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Course Outline

1. Variable selection and cross validation
2. Shrinkage methods

I ridge, lasso, elastic net

3. ML for causal inference using lasso
I OLS with many controls, IV with many instruments

4. Other methods for prediction
I nonparametric regression, principal components, splines
I neural networks
I regression trees, random forests, bagging, boosting

Part 5: More ML for causal inference
I ATE with heterogeneous e¤ects and many controls.

6. Classi�cation and unsupervised learning
I classi�cation (categorical y) and unsupervised learning (no y).
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1. Introduction

1. Introduction
Current microeconometric applications focus on causal estimation of
a key parameter, such as an average marginal e¤ect, after controlling
for confounding factors

I apply to models with selection on observables only
F good controls makes this assumption more reasonable

I and to IV with available instruments
F good few instruments avoids many instruments problem.

Machine learning methods determine good controls (or instruments)
I but valid statistical inference needs to control for this data mining
I currently extraordinarily active area of econometrics research.

Previously considered LASSO for partial linear model with
homogeneous e¤ects.
Now consider heterogeneous e¤ects in potential outcomes model.
This research area is currently exploding

I these slides will become dated quickly.
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2. Causal Inference with Machine Learning

Overview

1 Introduction
2 Machine learning for microeconometrics
3 ATE with heterogeneous e¤ects (doubly-robust augmented IPW)
4 LASSO for causal ATE
5 Random forests for causal ATE
6 Neural networks for causal ATE
7 More methods
8 Some review articles of causal ML for Economics
9 Appendix: Heterogeneous e¤ects and AIPW
10 References
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2. Machine Learning for Microeconometrics

2. Machine Learning for Microeconometrics

Empirical microeconometrics studies focus on estimating partial
e¤ects

I the e¤ect on y of a change in x1 controlling for x2.

A machine learner would calculate this as follows
I prediction function is by = bf (x1, x2)
I the partial e¤ect of a change of size ∆x1 is then

∆by = bf (x1 + ∆x1, x2)� bf (x1, x2).
This could be very complicated as bf (�) may be very nonlinear in x1.
There is di¢ culty (impossibility?) in obtaining an asymptotic
distribution for inference.

And it requires a correct model bf (x1, x2)
I formally the model needs to be consistent
I i.e. probability that bf (�) is correct ! 1 as n! ∞.
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2. Machine Learning for Microeconometrics

Add Some Structure

A partially linear control function model speci�es

y = αx1 + g(x2) + u where g(�) is unknown.

I for simplicity consider only scalar x1.

The partial e¤ect of a change of size ∆x1 is then

∆by = α∆x1.

Consistent estimator requires E [y jx1, x2] = αx1 + g(x2).
I more plausible the better the choice of g(x2)
I though we still need linear in x1 and additivity.

The partially linear model was used initially in semiparametrics
I typically x1 and α were high dimension and x2 low dimension
I now for causal ML x1 and α are high dimension and x2 is high
dimension.
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2. Machine Learning for Microeconometrics

How to add the controls
Biostatistics includes regressors x2 as controls if p < 0.05

I imperfect selection and also leads to pre-test bias.

Economists use economics theory and previous studies to include
regressors

I these are included regardless of their statistical signi�cance
I to guard against omitted variables bias and to avoid pre-test bias.

Machine learning methods are used to get a good choice of g(x2)
I ideally in such a way and/or with assumptions so that standard
inference can be used for bα

F so data mining has not a¤ected the distribution of bα.
I The methods can extend to endogenous x1.

The course to date has focused on determine g(x2) using the LASSO
I due to Belloni, Chernozhukov and Hansen and coauthors
I assumptions including �sparsity� enable use of standard inference forbα1.
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2. Machine Learning for Microeconometrics

Alternatively estimate average partial e¤ects

An alternative to the partially linear model is to use less structure and
estimate average partial e¤ects.

The leading example is the heterogeneous e¤ects literature
I let x1 be a binary treatment taking values 0 or 1
I let ∆y/∆x1 vary across individuals in an unstructured way
I estimate the average partial e¤ect E [y jx1 = 1]� E [y jx1 = 0].

One method used is propensity score matching
I machine learning may give a better propensity score estimator.

Another method used is nearest-neighbors matching
I machine learning may give a better matching algorithm.

To control for data mining, however, use an estimator that satis�es
the orthogonalization condition.
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3. ATE with Heterogeneous E¤ects and AIPW

3. ATE with heterogeneous e¤ects

Consider the e¤ect of binary treatment d on an outcome y
I d = 1 if treated and d = 0 if untreated (control).

