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Course Outline

@ 1: Variable selection and cross validation
o Part 2: Shrinkage methods
> ridge, lasso, elastic net
@ 3. ML for causal inference using lasso
» OLS with many controls, IV with many instruments
@ 4. Other methods for prediction

> nonparametric regression, principal components, splines
> neural networks
> regression trees, random forests, bagging, boosting

@ 5. More ML for causal inference
» ATE with heterogeneous effects and many controls.
@ 6. Classification and unsupervised learning

> classification (categorical y) and unsupervised learning (no y).
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1. Introduction

1. Introduction

o Consider linear regression model with p potential regressors where p is
too large.
@ Methods that reduce the model complexity are

> 1. choose a subset of regressors (previous slides)
» 2. shrink regression coefficients towards zero (these slides)
» 3. reduce the dimension of the regressors

* principal components analysis (later slides).
@ Linear regression may predict well if include interactions and powers
as potential regressors.

@ And methods can be adapted to alternative loss functions for
estimation.

@ Shrinkage is also called regularization

> lasso, ridge, elastic net.
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1. Introduction

Overview

@ Introduction
@ Shrinkage: Variance-bias trade-off
© Shrinkage methods

@ Ridge regression

@ LASSO

© Elastic net

@ Asymptotic Properties of Lasso
@ Clustered data

@ Generated data
@ Prediction using LASSO, ridge and elasticnet

@ Lasso command

@ Lasso linear regression example

@ Lasso postestimation commands example
@ Adaptive lasso

@ Elastic net and ridge regression

@ Shrinkage for logit, probit and Poisson
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2. Shrinkage: Variance-bias Trade-offs

2. Shrinkage: variance-bias trade-offs

Consider prediction in the regression model

y = f(x)+ u with E[u] =0 and v L x.

For out-of-estimation-sample point (yp, Xg) the true prediction error

El(yo — 7 (x0))?] = Var[F(xo)] + {Bias(f(x0)) }* + Var(u)

The last term Var(u) is called irreducible error
» we can do nothing about this.
@ So need to minimize sum of variance and bias-squared!

> more flexible models have less bias (good) and more variance (bad).
» this trade-off is fundamental to machine learning.

A. Colin Cameron Univ.of California - Davis ML Part 2: Shrinkage May 2022 5/63



2. Shrinkage: Variance-bias Trade-offs

Variance-bias trade-off

@ Shrinkage is one method that is biased but the bias may lead to lower
squared error loss

» first show this for estimation of a parameter 0
» then show this for prediction of y.

@ The mean squared error of a scalar estimator 0 is

= Var(0) + Blas (9)

» as the cross product term 2 x E[(§ — E[0])(E[0] — 0)] =
constantx E[(6 — E[6])] = 0.
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2. Shrinkage: Variance-bias Trade-offs

Bias can reduce estimator MSE: a shrinkage example

@ Suppose scalar estimator 0 is unbiased for 0 with
» E[0] =6 and Var[f] = v
» So MSE(6) = v
@ Construct the shrinkage estimator 0 = af where 0 <a<l.
» Bias: Bias(0) = E[0] —0 = af — 0 = (a —1).
> Variance:~Var[9] = Var[a@] =a° Var(@) =a’v
» So MSE(6) = Var|[0] + Bias?(0) = a®v + (a— 1)26°.
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2. Shrinkage: Variance-bias Trade-offs

Shrinkage example continued

@ So we have

Unbiased § I\/ISE(:G\) =v
Biased 0 =af MSE(f) = a’v + (a—1)%6?

o Then MSE(f) <MSE[f] if 6% < 12y
» e.g. if 0 = 0.90 then 0 has lower MSE for 62 < 19v!

@ We will consider

> ridge estimator shrinks towards zero
» LASSO estimator selects and shrinks towards zero.
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2. Shrinkage: Variance-bias Trade-offs

James-Stein estimator

Suppose y; ~ N(u;, 1), i=1,...,n.

The MLE is ji; = y; with MSE(ji;) = 1.

The James-Stein estimator is ji; = (1 — ¢)y; + ¢y
> where c = n£3 Y7 (yi—y)?and n >4
> this shrinks towards the sample mean y

Then MSE(ji;) < MSE(ji;) for n > 4!
@ This remarkable 1950's/1960's result was a big surprise

» an estimator has lower MSE than the maximum likelihood estimator.

The estimator can be given an empirical Bayes interpretation.

A. Colin Cameron Univ.of California - Davis ML Part 2: Shrinkage May 2022 9 /63



2. Shrinkage: Variance-bias Trade-offs

Bias can therefore reduce predictor MSE

o Now consider prediction of yo = Bxo + u where E[u] =0

> using yp = BXO where treat scalar xg as fixed.
Bias: Bias(¥y) = E[x0B] — pxo = xo(E[B] — B) = xoBias(B).
Variance: Var[yp] = Var[xoB] = x¢ Var(B).

