Panel data methods for microeconometrics using Stata

A. Colin Cameron Univ. of California - Davis

Based on A. Colin Cameron and Pravin K. Trivedi, Microeconometrics using Stata, Stata Press, forthcoming.

April 8, 2008

Panel data are repeated measures on individuals (i) over time (t).

Regress y_{it} on \mathbf{x}_{it} for i = 1, ..., N and t = 1, ..., T.

Complications compared to cross-section data:

- Inference: correct (inflate) standard errors.
 This is because each additional year of data is not independent of previous years.
- Odelling: richer models and estimation methods are possible with repeated measures.

Fixed effects and dynamic models are examples.

Methodology: different areas of applied statistics may apply different methods to the same panel data set. This talk: **overview** of panel data methods and xt commands for **Stata 10** most commonly used by **microeconometricians**.

Three **specializations** to general panel methods:

- Short panel: data on many individual units and few time periods. Then data viewed as clustered on the individual unit. Many panel methods also apply to clustered data such as cross-section individual-level surveys clustered at the village level.
- Causation from observational data: use repeated measures to estimate key marginal effects that are causative rather than mere correlation.

Fixed effects: assume time-invariant individual-specific effects. IV: use data from other periods as instruments.

Oynamic models: regressors include lagged dependent variables.

Outline

- Introduction
- 2 Data example: wages
- Linear models overview
- Standard linear short panel estimators
- Long panels
- Linear panel IV estimators
- Linear dynamic models
- Mixed linear models
- Olustered data
- Nonlinear panel models overview
- Onlinear panel models estimators
- Conclusions

- PSID wage data 1976-82 on 595 individuals. Balanced.
- Source: Baltagi and Khanti-Akom (1990).
 [Corrected version of Cornwell and Rupert (1998).]
- Goal: estimate causative effect of education on wages.
- Complication: education is time-invariant in these data. Rules out fixed effects.

Need to use IV methods (Hausman-Taylor).

- Data organization may be
 - long form: each observation is an individual-time (i, t) pair
 - wide form: each observation is data on *i* for all time periods
 - wide form: each observation is data on t for all individuals
- xt commands require data in long form
 - use reshape long command to convert from wide to long form.
- Data here are already in long form

. * Read in data set

. use mus08psidextract.dta, clear (PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990))

2.3 Summarize data using usual commands

. * Descr . describ		lataset			
Contains obs: vars: size:		4,165 15	08psidextr 97.5% of m	act.dta nemory free)	PSID wage data 1976-82 from Baltagi am 16 Aug 2007 16:29 (_dta has notes)
variable	name	storage type	display format	value label	variable label
exp wks occ ind south smsa ms fem union ed blk lwage id t t exp2		float float float float float float float float float float	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		years of full-time work experience weeks worked occupation; occ==1 if in a blue-collar industry; ind==1 if working in a manur residence; south==1 if in the South an smsa==1 if in the Standard metropolit marital status female or male if wage set be a union contract years of education black log wage

э

Image: A math a math

. * Summarize dataset

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Мах
exp wks occ ind south	4165 4165 4165 4165 4165 4165	19.85378 46.81152 .5111645 .3954382 .2902761	10.96637 5.129098 .4999354 .4890033 .4539442	1 5 0 0 0	51 52 1 1
smsa ms fem union ed	4165 4165 4165 4165 4165 4165	.6537815 .8144058 .112605 .3639856 12.84538	.475821 .3888256 .3161473 .4812023 2.787995	0 0 0 0 4	1 1 1 1 1 7
blk lwage id t exp2	4165 4165 4165 4165 4165 4165	.0722689 6.676346 298 4 514.405	.2589637 .4615122 171.7821 2.00024 496.9962	0 4.60517 1 1 1	1 8.537 595 7 2601

Balanced and complete as $7 \times 595 = 4165$.