If we could run a randomized control trial (RCT)
I assignment to treatment is completely random (e.g. toss a coin)
I then the average treatment e¤ect would be simply the di¤erence in
means ȳ1� ȳ0.

Important things to note
I the treatment e¤ect can di¤er from individual (we just average)

F even though mechanically OLS yi = α+ βdi + ui gives bβ = ȳ1� ȳ0.

I there is no need to control for x0s given random assignment

F though potentially adding controls could improve estimator precision.
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3. ATE with Heterogeneous E¤ects and AIPW

Homogeneous e¤ects
In practice in economics we usually have observational data

I where individuals may self-select into treatment (d is endogenous).

The control function approach speci�es the partial linear model

y = βd + g(x) + u.

The key nontestable assumption (selection on observables only) is
I once we include the control function g(x) the treatment variable d can
be vewed as if it is randomly assigned (i.e. d is exogenous)

I d is uncorrelated with (or independent of) the error u conditional on x.

Better control functions g(x) may make this assumption more
plausible

I earlier we used an ML method such as Lasso for �exible g(x).

This model restricts the treatment e¤ect to be the same β for each
individual with the same x

I called homogeneous e¤ects.
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3. ATE with Heterogeneous E¤ects and AIPW 3.1 Heterogeneous E¤ects Model

3.1 Heterogeneous E¤ects Model

The heterogeneous e¤ects model allows the treatment e¤ect to
di¤er across individuals

I it is more �exible
I and more plausible to believe x can control for self-selection.

As for an RCT we wish to estimate the average treatment e¤ect

τ = ATE = E [y (1) � y (0)]

I where y (1) is the potential outcome if treated (d = 1)
I y (0) is the potential outcome if not treated (d = 0)
I and for any given individual we only observe one of y (1)i or y (0)i .
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3. ATE with Heterogeneous E¤ects and AIPW 3.1 Heterogeneous E¤ects Model

Unconfoundedness assumption

The key nontestable assumption (unconfoundedness or conditional
independence) is

I once we adjust for control variables x the treatment variable d can be
vewed as if it is randomly assigned (i.e. exogenous)

I d is independent of the potential outcomes y (0) and y (1) conditional
on x.
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3. ATE with Heterogeneous E¤ects and AIPW 3.2 Heterogeneous E¤ects Model Estimators

3.2 Heterogeneous E¤ects Model Estimators

Several estimators have been proposed for this model.
I given in detail in the Appendix.

Regression model adjustment
I estimate separate models of y on x for the treated and the untreated
I predict y for all individuals using the treated coe¢ cient estimates and
predict y for all individuals using the untreated coe¢ cient estimates

I �nally compute the di¤erence in the average predictions.

Inverse probability weighting (IPW) using the propensity score
I Use a weighted average of treated y 0s and untreated y�s
I with weights that adjust for the probability of selection into treatment.

Augmented IPW combines the preceding two methods.

Other methods include matching
I compare the outcome for the treated to the outcome for similar (on x)
untreated.
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3. ATE with Heterogeneous E¤ects and AIPW 3.3 ATE Estimated using Augmented IPW

3.2 ATE estimated using Augmented IPW
De�ne the following quantities

I µ1(x) = E [y
(1)jx] the conditional mean of y if treated

I µ0(x) = E [y
(0)jx] the conditional mean of y if untreated

I p(x) = Pr[d = 1jx] the conditional probability of treatment
(propensity score)

De�ne corresponding regression estimates for each individual
I bµ1(xi ), bµ0(xi ) , bp(xi ).

The doubly-robust method (augmented IPW) uses

bτ = dATE = 1
n ∑n

i=1

n
di (yi�bµ1(xi ))bp(xi ) + bµ1(xi )o

� 1
n ∑n

i=1

n
(1�di )(yi�bµ0(xi ))

1�bp(xi ) + bµ0(xi )o
Doubly-robust as estimator remains consistent if either

I the propensity score model p(x) or
I the regression imputation model µj (x) is misspeci�ed.

Stata command te¤ects aipw estimates this with OLS and logit.
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4. LASSO for Causal ATE

4. LASSO for the AIPW estimate of the ATE

For AIPW the moment condition for the ATE parameter τ is

I 1
n ∑ni=1

n
di (yi�bµ1(xi ))bp(xi ) + bµ1(xi )� (1�di )(yi�bµ0(xi ))

1�bp(xi ) � bµ0(xi )� τ
o
= 0.

