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N —
Course Outline

@ 1. Variable selection and cross validation
@ 2. Shrinkage methods
> ridge, lasso, elastic net
@ 3. ML for causal inference using lasso
» OLS with many controls, IV with many instruments
@ 4. Other methods for prediction

> nonparametric regression, principal components, splines
> neural networks
> regression trees, random forests, bagging, boosting

B: More ML for causal inference

» ATE with heterogeneous effects and many controls.

o Part 6. Classification and unsupervised learning

> classification (categorical y) and unsupervised learning (no y).
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1. Introduction

1. Introduction

e To date considered supervised learning with a continuous measure (or
a count or binary where model probabilities).

Now consider very briefly classification and unsupervised learning.

Classification is supervised learning with y categorical

> The loss function is the number of misclassifications rather than MSE.

» Traditional methods select the category with the highest predicted
probability.

» Some ML methods instead directly select the category.

@ Unsupervised learning there is no y, only x

> Principal components.
> k-means clustering.

Good reference is ISL2.
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1. Introduction

Overview

Q@ Classification (categorical y)

Loss function

Logit

Local logit regression

k-nearest neighbors

Discriminant analysis

Support vector machines

Regression trees and random forests
Neural networks

Q0000000

@ Unsupervised learning (no y)

@ Principal components analysis
@ Cluster analysis

A. Colin Cameron Univ.of California - Davis | ML Part 6: Classification and Unsupervised May 2022 4 /42



1. Classification

1. Classification: Overview

@ Regression methods

» predict probabilities based on log-likelihood rather than MSE
> assign to class with the highest predicted probability (Bayes classifier)

* in binarycase y =1if p>05and y =0if p <0.5.

» parametric: logistic regression, multinomial regression
» nonparametric: local logit, nearest-neighbors logit

o Discriminant analysis

additionally assumes a normal distribution for the x's

predict probabilities

use Bayes theorem to get Pr[Y = k|X = x] and Bayes classifier.
used in many other social sciences

vV VY VY
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1. Classification

1. Classification: Overview (continued)

@ Support vector classifiers and support vector machines

directly classify (no probabilities)

machine learning methods developed in the 1990's
are more nonlinear so may classify better

use separating hyperplanes of X and extensions.

Yy VvV VY

o Random forests

> in simplest case minimize the classification error rate rather than the
MSE

> in practice better is to use the Gini index or entropy.
@ Neural networks

» can work very well for complex classification such as images.
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i1 [Less [Rueiion
1.1 A Different Loss Function: Error Rate

@ Instead of MSE we use the error rate

» the number of misclassifications
E _lyw 1ly; #v;
rror rate = - E i Hyi # Vil

* where for K categories y; =0,...., K —1and y; =0,...,K — 1.
* and indicator 1{A] = 1 if event A happens and = 0 otherwise.

@ The test error rate is for the ny observations in the test sample

Ave(1[yo # ¥o)) Z 1yoi # Yoil-

@ Cross validation uses number of misclassified observations. e.g.
LOOCV is

E, lErr,—fZ 1y, # v
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1. Classification 1.1 Loss Function

Classification Table

@ A classification table or confusion matrix is a K x K table of counts
of (y,¥)
@ In 2 X 2 case with binary y =1 or 0
> sensitivity is % of y = 1 with prediction y = 1
» specificity is % of y = 0 with prediction y = 0
> receiver operator characteristics curve (ROC) curve plots sensitivity
against 1—sensitivity as threshold for y = 1 changes.
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1. Classification 1.1 Loss Function

Bayes classifier

@ The Bayes classifier selects the most probable class
» the following gives theoretical justification.

° L(G,G(x) = 1]y # yi]
» L(G,G(x)) is 0 on diagonal of K x K table and 1 elsewhere
» where G is actual categories and G is predicted categories.