(日) (周) (三) (三)

				data se occ in		clean
	id	t	exp	wks	occ	
1.	1	1	3	32	0	
2.	1	2	4	43	0	
3	1	3	5	40	0	

Data are sorted by id and then by t

- xtset command defines *i* and *t*.
- Allows use of panel commands and some time series operators

```
. * Declare individual identifier and time identifier
. xtset id t
panel variable: id (strongly balanced)
time variable: t, 1 to 7
delta: 1 unit
```

* Panel description of data set xtdescribe

		1, 2, 1, 2, Delta(t) Span(t) (id*t uni	, 7 = 1 unit = 7 perio	ods entifies e	ach obs	servation)	n = T =		595 7
Di	stributi	on of T_i:	min 7	5% 7	25% 7	50% 7	75% 7	95% 7	max 7
	Freq.	Percent	Cum.	Pattern					
	595	100.00	100.00	1111111					
	595	100.00		XXXXXXX					

Data are balanced with every individual *i* having 7 time periods of data.

Image: Image:

. * Panel summary statistics: within and between variation

. xtsum lwage exp ed t

Variable	e	Mean	Std. Dev.	Min	Мах	Observat	ions
lwage	overall between within	6.676346	.4615122 .3942387 .2404023	4.60517 5.3364 4.781808	8.537 7.813596 8.621092	N = 4 n = T =	4165 595 7
exp	overall between within	19.85378	10.96637 10.79018 2.00024	1 4 16.85378	51 48 22.85378	N = 4 n = T =	4165 595 7
ed	overall between within	12.84538	2.787995 2.790006 0	4 4 12.84538	17 17 12.84538	N = 4 n = T =	4165 595 7
t	overall between within	4	2.00024 0 2.00024	1 4 1	7 4 7	N = 4 n = T =	4165 595 7

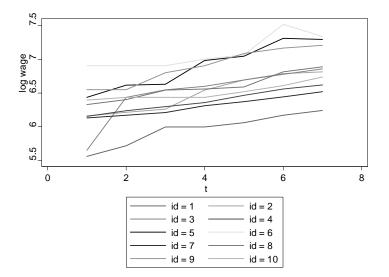
For time-invariant variable **ed** the within variation is zero. For individual-invariant variable **t** the between variation is zero. For 1wage the within variation < between variation.

- . * Panel tabulation for a variable
- . xttab south

	Overall		Bet	ween	Within
south	Freq.	Percent	Freq.	Percent	Percent
0 1	2956 1209	70.97 29.03	428 182	71.93 30.59	98.66 94.90
Total	4165	100.00	610 (n = 595)	102.52	97.54

29.03% on average were in the south.

20.59% were ever in the south.


94.9% of those ever in the south were always in the south.

residence; south==1 if in the South area	residence; if in the So 0	Total	
0	2,527	8	2,535
	99.68	0.32	100.00
1	8	1,027	1,035
	0.77	99.23	100.00
Total	2,535	1,035	3,570
	71.01	28.99	100.00

. * Transition probabilities for a variable . xttrans south, freq

For the 28.99% of the sample ever in the south, 99.23% remained in the south the next period.

* Time series plots of log wage for first 10 individuals xtline lwage if id<=10, overlay

.

. * First-order autocorrelation in a variable

. sort id t

. correlate lwage L.lwage L2.lwage L3.lwage L4.lwage L5.lwage L6.lwage (obs=595)

	lwage	L. lwage	L2. lwage	L3. Iwage	L4. lwage	L5. lwage	L6. Iwage
lwage							
	1.0000						
L1.	0.9238	1.0000					
L2.	0.9083	0.9271	1.0000				
L3.	0.8753	0.8843	0.9067	1.0000			
L4.	0.8471	0.8551	0.8833	0.8990	1.0000		
L5.	0.8261	0.8347	0.8721	0.8641	0.8667	1.0000	
L6.	0.8033	0.8163	0.8518	0.8465	0.8594	0.9418	1.0000

High serial correlation: $Cor[y_t, y_{t-6}] = 0.80$. Can also estimate correlations without imposing stationarity.