The mean squared error in the scalar regressor case is

MSE(yo) = Var(yo)+ Bias? (o) + Var(u)
=x2 Var(B) + (xoBiasgﬁ))2 + Var(u)
= xg{Var(é) + Bias?(B)} + Var(u)
= x¢MSE(B) + Var(u).

So bias in B that reduces MSE(p) also reduces MSE (7).
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3. Shrinkage Methods

@ Shrinkage estimators minimize RSS (residual sum of squares) with a
penalty for model size

> this shrinks parameter estimates towards zero.
@ The extent of shrinkage is determined by a tuning parameter
> this is determined by cross-validation or penalty such as AIC.

o Standardize regressors as ridge, LASSO and elastic net are not
invariant to rescaling of regressors

so xj; below is actually (xj; — X;) /s

and demean y; so below y; is actually y; — y

x; does not include an intercept nor does data matrix X
we can recover intercept /30 as :BO =y.

@ So work with y = x'B+e = Bx1 + fxo + -+ B, x + &

v vV VY
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SIS TTVEECHY CHICIEM 3.1 Ridge Regression

3.1 Ridge Regression

The simplest form of the ridge estimator BA of B minimizes

B) =15 (vi—xiB)+AY " B} = RSS+A(||Bll2)°

» where A > 0 is a tuning parameter to be determined

> [IBll2 = \/ﬂ is L2 norm.

@ Equivalently the ridge estimator minimizes

1 Z, 1 )2 subject tozp ﬁ <s.

The ridge estimator is

B, = (XX + nAl)"IXy.

@ More generally can weight each ﬁ

> Q)\(ﬂ) / 1(yl _X/.B)2+Azp 1KJ:BJ
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1L 2 egression
Ridge Derivation

o 1. Objective function includes penalty

Q(B)=L(y—XB)'(y—XB)+ BB
IQ(B) /9B = —2X'(y — XB) +2AB =10
= X'XB+ Al =Xy

= B, = (X'X + nAl)~1Xly.

v

v

v

v

@ 2. Form Lagrangian (multiplier is A) from objective function and
constraint

» Q(B) =L(y—XB)'(y—XB) and constraint g/ <'s
L(B.A)=L(y—XB)(y—XB) +A(BB—s)

v

v

AL(B,A) /B = —2X'(y —XB) +2AB =0
= B, = (XX +nAl)~IXy
Here A = dLopt(B. A, s)/0s.

v

v
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1L 2 egression
Ridge Properties

° BA—>0asA—>ooand [AS/\—>/ASOL5 as A — 0.
@ Ridge best when many predictors important with coeffs of similar size.
o Ridge best when LS has high variance

» meaning small changes in training data can lead to large changes in
OLS coefficient estimates.

@ Algorithms exist to quickly compute B/\ for many values of A

» then choose A by cross validation.
» with search over a decreasing logarithmic grid in A.
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31 Ridge Regression
More on Ridge

Also called Tikhonov regularization.
Hoerl & Kennard (1970) proposed ridge as a way to reduce MSE of ﬁ
o We can write ridge as B, = (X'X 4+ nAl) "IX/'Xx B, s

» so shrinkage of OLS toward zero.

2

@ For scalar regressor and no intercept B/\ = aBOLS where a = ﬁ
> like earlier example ofﬁ = aB.
@ Ridge is the posterior mean for y ~ N(XpB, o) with prior

B~ N(0,7%1)

» though < is a specified prior parameter whereas A is data-determined.

e Ridge is estimator in model y ~ (X, 0?1) with stochastic constraints

B~ (0,7°1).
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3. Shrinkage Methods [EEPANN]0)
3.2 LASSO (Least Absolute Shrinkage And Selection
Operator)
@ The LASSO estimator /Ai/\ of B minimizes

)= = xiB)? + A Y Bl = RSS+ AlIBllx

» where A > 0 is a tuning parameter to be determined
> 1Bl = Zj'):l |B;] is L1 norm.
@ Equivalently the LASSO estimator minimizes

i Z, (i —xiB) 2 subject tozp ;| <

@ Features

> best when a few regressors have ; # 0 and most f; =0
> leads to a more interpretable model than ridge.

@ More generally Q) (B) = % "1 (yi — x!B)? —I—AZP 1KJ],B |
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3. Shrinkage Methods

LASSO versus Ridge (key figure from ISL)

@ LASSO is likely to set some coefficients to zero.

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |B1] + |B2] < s and 5} + 53 < s, while the red ellipses are the contours of
the RSS.
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3. Shrinkage Methods [EEPANN]0)

LASSO versus Ridge

o Consider simple case where n = p and X = |, (identity matrix).
~OoLS ~OLS

e OLS: B~ " =(")Hy=yso B, =y

e Ridge shrinks all B’s towards zero

BY = (A Wy =y/(1+ 1)
~R
ﬁj = y/(1+A)

LASSO shrinks some ﬁj's towards 0 and sets others = 0

yi—A/2 ify; > A/2

~L .
:Bj: yi+A/2 ity < —A/2
0 if lyj] <A/2

@ Aside: Best subset of size M in this example

~BS

B~ =By x 1Bl = 1Bl

where B(M) is the M largest OLS coefficient.
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3. Shrinkage Methods [EEPANN]0)

Computation of LASSO estimator

@ Most common is a coordinate wise descent algorithm

> also called a shooting algorithm due to Fu (1998)
» exploits the special structure in the nondifferentiable part of the
LASSO objective function that makes convergence possible.