@ Then minimize the expected prediction error
EPE = Egx[L(G,G(x))]
= B [T, LGk G(x)) x Pr[Gklx]|
@ Minimize EPE pointwise (for each value of x)
G(x) = argmingec [TI; L(Gh. g) x Pr{Gklx]]

= arg mingc[1 — Prig|x]] given 0-1 loss
= maxgeg Prg|x]

@ So select the most probable class.
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1. Classification 1.2 Logit

1.2 Logit
e Directly model p(x) = Pr[y|x].
@ Logistic (logit) regression for binary case obtains MLE for
px) '\ _
In <l—p(x)> =xp.
@ Statisticians implement using a statistical package for the class of
generalized linear models (GLM)

> logit is in the Bernoulli (or binomial) family with logistic link

> logit is often the default.
o Logit model is a linear (in x) classifier

» y=1ifp(x) >05

> ie. if XB > 0 since p(x) = A(XB) and A(0) = % =0.5.
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1.2 Logit
Logit Example

@ Example considers supplementary health insurance for 65-90 year-olds.

.0*0Dbatablfor0650900yearioldsiondsupplementarydinsurancedindicatoriandiregressors
.OuseOmus203mepsmedexp.dta,lclear

.0globalox1istOoincomeleducyriagerdfemalelwhitenhispomarryi///
>0000totchrophylimiactlimihvgg

.Odescribedsuppinsi$xlist

storagendOddisplaydooovalue
variableOnamenOOtypenoooformationoolabeloooonovariabledlabel

suppins 0floatonn%9.0g =101ifohasOsuppOpriviinsurance

income Odoublenn%l12.0g annualUhouseholddincome/1000

educyr Odoublen0n%12.0g Yearsnofieducation

age Odoublenn%12.0g Age

female Odoublen0n%12.0g =1pifofemale

white OdoubTledn%12.0g =101ifowhite

hisp Odoublenn%12.0g =107 fOHispanic

marry OdoubTledn%12.0g =10ifomarried

totchr Odoublenn%l12.0g #0ofOchronicioproblems

phylim OdoubTlel0%12.0g =10ifohasOfunctionalolimitation

actlim Odoublenn%12.0g =101ifohasDactivitydolimitation

hvgg 0floatnon%9.0g =107 fohealthOstatusiisiexcellent,
goodiorOveryngood
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1.2 Lo
Logit Example (continued)

@ Summary statistics

.0*0SummaryOdstatistics
.OsummarizeOdsuppinsO$xTist

pooovariable

000000000bs00000000Meand000Std. 0Dev.0000000Min00000000Max

pgoooosuppins
ooooodincome
goooo0educyr
pooooooobage
pooooofemale

0000003,0640000.58126630000.49343210000000000000000000001
0000003,064000022.47472000022.534910000000000100000312.46
0000003,064000011.7754600003.4358780000000000000000000017
0000003,064000074.1716700006.3729380000000006500000000090
0000003,0640000.57963450000.49369820000000000000000000001

0000000whi te
00000000hisp
noooooomarry
000000totchr
000000phyTim

0000003,0640000.97421670000.15851410000000000000000000001
0000003,0640000.08485640000.27871340000000000000000000001
0000003,0640000.55580940000.49695670000000000000000000001
0000003,06400001.75424300001.3071970000000000000000000007
0000003,0640000.42558750000.49451250000000000000000000001

pjoonobactlim
00000000hvgg

0000003,0640000.28361620000.45082630000000000000000000001
0000003,0640000.60541780000.48884060000000000000000000001

A. Colin Cameron Univ.of California - Davis | ML Part 6: Classification and Unsupervised May 2022

12 / 42



1. Classification 1.2 Logit

Logit Example

@ Logit model estimates

.0*%07ogitOmodel
.0TogitOsuppinsi$xlist,nolog

LogisticOregressioni0000000000000000000000000000Numberiofiobso0nnl= 000003,064
000000000000000000000000000000000000000000000000LROchi2(11)0000000= 0000345.23
000000000000000000000000000000000000000000000000Prob0>0chi20000000= 00000.0000
LogoTikelihoodo= 01910.5353000000000000000000000PseudolR2000000000= 00000.0829