- Commands **describe**, **summarize** and **tabulate** confound cross-section and time series variation.
- Instead use specialized panel commands after xtset:
 - xtdescribe: extent to which panel is unbalanced
 - xtsum: separate within (over time) and between (over individuals) variation
 - xttab: tabulations within and between for discrete data e.g. binary
 - xttrans: transition frequencies for discrete data
 - xtline: time series plot for each individual on one chart
 - xtdata: scatterplots for within and between variation.

• Do regular OLS of y_{it} on \mathbf{x}_{it} .

* Pooled OLS with	incorrect default standard errors
regress lwage exp	exp2 wks ed, noheader

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exp	.044675	.0023929	18.67	0.000	.0399838	.0493663
exp2	0007156	.0000528	-13.56	0.000	0008191	0006121
wks	.005827	.0011827	4.93	0.000	.0035084	.0081456
ed	.0760407	.0022266	34.15	0.000	.0716754	.080406
_cons	4.907961	.0673297	72.89	0.000	4.775959	5.039963

The default standard errors erroneously assume errors are independent over i for given t.

Assumes more information content from data then is the case.

. * Pooled OLS with cluster-robust standard errors . regress lwage exp exp2 wks ed, noheader vce(cluster id) (Std. Err. adjusted for 595 clusters in id)

lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
exp	.044675	.0054385	8.21	0.000	.0339941	.055356
exp2	0007156	.0001285	-5.57	0.000	0009679	0004633
wks	.005827	.0019284	3.02	0.003	.0020396	.0096144
ed	.0760407	.0052122	14.59	0.000	.0658042	.0862772
_cons	4.907961	.1399887	35.06	0.000	4.633028	5.182894

Cluster-robust standard errors are twice as large as default. Cluster-robust t-statistics are half as large as default. Typical result. Need to use cluster-robust se's if use pooled OLS.

3.1 Some basic considerations

- Regular time intervals assumed.
- Output Description (Should then rule out selection/attrition bias].
- Short panel assumed, with T small and N → ∞. [Versus long panels, with T → ∞ and N small or N → ∞.]
- Errors are correlated.

[For short panel: correlated over t for given i, but not over i.]

- Parameters may vary over individuals or time.
 Intercept: Individual-specific effects model (fixed or random effects).
 Slopes: Pooling and random coefficients models.
- **O Regressors**: time-invariant, individual-invariant, or vary over both.
- Prediction: ignored.
 [Not always possible even if marginal effects computed.]
- Oynamic models: possible. [Usually static models are estimated.]

3.2 Basic linear panel models

• Pooled model (or population-averaged)

$$y_{it} = \alpha + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}.$$
 (1)

• Two-way effects model allows intercept to vary over i and t

$$y_{it} = \alpha_i + \gamma_t + \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}.$$
 (2)

Individual-specific effects model

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}, \qquad (3)$$

where α_i may be fixed effect or random effect.

 Mixed model or random coefficients model allows slopes to vary over i

$$y_{it} = \alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta}_i + \varepsilon_{it}. \tag{4}$$

• Individual-specific effects model:

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + (\alpha_i + \varepsilon_{it}).$$

- Fixed effects (FE):
 - α_i is a random variable possibly correlated with \mathbf{x}_{it}
 - so regressor x_{it} may be endogenous (wrt to α_i but not ε_{it})
 e.g. education is correlated with time-invariant ability
 - pooled OLS, pooled GLS, RE are inconsistent for eta
 - within (FE) and first difference estimators are consistent.

• Random effects (RE) or population-averaged (PA):

- α_i is purely random (usually iid $(0, \sigma_{\alpha}^2))$ unrelated to \mathbf{x}_{it}
- so regressor \mathbf{x}_{it} is exogenous
- all estimators are consistent for $oldsymbol{eta}$
- Fundamental divide: microeconometricians FE versus others RE.