@ The algorithm for given A (A is later chosen by CV)
> denote B = (B;, B/) and define S;(B;, B/) = IRSS/ap;
> start with B = By, s
» at step mforeach j=1,...,plet Sp = Sj(O,Eij) and set

A% if Sy > A

2x}xj
R — —A=Sy
B 2 1 S0 >A
0 if S§p > A

> form new Bm = [ﬁl - ~Bp] after updating all BJ-.
o Alternatively LASSO is a minor adaptation of least angle regression

» so estimate using the forward-stagewise algorithm for LAR.
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3. Shrinkage Methods [EEPANN]0)

More on LASSO

@ LASSO is due to Tibshirani (1999).
@ Can weight each ﬁj differently
» implemented in Stata lasso commands.
@ Can specify some variables to be always included.

@ The group lasso allows to include regressors as groups (e.g. race
dummies as a group)

> with L groups minimize over 8

LY (- T xB) A v (X2 18y1)

@ There are other extensions such as adaptive LASSO - LASSO is
popular.

e Giannone, Lenza and Primiceri (2021) find that sparse models predict
poorly in several standard economic applications.
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ERSLGOUET-CR VSIS 3.3 Elastic net

3.3 Elastic net

o Elastic net combines ridge regression and LASSO with objective
function

Qua(B) =LY (i — x>+ A" {alp| + (1 - w)B2}.

> ridge penalty A averages correlated variables
» LASSO penalty « leads to sparsity.

@ For elastic net

» Ridge is special case « =0
» LASSO is special case & = 1.

@ K-fold cross validation is used with default K = 10

» set seed for replicability.
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S Az P 7 LG
3.4 Asymptotic Properties of Lasso

@ A model selection method is consistent if asymptotically it
correctly selects the correct model from a selection of candidate
models

» selecting on basis of minimum BIC is consistent.

@ A model selection method is conservative if asymptotically it
always selects a model that nests the correct model

» selecting a model on the basis of minimum AIC is conservative.
» Hannes Leeb and Benedikt M. Pstscher (2005), “Model Selection and
Inference”, Econometric Theory, 21-59.

@ A statistical model selection and estimation method is said to have an
oracle property if it leads to consistent model selection and a
subsequent estimator that is asymptotically equivalent to the
estimator that could be obtained if the true model was known so that
model selection was unnecessary.
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SIS Ve EH I 3.4 Asymptotic Properties of LASSO

Asymptotic properties of Lasso

@ The LASSO is a consistent model selection procedure

> but does not have oracle property due to bias.
@ The oracle property is an asymptotic property

» not useful in finite sample settings that economists encounter

* our models do not fit perfectly

» and gives rates for a penalty parameters but not finite sample value.
@ Lasso estimates have complicated finite sample distribution.

» cannot perform standard inference on LASSO or post LASSO

» instead add some model structure

* e.g. partial linear model.
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EASIGTVETCRV S I 3.5 Clustered Data

3.5 Clustered Data

@ Now consider clustered data

> by clustered data | mean “clustered errors”

» data are grouped with correlated observations within group and
uncorrelated across groups

» examples are panel data and grouping by independent regions.

@ Notation: y;jg is outcome for individual 7 in cluster g, i =1, ..., Ng,
g=1..,G.
@ Here focus on lasso as the machine learning method.
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EASIGTVETCRV S I 3.5 Clustered Data

Lasso with Clustered Data
We want to generalize Q\(B) = 2 Y7, (yi — x.B)? +AL B

n

Method 1. With clustered data one can continue with th|s in which
case equal weight is given to each observation

)= L Y s~ B AT 1B,

Method 2. Alternatively one can give equal weight to each cluster

G Zg 1N Z, 1(y1g ?gﬁ)z + /\Zle |:BJ|

Stata 17 option cluster(clustervar) of the lasso command does
method 2.

@ Which is best?

» If data are independent within cluster then 1.7

> |If data are perfectly correlated within cluster then 2.7
» And a big difference if cluster sizes are greatly unbalanced.
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EASIGTVETCRV S I 3.5 Clustered Data

Key papers

@ Peter Bickel, Ya'acov Ritov and Alexandre Tsybakov (2009),
“Simultaneous Analysis of Lasso and Dantzig Selector”, The Annals
of Statistics, 1705-1732.

> In reading this just consider Lasso (ignore Dantzig Selector).
> lays out the typical assumptions well

* including sparsity and y; = f(z;) + u;, u; i.i.d. N(0,0?)
> lays out finite sample bounds for prediction loss

* key are assumptions on the eigenvalues of the Gram matrix X'X
* similar to restrictions on the correlations among regressors.

@ Alex Belloni and Victor Chernozhukov (2013), “Least Squares after
Model Selection in High-Dimensional Sparse Models", Bernoulli,
521-547.