0ooo0suppins

nooooocoef.n00Std.0Err.000000Z0000P> |z |00000[95%0Conf.0Interval]

00ooooincome
ooooooeducyr
oooooooodage
opoooofemale
0o00o0Owhite
oooooooohisp
goooooOmarry
pooooototchr
gooooophylim
ooooooactlim
000o000oohvgg
goooood_cons

000.0180677000.0025194000007.170000.
000.0776402000.0131951000005.880000.
000.02658370000.006569000004.050000.
000.0946782000.0842343000001.120000.
000.7438788000.2441096000003.050000.
000.9319462000.1545418000006.030000.
000.3739621000.0859813000004.350000.
000.0981018000.0321459000003.050000.
000.2318278000.1021466000002.270000.
000.1836227000.1102917000001.660000.
00000.17946000.0811102000002.210000.
000.10282330000.577563000000.180000.

00000000.01312980000.0230056
00000000.05177820000.1035022
00000000.03945860000.0137088
26100000.259774400000.070418
00200000.265432700001.222325
000000001.2348430000.6290498
000000000.2054420000.5424823
00200000.03509710000.1611065
02300000.03162420000.4320315
09600000.39979040000.0325449
02700000.02048680000.3384331
859000001.23482600001.029179
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1.2 Lo
Logit Example (continued)

@ Classification table manually
> error rate = (737 + 347) /3064 = 1084/3064 = 0.354

.0*0ClassificationOtabledmanually

.Opredictiph_logit

(option proOassumed;0Pr(suppins))

.0generatedyh_logit0=0ph_logit0>=00.5
.0generatelerr_logitO=0(suppins==00&0yh_logit==1)0|0(suppins==10&0yh_logit==0)
.OsummarizeOsuppinsiph_logitlyh_logitlerr_logit

pgooovariable |000000000bs00000000Meand000Std.0Dev.0000000Min00000000Max

00000suppins |0000003,0640000.58126630000.49343210000000000000000000001
poooph_logit |o0000003,0640000.58126630000.1609388000.0900691000.9954118
ooooyh_logit |0000003,0640000.70855090000.45450410000000000000000000001
0o0C0err_logit |0000003,0640000.35378590000.47822180000000000000000000001

.OtabulateOsuppinsiyh_logit
=10ifrohas

OsuppOpriv [0000000yh_logit
Oinsurance |000000000000000000001 |00000Total

0000000000 |000000054600000000737 |000001,283
0000000001 |00000003470000001,434 (000001,781

gooooTotal |0O0000008930000002,171 |000003,064
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1.2 Lo
Logit Example (continued)

@ Classification table using estat classification postestimation command

> problem: reversed ordering in table makes hard to compare to other

models.

.0*0ClassificationOtable
.Oestatoclassification

Logisticimodeliforisuppins

OTrue
Classified |000000000DOOODNOOOODO0~D nooonoTotal
ooooo+ 00000143400000000000737 000002171
gooooo 00000034700000000000546 0ooooo893
nooTotal 00000178100000000001283 000003064

Classifiedno+0ifopredictediPr(D)0>=0.5
Trueobodefinediaslsuppinsi!=00

Sensitivityl00000000000000000000Pr(0+|0D)00080.52%
Specificitynn0000000000000000000Pr(00|~D)00042.56%
Positivelpredictivelvalueono0000Pr(0D|0+)00066.05%
NegativeOpredictivelvalued0o0o0OPr(~D|00)00061.14%

FalseO+OratelforOtruel~DO0000000Pr(0+|~D)00057.44%
FalseOOOratedforOtruedD000000000Pr(00|0D)00019.48%
FalseO+Oratenforiclassifiedo+000Pr(~D|0+)00033.95%
FalseOOOrateOforOclassifiedonooopr(OD|00)00038.86%

Correctlydclassified 00064.62%
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1. Classification 1.3 Nonparametric local logit regression

1.3 Nonparametric local logit regression

@ Extension of local linear to the logit model.