In addition to being doubly-robust, the orthogonalization
condition holds (shown below).
So use

I LASSO logit to obtain bp(x)
I LASSO OLS to obtain bµ1(x) and bµ0(x).

The Stata command telasso implements this.
Max Farrell (2015), �Robust Estimation of Average Treatment E¤ect
with Possibly more Covariates than Observations,� Journal of
Econometrics, 189, 1-23.

I considers multivalued treatment but I present binary d case.
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4. LASSO for Causal ATE

Stata telasso command

The following code gives lasso AIPW with various methods for the
lasso penalty parameter λ where

I y is log medical expenditures
I d is whether have supplementary health insurance
I x is 176 controls ($rlist2)

* Plugin values for lambda (the default)

telasso (ltotexp $rlist2) (suppins $rlist2), selection(plugin) vce(robust)

* BIC values for lambda

telasso (ltotexp $rlist2) (suppins $rlist2), selection(bic) vce(robust)

* CV takes a long time

telasso (ltotexp $rlist2) (suppins $rlist2), selection(cv) xfolds(10) ///

rseed(10101) vce(robust)
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4. LASSO for Causal ATE

Stata Results

Apply to earlier data.

ATE is e¤ect of supplementary insurance on log medical expenditures

Method Stata command ATE se(ATE)
Partial linear lasso poregress 0.1839 0.0468
Regression adjustment teffects, ra 0.1745 0.0496
IPW teffects, ipw 0.1867 0.0481
Augmented IPW teffects, aipw 0.1713 0.0483
Lasso AIPW plugin telasso, sel(plug) 0.1502 0.0519
Lasso AIPW bic telasso, sel(bic) 0.1428 0.0596
Lasso AIPW CV telasso, sel(cv) 0.1496
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5. Random Forests for Causal ATE

5. Random Forests for Causal ATE
Random forests predict very well

I Susan Athey�s research emphasizes random forests.

Stefan Wager and Susan Athey (2018), �Estimation and Inference of
Heterogeneous Treatment E¤ects using Random Forests,� JASA,
1228-1242.
Standard binary treatment and heterogeneous e¤ects with
unconfoundness assumption

I use random forests to determine the controls.
I proves asymptotic normality and gives point-wise con�dence intervals

F This is a big theoretical contribution.

Stefan Wager and Susan Athey (2018), �Estimating treatment E¤ects
with Causal Forests: An Application,�Observational Studies 5,
September 2019, 21-35 (also https://arxiv.org/pdf/1902.07409)

I a how-to application (and allows for clustered errors)
I uses the R package grf.

A. Colin Cameron Univ.of California - Davis . () ML Part 5: More Causal Inference May 2022 18 / 39



5. Random Forests for Causal ATE

Random Forests for Causal ATE (continued)
Let L denote a speci�c leaf in tree b.
τ(x) = E [y (1) � y (0)jx] in a single regression tree b is estimated bybτb(x) = 1

#fi :di=1,xi2Lg ∑i :di=1,xi2L yi �
1

#fi :di=0,xi2Lg ∑i :di=0,xi2L yi
= ȳ1 in leaf L� ȳ0 in leaf L.

Then a random forest with sub-sample size s gives B trees withbτb(x) = 1
B ∑B

b=1 bτb(x)dVar [bτb(x)] = n�1
n

� n
n�2

�2
∑n
i=1 Cov(bτb(x), dib)

I where dib = 1 if i th observation in tree b and 0 otherwise
I and the covariance is taken over all B trees.

Key is that a tree is honest.
A tree is honest if for each training observation i it only uses yi to

I either estimate bτ(x) within leaf
I or to decide where to place the splits
I but not both.
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6. Deep Neural Networks for Causal ATE

6. Deep Neural Networks for Causal ATE

Max Farrell, Tengyuan Liang and Sanjog Misra (2021), ��Deep
Neural Networks for Estimation and Inference,�Econometrica.

I Further detail in �Deep Neural Networks for Estimation and Inference:
Application to Causal E¤ects and Other Semiparametric Estimands,�
arXiv:1809.09953v2.

Obtains nonasymptotic bounds and convergence rates for
nonparametric estimation using deep neural networks.

Then obtain asymptotic normal results for inference on
�nite-dimensional parameters following �rst-step estimation using
deep neural nets.