> builds on the previous paper

» harder to read, so read Bickel et al first
» OLS after LASSO is better than prediction from LASSO estimates.
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4. Prediction using LASSO: Stata lasso command

lasso model depvar [(alwaysvars)] othervars, options
o Model is

» linear, logit, probit or poisson
folds(#)

penalty parameter A

> cross validation (selection(cv)) sets all x; =1

> adaptive cv (selection(adaptive cv)) Kj can vary

> AIC (bic)

> plug-in (selection(plugin)) for non-prediction applications
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CINSEL SR N WSO 4.1 lasso command

Postestimation commands

@ lasso command focuses on finding A

@ Following commands give more info

lassoknots
lassoselect
cvplot
coefpath
lassoinfo
lassocoef
lassogof

vV Y Y VY VvV VY
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4.2 Lasso linear regression example
4.2 LASSO linear regression example

Generated data example: n =40, p = 3.

@ Three correlated regressors.
X1j 0 1 05 05
> X2 ~ N 0 , 0.5 1 0.5
X3 0 05 05 1

But only x; determines y
> y =2+ xq; + u; where u; ~ N(0,3?).

@ Same generate data as in part 1 slides.
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4. Prediction using LASSO, ... 4.2 Lasso linear regression example

BSummarizeBdata
.Bsummarize

BEREEVariable |EEREEREEObSEEFEEEEEMeanBRREStd . EDev . EEREEREMiNnEEREEREEMax

PRRPRRRRRRRX] | RRRRRRRRRA

PEEEEREEEEX2 | EREEEERRE40R

ERERRREERREX3 | FRRERRRRRRAOR .

PEEEEEEEEERY | BRREEEERE4QRRRERS . 107987RERR3 . 4001 29ERM3 . 542646EFE10 . 60979
.Bcorrelate

(obs=40)

EERRRERX 1EERRRREX 2BRRRERR X 3ERERRRRRY

. 0000
EIRIZe . 5077ERE1 . 0000

y 0.47400R0 . 33708
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4.2 Lasso linear regression example
Aside: Demeaning data

@ Stata commands such as lasso do this automatically

» but for completeness following code demeans.

.0*0Standardizelregressorsiandidemeandy
.0foreachovaroofivarlistix10x20x30{
002.0000quilegennz var'O=0std( var')
003.0000}

.OquietlyOsummarizely
.0quietlydgeneratelydemeanedi=0y000r(mean)
.Osummarizelydemeanediz*

pooovariable |000000000bs00000000Meand000Std.O0Dev.0000000Min00000000Max

O00ydemeaned (0000000004000001.71e00800003.4001290006.6506330007.501798
000000000zx1 |0000000004000002.05e0090000000000010001.5945980002.693921
000000000zx2 |0000000004000002.79e01000000000000100002.3421100002.80662
000000000zx3 |0000000004000002.79e0090000000000010001.6889120002.764129

@ The original variables x; to x3 had standard deviations 0.89867,
0.94222 and 1.03462

» means differ from zero due to single precision rounding error.
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4. Prediction using LASSO, ... 4.2 Lasso linear regression example

Demeaning data better

o Aside: Use double precision

.B*EStandardizelBregressorsBand@demeany
.BforeachBvaroflvarlistBx1Bx2Bx3E{
BR2.ERERERquiklegenBdoublelz” var 'B=Bstd( var')
B}

.BquilBlsummarizelly

.BquibgenerateldoubleBydemeanedd

.BsummarizeBydemeanedBz*

BEEEVariable |BEERRREREOLSERREEREEMeankRREStd . EDeyv . BRRREEREMinEERRRRREMax

[140RIERE2 . 98ell17RRRRERERERRR1ERRAL . 688912

@ Stata does internal calculations in double precision but default is to
save variables in single precision.
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4. Prediction using LASSO, ... 4.2 Lasso linear regression example

LASSO linear regression example: lasso command

@ Apply to generated data example: n =40, K =5, p = 3.

> set the seed !
> First regressor selected when A = 1.450138

*BLassoBlinearBusing@5EfoldBcrosskvalidation
assolllinearRyRx1Bx28x3,Bselection(cv)Bfolds(5)Brseed(10101)

5lfoldlcrosslvalldatlonlw1th 100 lambdasf.
GridBvalue 1 .loflnonzer‘olcoewc B=

Folds:BE1...5

GridBvalue .BofBnonzerolicoef.k
Folds:@1...

GridBvalue .Bof@nonzerolicoef.k
Folds:@1...

GridBvalue .Bof@nonzerolicoef .k
Folds:B1...

GridBvalue .BofBnonzerolicoef.
Folds:@1...

GridBvalue .BofBnonzerolicoef.k
Folds:@1...

GridBvalue .Bof@nonzerolicoef.k

Folds:B1...