@ At x = xo maximize w.r.t. xy and B, the weighted logit log density

Y wa(xi —x0) % {yiln A(ag + (x; —x0)'Bg)
+(1 = y;) In[1 — A(ao + (xi — x0)'By)]}

e Stata add-on command locreg in ivqte package.
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1. Classification 1.4 Nonparametric k-nearest neighbors

1.4 Nonparametric k-nearest neighbors

For each observation i consider the K neighboring observations that
have the closest x value and estimate Pr[Y = j] by the fraction of the
K neighboring observations with y = .

@ k-nearest neighbors (K-NN) for many classes

> Pr[Y = jjx = xo] = % Lien, 1lyi = J]
» where Nj is the K observations on x closest to xg.

@ There are many measures of closeness

» default is Euclidean distance between observations / and j

p 5 1/2
{Zazl(xa,- - Xja) } where there are p regressors

Obtain predicted probabilities
> then assign to the class with highest predicted probability.
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1. Classification 1.4 Nonparametric k-nearest neighbors

k-nearest neighbors example

@ Here use Euclidean distance and set K = 11

> and results here don't use looclass option
» 584 4 394 = 978 are misclassified

.0*0KOnnoclassificationiotableOwithOleaveloneloutdcrossivalidationinotiasigood
.OestatOclasstable,OnototalsOnopercentsin//0OwithoutiLOOCVY

Resubstitutioniclassificationitable

Key

Number

OClassified
TrueOsuppins |000000000000001

000000000000 |000088900000394

000000000001 |00005840001,197

ooooooPriors |00.5000000.5000
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1. Classification 1.5 Discriminant Analysis

1.5 Linear Discriminant Analysis

@ Developed for classification problems such as is a skull Neanderthal or
Homo Sapiens given various measures of the skull.

e Discriminant analysis specifies a joint distribution for (Y, X).

@ Linear discriminant analysis with K categories

> assume X|Y = k is N(p;, X) with density f(x) = Pr[X = x|Y = k]
* note that only the mean of X varies with the category k
» and let 71, = Pr[Y = k]
@ The desired Pr[Y = k|X = x] is obtained using Bayes theorem

Pr[Y =k & X= X] _ mfix)
Pr[X = x| Y mifi (%)

PrlY = kIX =x| =

Assign observation X = x to class k with largest Pr[Y = k|X = x].
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1. Classification 1.5 Discriminant Analysis

Linear Discriminant Analysis (continued)

@ Upon simplification assignment to class k with largest
Pr[Y = k|X = x] is equivalent to choosing model with largest
discriminant function

1
Sk(x) =xXT7 ', — 5:”/('2_174/( + In 774
> use fi, =X, == Var[x,] and 71, = %Z/Nﬂ 1]y; = .

o Called linear discriminant analysis as dx(x) linear in x.

> logit also gives separation linear in x.
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1L 5 Digamien: Aelles
Linear Discriminant Analysis Example

@ We have

.0*0Linearndiscriminantianalysis
.Odiscrimoldan$xT1ist,O0group(suppins)inotable

.OpredictOyh_lda
(optioniclassificationiassumed;igroupiclassification)

.OestatOclasstable,Onototalsinopercents

Resubstitutioniclassificationitable

Key

Number

OClassified
Truelsuppins |000000000000001

000000000000 |000077000000513

0ooooooooool |o0o006380001,143

goooooPriors |00.5000000.5000
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1. Classification 1.5 Discriminant Analysis

Quadratic Discriminant Analysis

@ Quadratic discriminant analysis

> additionally allow different variances so X|Y = k is N(p;, X)

@ Upon simplification, the Bayes classifier assigns observation X = x to
class k which has largest

1, _ 1 _ 1
Ox(x) = —Ex/Zklx—i—x'Zk Yu, — 5”/(,2/( 'u, — 5 In || + In 7tk

> called quadratic discriminant analysis as 6, (x) is quadratic in x

@ Use rather than LDA only if have a lot of data as requires estimating
many parameters.
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1L 5 Digamien: Aelles
Quadratic Discriminant Analysis Example