- Many methods assume ε_{it} and α_i (if present) are iid.
- Yields **wrong standard errors** if heteroskedasticity or if errors not equicorrelated over time for a given individual.
- For short panel can relax and use cluster-robust inference.
 - Allows heteroskedasticity and general correlation over time for given *i*.
 - Independence over *i* is still assumed.
- For xtreg use option vce(robust) does cluster-robust
- For some other xt commands use option vce(cluster)
- And for some other xt commands there is no option but may be able to do a cluster bootstrap.

• Regress y_{it} on **x**_{it} using feasible GLS as error is not iid.

. * Pooled FGLS estimator with AR(2) error & cluster-robust se's

. xtgee lwage exp exp2 wks ed, corr(ar 2) vce(robust)

• OLS of \bar{y}_i on $\bar{\mathbf{x}}_i$. i.e. Regression using each individual's averages.

- * Between estimator with default standard errors
- . xtreg lwage exp exp2 wks ed, be

• FGLS in RE model assuming α_i iid $(0, \sigma_{\alpha}^2)$ and ε_i iid $(0, \sigma_{\varepsilon}^2)$.

• Equals OLS of
$$(y_{it} - \hat{\theta}_i \bar{y}_i)$$
 on $(\mathbf{x}_{it} - \hat{\theta}_i \bar{\mathbf{x}}_i)$;
 $\theta_i = 1 - \sqrt{\sigma_{\varepsilon}^2 / (T_i \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2)}$.

. * Random effects estimator with cluster-robust se's . xtreg lwage exp exp2 wks ed, re vce(robust) theta This gives $\hat{\theta} = 0.82$.

4.4 Fixed effects (or within) estimator: xtreg, fe

- OLS regress $(y_{it} \bar{y}_i)$ on $(\mathbf{x}_{it} \bar{\mathbf{x}}_i)$.
- Mean-differencing eliminates α_i in $y_{it} = \alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta} + \varepsilon_{it}$

* Within or FE estimator with cluster-robust se's xtreg lwage exp exp2 wks ed, fe vce(robust)

- OLS regress $(y_{it} y_{i,t-1})$ on $(\mathbf{x}_{it} \mathbf{x}_{i,t-1})$.
- First-differencing eliminates α_i in $y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}$.

* First difference estimator with cluster-robust se's regress D.(lwage \$xlist), vce(cluster id)

- . * Compare various estimators (with cluster-robust se's)
- . global xlist exp exp2 wks ed
- . quietly regress lwage \$xlist, vce(cluster id)
- . estimates store OLS
- . quietly xtgee lwage exp exp2 wks ed, corr(ar 2) vce(robust)
- . estimates store PFGLS
- . quietly xtreg lwage \$xlist, be
- . estimates store BE
- . quietly xtreg lwage \$xlist, re vce(robust)
- . estimates store RE
- . quietly xtreg lwage \$xlist, fe vce(robust)
- . estimates store FE
- . estimates table OLS PFGLS BE RE FE, b(%9.4f) se stats(N)

E SQA

Variable	OLS	PFGLS	BE	RE	FE
exp	0.0447	0.0719	0.0382	0.0889	0.1138
exp2	0.0054	0.0040 -0.0009	0.0057 -0.0006	0.0029 -0.0008	0.0040 -0.0004
	0.0001	0.0001	0.0001	0.0001	0.0001
wks	0.0058	0.0003 0.0011	0.0131 0.0041	$0.0010 \\ 0.0009$	0.0008 0.0009
ed	0.0760	0.0905 0.0060	$0.0738 \\ 0.0049$	$0.1117 \\ 0.0063$	0.0000
_cons	4.9080	4.5264	4.6830	3.8294	4.5964
	0.1400	0.1057	0.2101	0.1039	0.0601
Ν	4165.0000	4165.0000	4165.0000	4165.0000	4165.0000
					legend: b/se

- Coefficients vary considerably across OLS, RE, FE and RE estimators.
- FE and RE similar as $\hat{\theta} = 0.82 \simeq 1$.
- Not shown is that even for FE and RE cluster-robust changes se's.
- Coefficient of ed not identified for FE as time-invariant regressor!