Application is to ATE using doubly robust augmented IPW
I outcome is consumer spending and interest is in e¤ect of marketing
I consider e¤ect of three di¤erent targeting strategies: (1) never treat;
(2) blanket treatment; (3) loyalty policy.
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7. More Methods 7.1 LATE and local quantile treatment e¤ects

7.1 LATE and local quantile treatment e¤ects

Belloni, Chernozhukov, Fernandez-Val and Hansen (2015), �Program
Evaluation with High-Dimensional Data�.

Binary treatment and heterogeneous e¤ects with endogenous
treatment and valid instruments

I allow for estimation of functions

F such as local quantile treatment e¤ects over a range of quantiles

I The paper is very high level as it uses functionals
I uses LASSO along the way.

Key is to use an orthogonalization moment condition
I allows inference to be una¤ected by �rst-stage estimation.
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8. Some review articles of ML for Economics

8. Some review articles of ML for Economics

Susan Athey�s website has several wider-audience papers on machine
learning in economics.

Susan Athey (2017), �Beyond Prediction: Using Big Data for Policy
Problems,�Science 355, 483-485.

I O¤-the shelf prediction methods assume a stable environment

F includes Kleinberg et al (2015) AER hip replacement.

I Economics considers causal prediction by

F adjust for confounders e.g. Belloni et al., Athey et al.
F designed experiments e.g. Blake et al.
F excellent references.
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8. Some review articles of ML for Economics

Susan Athey (continued)
Susan Athey (2018), �The Impact of Machine Learning on
Economics"
Lengthy wide-ranging survey paper with no equations.
Machine learning methods can

I provide variables to be used in economic analysis (e.g. from images or
text)

I lead to better model selection through e.g. cross-validation
I provide much quicker computation using stochastic gradient descent

F use gradient at a single data point to approximate average over
observations of the gradient

I lead to better causal estimates
F fundamental identi�cation issues are not solved
F but perhaps make assumptions more credible e.g. unconfoundedness

I be used whenever semiparametric methods might have been used.

Paper surveys recent work on ML for causal inference
I double machine learning (Chernozhukov et al 2018) and
orthogonalization are especially promising.

Paper concludes with broad predictions for economics
I e.g. teach coding.
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8. Some review articles of ML for Economics

Other Sources

Dario Sansone (University of Exeter) provides very many good
references

I https://sites.google.com/view/dariosansone/resources/machine-
learning

Susan Athey and Guido Imbens (2019), �Machine Learning Methods
Economists Should Know About,�Annual Review of Economics.

This paper provides great detail on the current literature with many
references.
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.1 Rubin Causal Model and Potential Outcomes

9. Appendix: Heterogeneous E¤ects Model and AIPW

This appendix provides details for those unfamiliar with heterogeneous
e¤ects and associated estimation methods for a binary treatment.

I Rubin causal model
I Average tretment e¤ect (ATE)
I Regression model adjustment estimator
I Inverse probability-weighted (IPW) estimator
I Doubly-robust Augmented IPW estimator
I Proof of orthogonalization condition for AIPW.
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.1 Rubin Causal Model and Potential Outcomes

9.1 Rubin Causal Model and Potential Outcomes

Consider a binary treatment d 2 f0, 1g
I for some individuals we observe y only when d = 1 (treated)
I for others we observe y only when d = 0 (untreated or control)
I some methods generalize to multi-valued treatment d 2 f0, 1, ..., Jg.

The Rubin causal model de�nes
I potential outcomes y (1) if d = 1 and y (0) if d = 0
I for a given individual we observe only one of y (1)i and y (0)i
I we observe yi = di y

(1)
i + (1� di )y

(0)
i .
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.1 Rubin Causal Model and Potential Outcomes

Average Treatment E¤ect

The goal is to estimate the average treatment e¤ect (ATE)

τ = ATE = E [y (1) � y (0)].

Or the conditional treatment e¤ect given x
I τ(x) = E [y (1) � y (0)jx].

Also may be interested in the average treatment e¤ect on the
treated (ATET)

ATET = E [y (1) � y (0)jd = 1].
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.1 Rubin Causal Model and Potential Outcomes

Unconfoudedess
A treatment assignment mechanism is unconfounded if assignment
to treatment does not depend on the potential outcomes.
Thus Pr[d jy (0), y (1), x] = Pr[d jy �(0), y �(1), x] for all
d , y (0), y (1), y �(0), y �(1), x.
This curcial nontestable assumption is also called the
conditional independence assumption and is often written as

I di ? fy
(0)
i , y (1)i gjxi .

I conditional on x, treatment is independent of the potential outcome.