@ We have

.0*0Quadraticiodiscriminantianalysis
.0discrimogdan$xlist,0group(suppins)inotable

.Opredictiyh_qda
(optioniclassificationiassumed;dgroupiclassification)

.OestatOclasstable,Onototalsinopercents

Resubstitutioniclassificationitable

Key

Number

OClassified
Truelsuppins |000000000000001

000000000000 |000046800000815

0oo0oooooool |00002920001,489

poooooPriors |00.5000000.5000

A. Colin Cameron Univ.of California - Davis | ML Part 6: Classification and Unsupervised May 2022

23 / 42



(L Dl i AEES
LDA versus Logit

@ ESL ch.4.4.5 compares linear discriminant analysis and logit

» Both have log odds ratio linear in X

» LDA is joint model if Y and X versus logit is model of Y conditional
on X.

> In the worst case logit ignoring marginal distribution of X has a loss of
efficiency of about 30% asymptotically in the error rate.

» If X’s are nonnormal (e.g. categorical) then LDA still doesn't do too
bad.
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1. Classification

ISL Figure 4.9: Linear and Quadratic Boundaries
o LDA uses a linear boundary to classify and QDA a quadratic

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 31 = Xa. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approzvimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that £y # Xa. Since the Bayes decision
boundary is non-linear, it is more accurately approzimated by QDA than by LDA.

[m] = =

il
it
N
0
o)
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1LO Suppa Vesin Meshiies
1.6 Support Vector Classifier

@ Build on LDA idea of linear boundary to classify when K = 2.
@ Maximal margin classifier

> classify using a separating hyperplane (linear combination of X)

» if perfect classification is possible then there are an infinite number of
such hyperplanes

> so use the separating hyperplane that is furthest from the training
observations

> this distance is called the maximal margin.

@ Support vector classifier

> generalize maximal margin classifier to the nonseparable case

» this adds slack variables to allow some y's to be on the wrong side of
the margin

» Maxg M (the margin - distance from separator to training X's)
subject to B'B # 1, y;(By +X;B) > M(1—¢;), & >0 and
Y& <C.
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L7 G Vi il
Support Vector Machines

@ The support vector classifier has a linear boundary (in xg)
» f(x0) = By + L1 aixpX;, where x(x; = Zle X0jXij-
@ The support vector machine has nonlinear boundaries

f(x0) = By + L1 @iK(xg,x;) where K(-) is a kernel
polynomial kernel K(xg,x;) = (1 —I—Zj-’:l x0j%ij)?
radial kernel K(xg,x;) = exp(—7y Ej?:l(xoj —x;j)?)

v

v

v

o Can extend to K > 2 classes (see ISL ch. 9.4).

> one-versus-one or all-pairs approach
» one-versus-all approach.
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1. Classification

ISL Figure 9.9: Support Vector Machine

@ In this example a linear or quadratic classifier won't work whereas
SVM does.

Xz

X; -YI

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.
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L7 G Vi il
Support Vector Machines Example

@ Use Stata add-on svmachines (Guenther and Schonlau)

.0*0SupportivectorimachinesidiOneeddyltolbelbyteinotifloatlandimatsizel>0n
.OsetOmatsizen3200

.0globalox1listshortiincomeleducyriageifemaleimarryitotchr
.0generatelbytelinsOi=0suppins

.OsvmachinesOinsOincome

.OsvmachinesOinsO$x1ist

.Opredictiyh_svm

.0tabulateninsioyh_svm

Jooo0ooooyh_svm
0o0o0000ins [000000000000000000001 |00000Total

0000000000 [0o000oo82000000000463 |000001,283
0000000001 (oooO0ooo2240000001,557 |000001,781

oooodTotal |000001,0440000002,020 |000003,064
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1. Classification 1.6 Support Vector Machines

Comparison of model predictions

@ The following compares the various category predictions.
@ SVM does best but we did in-sample predictions here

» especially for SVM we should have training and test samples.