.Bof@nonzeroBcoef.B
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(.2 Lacso |ifzer TEEEson i e
lasso command (continued)

@ Second regressor included when A = 0.6277301

A. Colin Cameron Univ.of California - Davis

GridBvalue 9:

Folds:BP1...5 CVFR=[(9.934201

GridBvalue lambdal=BE.688933RFENn0.BofBnonzerokicoef .=
Folds:B1... CVFRE=[(9.829713

GridBvalue lambdal=@.6277301BEEno . BofBnonzerokcoef.k
Folds:@1... CVFE=(9.739804

GridBvalue lambdal=@.5719643REEno . BofEnonzerokicoef .k
Folds:@1... CVFR=[(9.666469

GridBvalue lambdal=R.5211525B8Rn0.Bof@nonzerolicoef .k

Folds:@1...5|
GridBvalue 14
Folds:@1...5|
GridBvalue 15
Folds:E

CVFRE=(9.606777

CVFR=R9.562824
lambdall :
[9.525748

Grid lambdall=(.3942328 .BofBnonzerolicoef.Ek
Folds:E 219.493472
Grid lambdal=E.3592102 .BofBnonzerolicoef.k
Folds:EG [9.460115
Grid lambda@ .Bofl@nonzerolicoef.k

Folds:E
Grid
Folds:E

lambdall=E.7561031REn0.

lambdall=E.4748548REEn0.

.BofBnonzerolkicoef.Ek

.Bof@nonzerolicoef .k

BofEnonzerobkicoef.B=

BofEnonzerolicoef.k
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4. Prediction using LASSO, ... 4.2 Lasso linear regression example

lasso command (continued)

@ Minimum CV of 9.393523 with two regressors.

GridBvalue .Bof@nonzerolcoef.
Folds:@1...

GridBvalue .Bof@nonzerolcoef.
Folds:@1...

GridBvalue Bof@nonzerolcoef.
Folds:@1...

GridBvalue lambda@=F&l. 20555330 .Bof@nonzerolicoef.
Folds:@1... CVFRE=(9.420332

GridBvalue 24
Folds:@1...5
...BcrossBvalidationBcompletel. . .BminimumBfound

lambda@

?.18729250RENn0o. Bof@nonzeroBcoef.B=

@ Default grid search is a decreasing logarithmic grid of 100 values

> Aj= Ay x 1074071/99 =2 100
» A1 = 1.591525 is the smallest value at which no values are selected.
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4. Prediction using LASSO, ... 4.2 Lasso linear regression example

lasso command (continued)

@ Final results on optimal A.

[ealealeal a2 a2l 2 a2 a[ a[2]

.0519FRRERE11.85738

ambdaBbefore BPREERERO . 1666BEREES . 393794

elected@lambda 24758970RRRE BEI2E@ R0 . 1666RERREY . 393523

225594 5RIRl JEIEI2E FR0 . 165509 . 40661
18729250FERERERE2EREREREO

*BlambdaBselectedBbyBcrossBvalidation.
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CINETEL IS NTE P WSO 4.3 Lasso postestimation commands example

lassoknots command

@ Lists values of A at which variables are added and removed

» here first x1 and then x2 are added.

BListBtheBvaluesBofE@lambdalatBwhichBvariablesBareladdedBorremoved
assoknots

BVariablesB(A)dded,B(R)emoved,
PEREREERREEEEEorBleftB(U)nchanged

1.60145 Bx1
.739804
.393523
E2EE9.434326

. 187292 5ERREE

*BlambdaBselectedBbyBcrossBvalidation.
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CINETEL IS NTE P WSO 4.3 Lasso postestimation commands example

cvplot command

@ Plot value of CV5 against A on log scale

» simply command cvplot

@ Plot of how coefficients change with A

» command coefpath
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CINETEL IS NTE P WSO 4.3 Lasso postestimation commands example

lassoinfo command

@ Provides a summary of the LASSO.

.B*BProvideBaBsummaryBof@thedlasso
.Blassoinfo

active
lasso
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CINETEL IS NTE P WSO 4.3 Lasso postestimation commands example

lassocoef command

@ Provides three different sets of coefficient estimates
o 1. Standardized coefficients (default) are those directly from lasso.

@ 2. Penalized coefficients are the preceding ones rescaled so that the
standardization of variables is removed

> i.e. can interpret in terms of the original data.

@ 3. Post-selection coefficients are obtained by OLS of y on the
selected regressors (here x1 and x2).

» often called post-lasso estimates.
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CINETEL IS NTE P WSO 4.3 Lasso postestimation commands example

Standardized coefficients for standardized regressors

@ We have

.B*FLassoBcoefficientsBforBthe@standardizediregressors

.Blassocoef,Bdisplay(coef,Bstandardized)

BPERERactive

] BIx2

FF1.206056
BE.2715635

EREEEEE_cons

RRRRRREREO
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CINETEL IS NTE P WSO 4.3 Lasso postestimation commands example

Unstandardized coefficients for original regressors

@ Recalldgp. y=2+1xx3+0Xx+0Xx3+ u.