- Prefer RE as can estimate all parameters and more efficient.
- But RE is inconsistent if fixed effects present.
- Use Hausman test to discriminate between FE and RE.
 - This tests difference between FE and RE estimates is statistically significantly different from zero.
- Problem: hausman command gives incorrect statistic as it assumes RE estimator is fully efficient, usually not the case.
- Solution: do a panel bootstrap of the Hausman test or use the Wooldridge (2002) robust version of Hausman test.

Panel summary	<pre>xtset; xtdescribe; xtsum; xtdata;</pre>
	xtline; xttab; xttran
Pooled OLS	regress
Feasible GLS	<pre>xtgee, family(gaussian)</pre>
	xtgls; xtpcse
Random effects	xtreg, re; xtregar, re
Fixed effects	xtreg, fe; xtregar, fe
Random slopes	<pre>xtmixed; quadchk; xtrc</pre>
First differences	regress (with differenced data)
Static IV	xtivreg; xthtaylor
Dynamic IV	xtabond; xtdpdsys; xtdpd

э

- For short panels asymptotics are T fixed and $N \rightarrow \infty$.
- For long panels asymptotics are for $\mathcal{T} \to \infty$
 - A dynamic model for the errors is specified, such as AR(1) error
 - Errors may be correlated over individuals
 - Individual-specific effects can be just individual dummies
 - Furthermore if N is small and T large can allow slopes to differ across individuals and test for poolability.

• Models with stationary errors:

- xtgls allows several different models for the error
- xtpcse is a variation of xtgls
- xtregar does FE and RE with AR(1) error
- Add-on xtscc gives HAC se's with spatial correlation.

• Models with **nonstationary errors** (currently active area):

- As yet no Stata commands
- Add-on levinlin does Levin-Lin-Chu (2002) panel unit root test
- Add-on ipshin does Im-Pesaran-Shin (1997) panel unit root test in heterogeneous panels
- Add-on xtpmg for does Pesaran-Smith and Pesaran-Shin-Smith estimation for nonstationary heterogeneous panels with both N and T large.

6.1 Panel IV: xtivreg

- Command xtivreg is natural extension of ivregress to panels.
- Consider model with possibly transformed variables:

$$y_{it}^* = \alpha + \mathbf{x}_{it}^{*\prime} \boldsymbol{\beta} + u_{it},$$

where transformations are

- OLS is **inconsistent** if $E[u_{it}|\mathbf{x}_{it}^*] = 0$.
- IV estimation with instruments \mathbf{z}_{it}^* satisfy $\mathsf{E}[u_{it}|\mathbf{z}_{it}^*] = 0$.
- Example: xtivreg lwage exp exp2 (wks = ms), fe

- Command xthtaylor uses exogenous time-varying regressors \mathbf{x}_{it} from periods other than the current as instruments.
- This enables estimation of coefficient of a time-invariant regressor in a fixed effects model (not possible using FE estimator).
- Example: allows estimation of coefficient of time-invariant regressor ed

xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed, /// endog(exp exp2 wks ms union ed)

- Simple dynamic model regresses y_{it} in **polynomial in time**.
 - e.g. Growth curve of child height or IQ as grow older
 - use previous models with **x**_{it} polynomial in time or age.
- Richer dynamic model regresses y_{it} on **lags** of y_{it}.