.0*0ComparedvariousOinOsamplelpredictions
.OcorrelatedsuppinsOyh_TogitOyh_knnOyh_Tdaoyh_gdaoyh_svm
(obs=3,064)

D0suppinsOyh_logitoooyh_knnooOyh_Tdadodyh_qdadooyh_svm

0ooo0suppins |0001.0000
yh_logit |0000.25050001.0000
yh_knn |0000.36040000.35750001.0000
yh_1da |0000.23950000.69550000.37760001.0000
yh_qgda [0000.22940000.69260000.27620000.58500001.0000
yh_svm [0000.53440000.39660000.60110000.39410000.32060001.0000
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1. Classification 1.7 Regression Trees and Random Forests

1.7 Regression Trees and Random Forests

@ Regression trees, bagging, random forests and boosting can be used
for categorical data.

@ Let p,x be the proportion of training observations in region m that
are from class k.

@ From ISL2 section 8.1.2 splits can be determined by

Error rate 1 — mfx(ﬁmk)

Gini index Yk Pk (1 — k)
Entropy  — ¥k_1 Pk In Prnk
@ Stata user-written rforest supports classification in addition to
regression.
@ Stata user-written boost applies to Gaussian (normal), logistic and
Poisson regression

> it uses as loss function for cross-validation the
pseudo-R? = 1 — In L(full model)/In L(intercept-only model)
» Matthias Schonlau (2005), The Stata Journal, 5(3), 330-354.
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1.8 Neural Networks

@ Neural networks work very well for classification such as images.
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2. Unsupervised Learning

2. Unsupervised Learning

o Challenging area: no y, only x.

@ Example is determining several types of individual based on responses
to many psychological questions.

@ Principal components analysis.
o Clustering Methods

> k-means clustering.
> hierarchical clustering.
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PR VISTT S W RCETOI 2.1 Principal Components

2.1 Principal Components

Initially discussed in section on dimension reduction.

For p regressors goal is to find a few (m) linear combinations of X
that explain a good fraction of the total variance
1 ,
j?:]. Var(Xj) = Zj'):l Sy xg for mean 0 X's.
Zn =Y ¢y Xj where Y7, 7 =1 and ¢, are called factor
loadings.

A useful statistic is the proportion of variance explained (PVE)

> a scree plot is a plot of PVE,, against m

» and a plot of the cumulative PVE by m components against m.
» choose m that explains a “sizable” amount of variance

» ideally find interesting patterns with first few components.

Easier when used PCA earlier in supervised learning as then observe
Y and can treat m as a tuning parameter.

o Stata pca command.
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22 (Clleizr (e
2.2 Cluster Analysis: k-Means Clustering

@ Goal is to find homogeneous subgroups among the X.
@ K-Means splits into K distinct clusters where within cluster variation
is minimized.
e Let W(Ck) be measure of variation
> Minimizec, ¢, Z,}le W(Cy)
> Euclidean distance W(Cy) = A~ Y fec, £F_; (5 — xi)?
@ Global maximum requires K" partitions.
o Instead use algorithm 10.1 (ISL p.388) which finds a local optimum

> run algorithm multiple times with different seeds
» choose the optimum with smallest ZkK:1 W(Cx).
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2. Unsupervised Learning

ISL Figure 10.5

e Datais (x1.x2) with K = 2,3 and 4 clusters identified.

K=2 K=3 K=4
- L4 -
o .e K e -
'.:..u 4 0....!.”’2 !.:.ou -4
e s & LI B & L R e
™ . . .i . . = '. . . . - .
. . .
L] * e . . " . . L]
] | 1]
o <, < <, S
-"\' o M 0"" 'Y Lt v""
oo f? BRI ., :.*"%’ oo
LA e oy L .
- -.'...a et s -.'...p o F4 -.'...a ot
N . ':. . . % .

FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K -means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
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PRSI ES N RCETOTE 2.2 Cluster Analysis

k-means Clustering Example

@ Use same data as earlier principal components analysis example.

