sparsity. These examples can
be extended to the use of other machine learners and to application in other models.

Farrell (2015) applies the LASSO to the doubly-robust AIPW estimator of ATE for
a binary treatment presented in section 24.6.5. The telasso command, introduced in
Stata 17, implements this estimator. The command syntax, similar to that for teffects
commands, is

telasso ipwra (ovar omvarlist
[
, omodel om options

]
)

(tvar tmvarlist
[
, tmodel tm options

]
)
[
if
] [

in
] [

weight
] [

, stat options
]

where om options and tm options include options for the LASSO and determination of
the LASSO penalty parameter in, respectively, the outcome model and the treatment
model. The outcome model can be linear, logit, probit or Poisson, the binary treatment
model can be logit or probit, and the command can compute ATE, ATET and potential
outcome means. For details on the implementation of the LASSO see especially the lasso
command in section 28.4.1. The telasso command option vce(cluster clustervar)
provides cluster-robust standard errors. It is important to note that in that case the
LASSO is one that gives equal weight to each cluster rather than to each observation.

Farrell, Liang, and Misra (2019) establish theory suitable for use of deep nets for
causal inference and provide an application using the AIPW treatment effects estimator.

Many of these methods will use orthogonalized moment conditions, see section 28.8.8,
and cross fitting, see section 28.8.9. The paper by Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, Newey, and Robins (2018) provides an excellent overview, theory, and
applications that use a variety of machine learners (LASSO), regression tree, random
forest, boosting, and neural network to estimate ATE and LATE for a binary treatment,
and for IV estimation in a partial linear model. The machine learner needs to approxi-
mate well the nuisance part of the model. Appropriate assumptions to ensure this will
vary with the setting and will not necessarily require a sparsity assumption.

This is an exceptionally active area of current econometric research, and we antici-
pate an explosion of new methods that will be implementable in Stata using one’s own
coding, as user-written Stata programs and ultimately in some cases as official Stata
programs.

In a separate important strand of research that is not covered here, Wager and Athey
(2018) use random forests to estimate the ATE for a binary treatment for subgroups of
the population, and to identify groups with the greatest treatment effect. They provide
nonstandard asymptotic results that yield pointwise confidence intervals. Their method
includes the use of “honest trees”, qualitatively similar to cross-fitting.
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28.10 Additional resources

Machine learning methods have only recently been used in microeconometrics. Ref-
erences that are written from a statistics perspective include a Masters level text by
James et al. (2013), and more advanced texts by Hastie et al. (2009) and Efron and
Hastie (2016). Varian (2014) provides an early summary for economists of machine
learning approaches and some of the software packages developed to handle massive
datasets. Mullainathan and Spiess (2017) provide a detailed application of machine
learning methods for prediction in economics, and cite many applications. Athey and
Imbens (2019) provide a more recent overview.

Initial research on use of machine learning for statistical inference has used the
LASSO; see Belloni, Chernozhukov, and Hansen (2014) for an accessible summary and
illustration. Drukker (2020) provides a more recent account. Stata 16 introduced com-
mands for LASSO and elastic net for both prediction and statistical inference that are
detailed in [LASSO] Stata Lasso Reference Manual.

The user-written lassopack package (Ahrens, Hansen, and Schaffer 2019) overlaps
considerably with the Stata LASSO commands for prediction. The accompanying article
is well worth reading as it provides details on the background theory. The user-written
pdslasso and ivlasso commands (Ahrens, Hansen, and Schaffer 2018) overlap consid-
erably with the Stata commands for inference in the partial linear model and include
some additional features such as inference with clustered errors.

Other machine learning methods may be used, both for prediction and for statis-
tical inference. The important innovation of double/debiased machine learning with
orthogonalized moment conditions and cross fitting is presented in Chernozhukov et al.
(2018). Wager and Athey (2018) and related articles use random forests to estimate
heterogeneous treatment effects.

The user-written pylearn package (Droste 2020) provides Stata functions that im-
plement popular python functions for regression trees, random forests, neural networks,
adaptive boosting and gradient boosting.