7.2 Linear dynamic panel models with individual effects

• Leading example: AR(1) model with individual specific effects

$$y_{it} = \gamma y_{i,t-1} + \mathbf{x}'_{it} \boldsymbol{\beta} + \alpha_i + \varepsilon_{it}.$$

• Four reasons for y_{it} being serially correlated over time:

- True state dependence: via y_{i,t-1}
- Observed heterogeneity: via x_{it} which may be serially correlated
- Unobserved heterogeneity: via α_i
- Error correlation: via ε_{it}
- Focus on case where *α_i* is a **fixed effect**
 - FE estimator is now inconsistent (if short panel)
 - Instead use Arellano-Bond estimator

7.3 Arellano-Bond estimator

• **First-difference** to eliminate α_i (rather than mean-difference)

$$(y_{it}-y_{i,t-1})=\gamma(y_{i,t-1}-y_{i,t-2})+(\mathbf{x}_{it}-\mathbf{x}'_{i,t-1})\boldsymbol{\beta}+(\varepsilon_{it}-\varepsilon_{i,t-1})\mathbf{x}_{i,t-1}$$

- **OLS inconsistent** as $(y_{i,t-1} y_{i,t-2})$ correlated with $(\varepsilon_{it} \varepsilon_{i,t-1})$ (even under assumption ε_{it} is serially uncorrelated).
- But y_{i,t-2} is not correlated with (ε_{it} ε_{i,t-1}), so can use y_{i,t-2} as an instrument for (y_{i,t-1} y_{i,t-2}).
- Arellano-Bond is a variation that uses **unbalanced set** of instruments with further lags as instruments.

For t = 3 can use y_{i1} , for t = 4 can use y_{i1} and y_{i2} , and so on.

- Stata commands
 - xtabond for Arellano-Bond
 - xtdpdsys for Blundell-Bond (more efficient than xtabond)
 - xtdpd for more complicated models than xtabond and xtdpdsys.

- . * Optimal or two-step GMM for a dynamic panel model
- . xtabond lwage occ south smsa ind, lags(2) maxldep(3) ///
- . pre(wks,lag(1,2)) endogenous(ms,lag(0,2)) ///
- . endogenous(union,lag(0,2)) twostep vce(robust)
 artests(3)
- . * Test whether error is serially correlated
- . estat abond
- . * Test of overidentifying restrictions
- . estat sargan

. * Arellano/Bover or Blundell/Bond for a dynamic panel model

. xtdpdsys lwage occ south smsa ind, lags(2) maxldep(3)
///

- . pre(wks,lag(1,2)) endogenous(ms,lag(0,2)) ///
- . endogenous(union,lag(0,2)) twostep vce(robust)
 artests(3)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○

- Generalize random effects model to random slopes.
- Command xtrc estimates the random coefficients model

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta}_i + \varepsilon_{it},$$

where (α_i, β_i) are iid with mean (α, β) and variance matrix Σ and ε_{it} is iid.

- Not used in microeconometrics but used in many other disciplines.
- Stack all observations for individual i and specify

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i + \boldsymbol{\varepsilon}_i$$

where \mathbf{u}_i is iid $(\mathbf{0}, \mathbf{G})$ and \mathbf{Z}_i is called a design matrix.

- Random effects: $\mathbf{Z}_i = \mathbf{e}$ (a vector of ones) and $\mathbf{u}_i = \alpha_i$
- Random coefficients: $\mathbf{Z}_i = \mathbf{X}_i$.
- Example:

xtmixed lwage exp exp2 wks ed || id: exp wks, covar(unstructured) mle

- Consider data on individual *i* in village *j* with **clustering on village**.
- A cluster-specific model (here village-specific) specifies

$$y_{ji} = \alpha_i + \mathbf{x}'_{ji}\boldsymbol{\beta} + \varepsilon_{ji}.$$

- Here clustering is on village (not individual) and the repeated measures are over individuals (not time).
- Use xtset village id
- Assuming equicorrelated errors can be more reasonable here than with panel data (where correlation dampens over time).
 So perhaps less need for vce(cluster) after xtreg

- First use xtset village person (versus xtset id t for panel).
- If α_i is random use:
 - regress with option vce(cluster village)
 - xtreg,re
 - xtgee with option exchangeable
 - xtmixed for richer models of error structure
- If α_i is **fixed** use:
 - xtreg,fe

10.1 Nonlinear panel models overview

• General approaches similar to linear case

- Pooled estimation or population-averaged
- Random effects
- Fixed effects

Complications

- Random effects often not tractable so need numerical integration
- Fixed effects models in short panels are generally not estimable due to the incidental parameters problem.
- Here we consider **short panels** throughout.