.B*PRLassolBlcoefficientsBforBtheBunstandardizedlregressors
assocoef,Bdisplay(coef,Bpenalized)Bnolegend

PEERactive

BF2.617622
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4.3 Lasso postestimation commands example
Post-selection (post-LASSO)

@ OLS on the selected and unstandardized regressors

> same as regress y x1 x2

B*EPostBselectionBestimatedicoefficientsBfor@thelunstandardizedBregressors:
.Blassocoef,Bdisplay(coef,Bpostselection)Bnolegend

BERRactive

ER1.544198
7.4683922
EF2.533663
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CINETEL IS NTE P WSO 4.3 Lasso postestimation commands example

lassogof command

o Goodness-of-fit
> as expected post-lasso OLS fits better than lasso

B*EGoodnessBofEfitBwithBpenalizedBcoefficientsBandBpostselectionBcoefficients
assogof,Bpenalized

PenalizedBcoefficients

EEPRRRERREMS ERRREREsquaredERRRERRREObS

.Blassogof,Bpostselection

PostselectionbBicoefficients

E0bs

MSELI

REsquared

E

PRE8 . 597958ERRRRRR . 237 2EREEREREE40
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Adaptive Lasso

@ Method that usually leads to fewer variables than basic lasso.
> First lasso as usual with x; =1

> Second exclude x; with Bj = 0 and for remainder set x; = 1/|Bj|5 with
default § = 1.

@ Here only x1 is selected.

assoBllinearBusingB5BfoldBadaptivelicrossBvalidation
.BquiBlassoBlinearByBx1Bx2Bx3,Bselection(adaptive)Bfolds(5)Brseed(10101)

.Blassoknots

BENo . BofERECVEmean

PEERERRRERERNONZeroRREEREpred. |BE ?VariablesB(A)dded,®(R)emoved,
EEEEID lambdaBEREREcoef . BAERAEerror |BE BEEREREorAleft@(U)nchanged
1.60145

NN O

.172378

*BlambdaBselectedBbyBcrossBvalidation@in@finalBadaptivelstep.
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4.5 Elastic net and Ridge Regression
4.5 Elasticnet and Ridge Regression

@ Elastic net combines ridge regression and LASSO with objective
function

Qua(B) =Y (i —xIB)P + A Y, {alB;|+ (1 —a)p}.

> ridge penalty A averages correlated variables
» LASSO penalty « leads to sparsity.

@ For elastic net

> Ridge is special case « =0
» LASSO is special case & = 1.
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4. Prediction usin 4.5 Elastic net and Ridge Regression

Ridge Regression
e Standardized ridge (OLS estimates were 1.555, 0.471 and -0.026.)

.B*PRidgeBestimationBusingBtheBelasticnetBcommandBandiselectedBresults
.BquiblelasticnetBlineart! 20x3,Balpha(@)Brseed(10101)&folds(5)

.Blassoknots

INo EICVEmean
BEEEEREEEEEEENonzeroBBEEEpred. |BEEEVariablesB(A)dded,B(R)emoved,
1ambd. leftB(U)nchanged

=
a
o
o
2

[11591. 5256

BEE11.9595

[1.305240 [[9.54017 |EU
CERERREE100 |E.1591525HRRRERRRRE3EES . 566065 |EU

*HalphaBand@lambdalBiselectedBbyBcrossEvalidation.

.Blassocoef,Bdisplay(coef,Bpenalized)Bnolegend

BEEFactive

x1 [BR1.139476
CEEERREEREX2 |BE.4865453
.0958546
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4. Prediction usi ASSO 4.5 Elastic net and Ridge Regression

Elastic net

@ Default is A 100 point logarithmic grid and « = 0.5, 0.7, 1.0

> here o = 1.0 (lasso) so narrow grid to 0.90, 0.95, 1.0
» optimal & = 0.95, A = 0.2717, and x1 and x2 selected.

.B*BElasticBnetBestimation@andBselected@results
BquiBlelasticnet®li 1Ex20x3,BFalpha(0.9(0.085)1)Brseed(10101)Bfolds(5)

.Blassoknots

BEEREEEREREEEENO . BofEEECVEmean
d. |EEEEVariables®(A)dded,B(R)emoved,
al ID |EEEl oef.EEEERerror |EEEEEEEERorEleftE(U)nchanged

1.000
CEEREEEEERA |E1.450138EEHEEEEERE1EELL. 60145 |BARX1
[.6277301FRRERRRERRI2ER9 . 739804 | RIARIX2
[.1872925PRRRRRRERRI2EE9 . 434326 | EU

0.950
[@1.591525EFFFEEERRE1EE11. 73019 | EAEXL
.688933 PR2EER9. 81611 | RARIX2
27172940RRRRRRRRE2ERRERES . 3884 | BU
[.2055533EEEEEERERE2ER9 . 425887 | EU

[@1.675289RRRRRRREER1EE11. 74015 |EARX1
[.7561031CREEREERRE2EES . 900317 | EARX2
CEEREEEEE76 |E.2055533EEHEEEEEEE2EES . 431641 |BU

*BalphaBand@lambdalPiselectedEbyficrossivalidation
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4. Prediction usi 4.6 Comparison of Shrinkage Estimators

4.6 Comparison of Shrinkage Estimators

@ Compare OLS, Lasso, ridge, elastic net.