28.11 Exercises

1. Suppose we have a sample of eight observations for which y takes values 1, 2, 3,
4, 5, 6, 7, and 8. We wish to predict y using the sample mean. Compute MSE

using all the data. Now suppose we choose as training dataset the first, third,
fifth and seventh observations, and the remaining four observations are the test
data. Compute the test MSE. Now suppose we use four-fold CV where the first fold
has the first and fifth observation, the second fold the second and sixth, the third
fold the third and seventh and the fourth fold the fourth and eighth observation.
Compute MSE for each fold. Hence compute CV4 and the standard error of CV4.

2. Repeat the analysis of section 28.4.6 with regressors x1, x2 and x3 augmented by
their products and cross products, again using rseed(10101). Comment on the



28.11 Exercises 1319

differences between the various estimates.
3. Generate a sample of 10,000 observations using the following code.

set obs 10000

set seed 10101

matrix MU = (0,0,0)

scalar rho = 0.95

matrix SIGMA = (1,rho,rho \ rho,1,rho \ rho,rho,1)

drawnorm x1 x2 x3, means(MU) cov(SIGMA)

scalar rho = 0.2

matrix SIGMA = (1, rho, rho \ rho, 1, rho \ rho, rho, 1)

drawnorm x4 x5 x6, means(MU) cov(SIGMA)

generate y = 1 + 2*x1 + 3*x2 + 2*x1*x2 + 2*x4 + 3*x5 + 2*x4*x5 + rnormal(0,10)

The potential regressors are x1-x6 and their products and cross products. Perform
adaptive LASSO with option rseed(101010) on the full sample, on the first 1,000
observations, and on the first 100 observations. Comment on the ability of LASSO

to detect the true model as the sample sizes changes. (This comparison is easier
following the example in section 28.4.6.) Similarly perform OLS of y on all potential
regressors. Suppose we select only those regressors that are statistically significant
at 5%. Comment on the ability of OLS to detect the true model as the sample
sizes changes. (This comparison is simpler using the star option of estimates
table).

4. Perform an analysis with training and test samples qualitatively similar to that in
section 28.7 using the same generated data as in section 28.2. Specifically split the
data into a training sample of 30 observations and a test sample of 10 observations,
using command

splitsample y, generate(train) split(1 3) values(0 1) rseed(10101)

Use OLS and LASSO with five-fold cross-validation to obtain predictions. In the
case of LASSO obtain predictions from both penalized coefficients and postselection
coefficients. Which method predicts best in the training sample? Which method
predicts best in the holdout sample?

5. Use the same data as in section 28.7 but use only the continuous regressors, so the
regressor list is c.($xlist)##c.($xlist). Give the same splitsample command
as in question 4 above. Using the training dataset perform 10-fold CV LASSO, adap-
tive LASSO, Ridge and elasticnet regression with option rseed(101010). Compare
the coefficients selected and their penalized values, training sample fit and test
sample fit across the estimates.

6. Repeat the previous question but using an exponential conditional mean model
rather than a log-linear model. The dependent variable is totexp, the level of ex-
penditure, the sample should now include observations with totexp = 0, the lasso
poisson and elasticnet poisson commands are used, and selected variables are
compared to Poisson estimates with heteroskedastic-robust standard errors that
are statistically significant at 5%.
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7. Estimate a partial linear model using the same generated sample as that in ques-
tion 3. The single regressor of interest is x1 and the potential controls are all
other variables and interactions, including interactions with x1. The list of poten-
tial controls can be set up using commands

global xlist2 x2 x3 x4 x5 x6

global x1interact c.x1#c.($xlist2)

global rlist2 $x1interact c.($xlist2)##c.($xlist2)

Use command poregress with default options on the full sample, on the first
1,000 observations, and on the first 100 observations. Compare the estimated
coefficient of x1 to the DGP value as the sample size changes. Comment on the
controls chosen for y and x1 as the sample size changes. Estimate by OLS the
model with all potential regressors included and compare the coefficient of x1 (and
its heteroskedastic-robust standard error) to the poregress estimates. Estimate
using command xporegress with default options and compare to the poregress
estimates.

8. Use the same data as in section 28.8, regress ltotexp on suppins and on con-
trols that are only the continuous regressors, so the controls regressor list is
c.($xlist2)##c.($xlist2). Regress ltotexp on suppins and potential con-
trols using commands poregress, xporegress and dsregress with default op-
tions, and by OLS. Compare the fitted coefficients and their heteroskedastic-robust
standard errors across these methods.
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