.0*0kOmeansOclusteringOwithidefaultsiandithreedclusters
.OuseOmachlearn_part2_spline.dta,0Oreplace

.OgraphOmatrix0x10x20z00000//0matrixOplotiofithedthreedvariables
.Oclusternkmeansix10x20z,0k(3)0name(myclusters)
.0tabstatix10x20z,0by(myclusters)Ostat(mean)

Summarylistatistics:Omean
OO0byOcategoriesiof:Omyclusters

myclusters |00000000x100000000x20000000002

pooooooool 0.8750554000.5031660001.34776
0oooooooo2 0.8569585001.12034400.5772717
goooooooo3 0.169163100.672064800.3493614

nooooTotal 0.030121100.022627400.0664539
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PRSI ES N RCETOTE 2.2 Cluster Analysis

Hierarchical Clustering

Do not specify K.

Instead begin with n clusters (leaves) and combine clusters into
branches up towards trunk

> represented by a dendrogram
> eyeball to decide number of clusters.

@ Need a dissimilarity measure between clusters

» four types of linkage: complete, average, single and centroid.

For any clustering method

> it is a difficult problem to do unsupervised learning
> results can change a lot with small changes in method
> clustering on subsets of the data can provide a sense of robustness.
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3. Conclusions

3. Conclusions

@ Guard against overfitting

» use K-fold cross validation or penalty measures such as AlIC.
@ Biased estimators can be better predictors

> shrinkage towards zero such as Ridge and LASSO.

For flexible models popular choices are

» neural nets
» random forests.

Though what method is best varies with the application
» and best are ensemble forecasts that combine different methods.
@ Machine learning methods can outperform nonparametric and
semiparametric methods
> so wherever econometricians use nonparametric and semiparametric
regression in higher dimensional models it may be useful to use ML

methods
> though the underlying theory still relies on assumptions such as sparsity.
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4. Software for Machine Learning

4. Software for Machine Learning

@ Many ML functions are in Python (pylearn) and R.

@ Stata 17 covers LASSO, ridge, elastic net, PCA, NP regression, series
regression, splines, LDA, QDA, but add-ons are needed for neural
networks (brain) or random forests (rforest) or support vector
machines (svmachines).

@ Stata has integration with Python

» Giovanni Cerulli (2020), Machine Learning using Stata/Python,
https://arxiv.org/pdf/2103.03122v1.pdf

* Stata add-on r_ml_stata.ado and r_ml_stata.ado are Stata wrappers
for tree, boosting, random forest, regularized multinomial, neural
network, naive Bayes, nearest neighbor, support vector machine

* https://sites.google.com /view/giovannicerulli/machine-learning-in-
stata

@ To run R in Stata the user-written Rcall package integrates R within
Stata

> https://github.com/haghish/rcall
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4. Software for Machine Learning

Some R Commands (possibly superseded)

@ Basic classification

> logistic: glm function
> discriminant analysis: Ida() and qda functions in MASS library
> k nearest neighbors: knn() function in class library

@ Support vector machines

> support vector classifier: svm(... kernel="linear") in e1071 library

> support vector machine: svm(... kernel="polynomial") or svm(...
kernel="radial") in €1071 library

> receiver operator characteristic curve: rocplot in ROCR library.

@ Unsupervised Learning

» principal components analysis: function prcomp()
> k-means clustering: function kmeans()
> hierarchical clustering: function hclust()
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5. References

@ |SL2: Gareth James, Daniela Witten, Trevor Hastie and Robert Tibsharani (2013),
An Introduction to Statistical Learning: with Applications in R, second edition,
Springer.

> free legal pdf at https://www.statlearning.com/
@ ESL: Trevor Hastie, Robert Tibsharani and Jerome Friedman (2009), The

Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer.

> free legal pdf at
http://statweb.stanford.edu/~tibs/ElemStatLearn/index.html

@ Chapter 28.6.7-26.8.8 “Machine Learning for prediction and inference” in A. Colin
Cameron and Pravin K. Trivedi (2022), Microeconometrics using Stata, Second

edition, forthcoming.

> covers classification and unsupervised learning only very briefly.
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