.B*EEstimateBvariousEmodels@andBstorelresults
.BquiBlregressByEx1Ex2Ex3

.BestimatesBstoreBOLS
.Bquiblasso@linearByBx1Ex20x3,HAselection(cv)Bfolds(5)Brseed(10101)
.BestimatesBstoreBLASCV
.BquiBlassoBlinearByBEx1Ex20x3,Bselection(adaptive)Bfolds(5)Brseed(10101)
.BestimatesBstoreELASADAPT
.BquiBlassoBlinearByBx1Bx2Ex3,Bselection(plugin)Bfolds(5)
.BestimatesBstoreBLASPLUG
.BquiBelasticnetBlinearByBEx1Ex20x3,Balpha(@)Bselection(cv)Bfolds(5)Brseed(10101)
.BestimatesBstoreBRIDGECV

.BquiBelasticnetBlinearByBEx1Ex2Ex3,Halpha(0.9(08.05)1)Brseed(10101)Efolds(5)

.BestimatesPstorePELASTIC
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4. Prediction usin

Comparison of

4.6 Comparison of Shrinkage Estimators

Shrinkage Estimators

@ Most select x1 and x2, adaptive lasso only x1, ridge all three.

.B*BCompareRinBsamplelfitBandBselectedBcoefficientsBofEvariousBmodels
.BlassogofBOLSELASCVELASADAPTELASPLUGERIDGECVRIELASTIC

PenalizedBEcoefficients

Bl

[EName

[E0bs

MSE! RBsquare

BRRRRRRROLS
LASCV
BEELASADAPT
ASPLUG
BRRERIDGECV
PELASTIC

BERRS . 597403ERREEREN . 237 3RRRRRERRR40
BEEES . 679274 .230
8.755573 .223

BIERRI10 . 27195 .088
BERRRS . 7056 2BRREEREN . 227 7ARRRRRERR40
BEEES . 693386 .228 ]

.BlassocoefEOLSELASCVELASADAPTELASPLUGERIDGECVEELASTIC, Bdisplay (coef)Bnolegend

BRRRRRROL SERRREELASCVRRELASADAPTEREELASP LUGRRIRRR IDGE CVERREELASTIC

2
PREREEEEEEX3
BEEE_cons

R 825602 5FRRRRERR AR AR AR R EEP PR R R RRRRREER . 0979251

EERRRRRS

[BIE2 . 5313960

[EOEIE
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4.7 Shrinkage for logit, probit and poisson
4.7 Shrinkage for logit, probit and poisson

@ More generally can apply shrinkage to other objective functions.

@ For logit, probit and poisson replace the squared residual by the
squared deviance residual

» deviance residual is used for generalized linear models

o Consider lasso B, of B minimizes

QB =Y alvixi B)+AY 1B

o Logit: q(y;,xi, B) = {2lyiIn A(X:8) + (1 — y;) In(L — A(XB8)]}?
e Probit: q(y;,x;, B) = {2[yi In®(X:B) + (L — y;) In(1 — D(x!B)]}?
e Poisson: q(y;, x;, B) = {2[yix:B — exp(x.B) — v;] }?

» v; =0if y; =0 and v; = y; Iny; otherwise.
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4. Prediction using LASSO, ... 4.7 Shrinkage for logit, probit and poisson

Lasso shrinkage for logit example

@ Createdy =y > 3

» only x1 selected

.EB*BLassolfor@logi
.BquiBgenerateldy!

.BquiBlassollogitBdyBx1Bx2@x3,Brseed(10101)Efolds(5)

.Blassoknots

VariablesB(A)dded,B(R)emoved,
Bleft@(U)nchanged

[ )
oN
N
aQ
a un
N O
o N
[N
=
=
IS
)
N
a
=
w

.192646
[1.192865
.194545
[Bl1.195055

=
[
N~
N
[
Y
©
ul

=
©
=9
wv
N
o
o
o
]

=
®
=1
w
©
=
®
o)

*BlambdaBselectedBbyBcrossBvalidation.
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4.7 Shrinkage for logit, probit and poisson
Other user-written Stata commands for LASSO

@ User-written command lassoshooting (Christian Hansen)

> uses the coordinate descent (called lasso shooting) algorithm of Fu
(1998)

> with theoretical or user-choice of A (no cross validation)

» superseded by the lassopack package.

e Lassopack package of Ahrens, Hansen and Schaffer (2020)

» cvlasso for A chosen by K-fold cross-validation and h-step ahead
rolling cross-validation for cross-section, panel and time-series data

» rlasso for theory-driven (‘rigorous’) penalization for the lasso and
square-root lasso for cross-section and panel data

» lasso2 for information criteria choice of A

> now supplanted by Stata’s commands.

@ User-written command lars (Mander)

> lars ydemeaned zxl zx2 zx3 zx4, a(lasso)
> at each step minimizes Mallows Cp
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5. Prediction for Economics

5. Prediction for Economics

@ Microeconometrics focuses on estimation of B or of partial effects
(later).