This means once we condition on x
I the conditional distribution of the potential outcome if treated (y (1)) is
the same for those who did and did not actually get treatment

F y (1)i jdi = 1, x has the same distrbution as y (1)i jdi = 0, x
I the conditional distribution of the potential outcome if not treated
(y (0)) is the same for those who did and did not actually get treatment

F y (0)i jdi = 1, x has the same distrbution as y (0)i jdi = 0, x.
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.1 Rubin Causal Model and Potential Outcomes

Heterogeneous E¤ects Model Estimators

Several estimators have been proposed for this model
I given in detail next.

Regression model adjustment
I estimate separate models of y on x for the treated and the untreated
I predict y for all individuals using the treated coe¢ cient estimates and
predict y for all individuals using the untreated coe¢ cient estimates

I �nally compute the di¤erence in the average predictions.

Inverse probability weighting (IPW) using the propensity score
I Use a weighted average of treated y 0s and untreated y�s
I with weights that adjust for the probability of selection into treatment.

Augmented IPW combines the preceding two methods.

Other methods include matching
I compare the outcome for the treated to the outcome for similar (on x)
untreated.

A. Colin Cameron Univ.of California - Davis . () ML Part 5: More Causal Inference May 2022 29 / 39



9. Appendix: Heterogeneous E¤ects Model and AIPW 9.2 ATE Estimated using Regression Model Adjustment

9.2 ATE estimated using Regression Model Adjustment

Regress y on x for the treated sample, regress y on x for the untreated
sample, predict potential outcomes for a person if treated and for the
same person if untreated, average for all individuals and subtract.

De�ne the conditional means
I µ1(x) = E [y

(1)jx] for treated
I µ0(x) = E [y

(0)jx] for control
I so ATE(x) = τ(x) = µ1(x)� µ0(x).

Then dATE = 1
n ∑n

i=1
bµ1(xi )� 1

n ∑n
i=1
bµ0(xi ).

Stata command te¤ects ra does this
I OLS regression with speci�ed functions µ1(�) & µ0(�) and speci�ed x
I equals bβ2 in OLS regression
yi = β1 + β2di + x

0
i β3 + dix

0
i β4 + ui , i = 1, ..., n.
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.3 ATE Estimated using Inverse Probability Weighting

9.3 ATE Estimated using Inverse Probability Weighting

Adjust for selection into treatment uysing the propensity score.

De�ne the propensity score p(x) = Pr[d = 1jx] = E [d jx].
Under the conditional independence assumption

I µ1(x) = E [y
(1)jx] = E [ dyp(x) jx] shown on next slide

I µ0(x) = E [y
(0)jx] = E [ (1�d )y1�p(x) jx] by similar proof

I ATE(x) = τ(x) = E [y (1) � y (0)jx] = E
h�

dy
p(x) �

(1�d )y
1�p(x)

�
jx
i

F downweights y for treated with high p(x) and y for untreated with low
p(x).

Inverse probability weighting (IPW) uses the sample analog

bτ = dATE = 1
n

n

∑
i=1

diyibpi (xi ) � 1
n

n

∑
i=1

(1� di )yi
1� bp(xi ) .
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.3 ATE Estimated using Inverse Probability Weighting

Proof of IPW
Note that d2 = d for binary d = 0 or 1. Then

d � y = d � fdy (1) + (1� d)y (0)g = d2y (1) + (d � d2)y (0) = dy (1)

So

Ed ,y (0),y (1)

�
dy
p(x)

jx
�

= Ed ,y (0),y (1)

"
dy (1)

p(x)
jx
#
as d � y = dy (1)

= Ed

�
d
p(x)

jx
�
� Ey (1)

h
y (1)jx

i
by unconfoundness assumption

=
p(x)
p(x)

� Ey (1)
h
y (1)jx

i
as Ed [d jx] = p(x)

= Ey
h
y (1)1 jx

i
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.3 ATE Estimated using Inverse Probability Weighting

ATE estimated using propensity scores (continued)

Stata command te¤ects ipw estimates this
I logit speci�cation for p(x) with speci�ed x.

Instead could use ML methods such as LASSO logit to get bp(x)
I The conditional independence assumption is more plausible the more
x0s considered.

This method works best when bp(x) is constant as in a randomized
trial.