@ But in some cases we are directly interested in predicting y
> probability of one-year survival following hip transplant operation
* if low then do not have the operation.
» probability of re-offending
* if low then grant parole to prisoner.
e Mullainathan and Spiess (2017, JPE)

» consider prediction of housing prices
» detail how to do this using machine learning methods
» and then summarize many recent economics ML applications.
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LRSI R TT ee (oIl 5.1 Predict Housing Prices

5.1 Predict housing prices

@ y is log house price in U.S. 2011

» n = 51,808 is sample size
» p = 150 is number of potential regressors.

@ Predict using

OLS (using all regressors)

regression tree

LASSO (and not post-LASSO OLS)

random forest

ensemble: an optimal weighted average of the above methods.

vV vy VY VY Vv

@ 1. Train model on 10,000 observations using 8-fold CV.

o 2. Fit preferred model on these 10,000 observations.

@ 3. Predict on remaining 41,808 observations
» and do 500 bootstraps to get 95% Cl for R?.
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LRSI R TT ee (oIl 5.1 Predict Housing Prices

@ Random forest (and subsequent ensemble) does best out of sample
> training sample is n = 10,000 and holdout sample is n = 41, 808.

Table 1

Performance of Different Algorithms in Predicting House Values

Prediction performance (R%)

Relative improvement over ordinary leasi

Training Hold-out squares by quintile of howse valie
Method sample sample Ist 2nd Srd 4th 5th
Ordinary least 47.3% 41.7% - - = = =
squares [89.7%, 43.7%]
Regression tree 39.6% 34.5% -11.5% 10.8%  64% -14.6% -31.8%
tuned by depth [82.6%, 36.5%]
LASSO 46.0% 43.3% 1.3% 119% 13.1% 10.1% -1.9%
[41.5%, 45.2%]
Random forest 85.1% 45.5% 35% 23.6% 27.0% 178% —-0.5%
[43.6%, 47.5%]
Ensemble 80.4% 45.9% 45% 16.0% 179% 142% 7.6%
[44.0%, 47.9%]
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5.1 Pzl Wousiing (Phiees
Details

Downloadable appendix to the paper gives more details and R code.

1. Divide into training (n = 10,000) and hold-out sample
(n=41,808).

2. On the training sample do 8-fold cross-validation to get tuning
parameter(s) such as A.

> If e.g. two tuning parameters then do two-dimensional grid search.

3. The prediction function (x) is estimated using the entire training
sample (n = 10,000) with optimal A.

4. Now apply this 7(x) to the hold-out sample

compute MSE= ﬁ Yilyi — F(xi))?

2 1 _ Lii—Ffa)? _q_ _ MSE
hence compute R? =1 SO = 1 TR

e 5. A 95% Cl for R? is obtained by bootstrapping the hold-out sample.
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5.1 Pzl Wousiing (Phiees
Ensemble Weights

@ Ensemble weights are similar to portfolio diversification.
e Example: X; ~ (u,0?) independent of X ~ (u,0?)
then
Var[(X1 + X2) /2] = H{Var[Xq] + Var[X,]} = & < Var[X;] = 2.
> benefit is less the more correlated are X; and X.
@ So consider a linear combination of predictions.
@ For each ML method create 10,000 predictions in the training sample
as follows

> for each of the eight folds estimate (using the optimal tuning
parameter(s)) using seven folds and predict on the remaining fold

> this gives (10,000 x 1) vectors Yo 5, YREGTREE» YLASSO+ YRF -
@ The ensemble weights are the @’s from the OLS regression in the
training sample
Yi = &0 + Q1Y01S,i + X2YREGTREE.i + X3YLASS0,i + XaYRF.i + Ui.

@ These ensemble weights are also used in the holdout sample exercise.
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1L PG5 A [PeEs
Further Details

@ LASSO does not pick the “correct” regressors

> it just gets the correct ?(x) especially when regressors are correlated
with each other.

@ Diagram on next slide shows which of the 150 variables are included
in separate models for 10 subsamples
> there are many variables that appear sometimes but not at other times

* appearing sometimes in white and sometimes in black.

A. Colin Cameron Univ.of California - Davis ML Part 2: Shrinkage May 2022 59 / 63



LRSI R TT ee (oIl 5.1 Predict Housing Prices

Estimate
O Zero
m Nonzero

Fold of the sample
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6. Some R Commands

6. Some R Commands

@ These are from An Introduction to Statistical Learning: with
Applications in R. There may be better commands.

@ Basic regression

» OLS is Im.fit
> cross-validation for OLS uses cv.gim()
> bootstrap uses boot() function in boot library

@ Variable selection

> best subset, forward stepwise and backward stepwise: regsubsets() in
leaps library

@ Penalized regression

> ridge regression: glmnet(,alpha=0) function in glmnet library
> lasso: glmnet(,alpha=1) function in glmnet library
» CV to get lambda for ridge/lasso: cv.glmnet() in glmnet library
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