When bp(x) is close to 0 or 1 the weights become very large.
Then it is better to use a blocking estimator

I partition observations into subclasses based on value of bp(x)
I compute the ATE in each subclass as ȳ1 � ȳ0
I then ATE is the average across subclasses (weighted by subclass size).
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.4 ATE estimated using Doubly-robust AIPW method

9.4 ATE estimated using doubly-robust AIPW method
As before de�ne µ1 = E [y

(1)] and µ0 = E [y
(0)] and

µ1(x) = E [y
(1)jx]; µ0(x) = E [y

(0)jx]; p(x) = Pr[d = 1jx].

The doubly-robust method (augmented IPW) combines the preceding
regression adjustment and IPW methods and uses

bτ = dATE = bµ1 � bµ0bµ1 =
1
n ∑n

i=1

�
di (yi � bµ1(xi ))bp(xi ) + bµ1(xi )�

bµ0 =
1
n ∑n

i=1

�
(1� di )(yi � bµ0(xi ))

1� bp(xi ) + bµ0(xi )�
Doubly-robust as estimator remains consistent if either

I the propensity score model p(x) or
I the regression imputation model µj (x) is misspeci�ed.

Stata command te¤ects aipw estimates this with OLS and logit.
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.4 ATE estimated using Doubly-robust AIPW method

Stata telasso command

The following code gives standard estimators
I y is log medical expenditures
I d is whether have supplementary health insurance
I x is 176 controls ($rlist2)

* Homogeneous e¤ects: partialling-out partial linear model

poregress ltotexp suppins, controls($rlist2)

* Heterogeneous e¤ects: regression adjustment estimate of ATE

te¤ects ra (ltotexp $rlist2) (suppins), vce(robust)

* Heterogeneous e¤ects: inverse probability weighting estimate of ATE

te¤ects ipw (ltotexp) (suppins $rlist2), vce(robust)

* Heterogeneous e¤ects: Augmented IPW estimate of ATE

te¤ects aipw (ltotexp $rlist2) (suppins $rlist2), vce(robust)

A. Colin Cameron Univ.of California - Davis . () ML Part 5: More Causal Inference May 2022 35 / 39



9. Appendix: Heterogeneous E¤ects Model and AIPW 9.5 Orthogonalization for AIPW

9.5 Orthogonalization for AIPW

For simplicity de�ne η1 = µ1(x), η2 = µ0(x) and η3 = p(x).
The preceding AIPW estimator τ solves the population moment
condition E [ψ(d , y , η)] = 0 where

ψ(d , y , τ, η) =
d(y � η1)

η3
+ η1 �

(1� d)(y � η2)

1� η3
� η2 � τ.

Orthogonalization requires E [ψ(d , y , τ, η)/∂ηj jx] = 0 for j = 1, 2, 3.

η1 : E [ψ(d , y , τ, η)/∂η1jx] = E [�dη3
+ 1jx] = �E [d jx]

η3
+ 1

=
�η3
η3
+ 1 = 0, using E [d jx] = Pr[d = 1jx] = η3.

η2 : E [ψ(d , y , τ, η)/∂η2jx] = E [
(1�d )

η3
� 1jx] = 1�E [d jx]

1�η3
+ 1

=
1�η3
1�η3

+ 1 = 0, using E [d jx] = Pr[d = 1jx] = η3.
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9. Appendix: Heterogeneous E¤ects Model and AIPW 9.5 Orthogonalization for AIPW

Othogonalization for AIPW (continued)

Lastly consider derivative w.r.t. η3. This is less straightforward.

ψ(d , y , τ, η) = d (y�η1)
η3

+ η1 �
(1�d )(y�η2)

1�η3
� η2 � τ.

η3 : E [ψ(d , y , τ, η)/∂η3jx] = E [�
d (y�η1)

η23
� (1�d )(y�η2)

(1�η3)
2 jx].

This term involves the product dy .
The conditional independence assumption y (0), y (1) ? d jx implies
that Ed ,y jx[dy jx] = Pr[d = 1jx]� E [y (1)jx] = η3 � η1.

Then E [ d (y�η1)

η23
jx] = E [dy jx]�E [d jx]η1

η23
=

η3η1�η3η1
η23

= 0.

And similarly
E [ (1�d )(y�η0)

(1�η3)
2 jx] = E [(1�d )y jx]�E [(1�d )jx]η2

(1�η3)
2 =

(1�η3)η2�(1�η3)η2
(1�η3)

2 = 0.

So
E [ψ(d , y , τ, η)/∂η3jx] = E [�

d (y�η1)

η23
� (1�d )(y�η2)

(1�η3)
2 jx] = 0� 0 = 0.
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