• Standard nonlinear models are:

- Binary: logit and probit
- Counts: Poisson and negative binomial
- Truncated: Tobit

10.2 Nonlinear panel models

- A **pooled** or **population-averaged model** may be used. This is same model as in cross-section case, with adjustment for correlation over time for a given individual.
- A fully parametric model may be specified, with conditional density

$$f(y_{it}|\alpha_i, \mathbf{x}_{it}) = f(y_{it}, \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta}, \gamma), \quad t = 1, ..., T_i, \ i = 1, ..., N,$$
 (5)

where γ denotes additional model parameters such as variance parameters and α_i is an individual effect.

A conditional mean model may be specified, with additive effects

$$\mathsf{E}[y_{it}|\alpha_i,\mathbf{x}_{it}] = \alpha_i + g(\mathbf{x}'_{it}\boldsymbol{\beta}) \tag{6}$$

or multiplicative effects

$$\mathsf{E}[y_{it}|\alpha_i, \mathbf{x}_{it}] = \alpha_i \times g(\mathbf{x}'_{it}\boldsymbol{\beta}). \tag{7}$$

	Counts	Binary
Pooled	poisson	logit
	nbreg	probit
GEE (PA)	xtgee,family(poisson)	xtgee,family(binomial) link(logit
	xtgee,family(nbinomial)	xtgee,family(poisson) link(probi
RE	xtpoisson, re	xtlogit, re
	xtnbreg, fe	xtprobit, re
Random slopes	xtmepoisson	xtmelogit
FE	xtpoisson, fe	xtlogit, fe
	xtnbreg, fe	

plus tobit and xttobit.

Extend pooled OLS

- Give the usual cross-section command for conditional mean models or conditional density models but then get cluster-robust standard errors
- Probit example:

```
probit y x, vce(cluster id)
```

```
or
```

```
xtgee y x, fam(binomial) link(probit) corr(ind)
vce(cluster id)
```

- Extend pooled feasible GLS
 - Estimate with an assumed correlation structure over time

```
    Equicorrelated probit example:

    xtprobit y x, pa vce(boot)

    or

    xtgee y x, fam(binomial) link(probit) corr(exch)

    vce(cluster id)
```

11.2 Random effects estimation

- Assume individual-specific effect α_i has specified distribution $g(\alpha_i | \boldsymbol{\eta})$.
- Then the unconditional density for the *i*th observation is

$$f(y_{it}, ..., y_{iT} | \mathbf{x}_{i1}, ..., \mathbf{x}_{iT}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\eta}) = \int \left[\prod_{t=1}^{T} f(y_{it} | \mathbf{x}_{it}, \alpha_i, \boldsymbol{\beta}, \boldsymbol{\gamma}) \right] g(\alpha_i | \boldsymbol{\eta}) d\alpha_i.$$
(8)

• Analytical solution:

- For Poisson with gamma random effect
- For negative binomial with gamma effect
- Use xtpoisson, re and xtnbreg, re

• No analytical solution:

- For other models.
- Instead use numerical integration (only univariate integration is required).
- Assume normally distributed random effects.
- Use re option for xtlogit, xtprobit
- Use normal option for xtpoisson and xtnbreg

• Can extend to random slopes.

- Nonlinear generalization of xtmixed
- Then higher-dimensional numerical integral.
- Use adaptive Gaussian quadrature
- Stata commands are:
 - xtmelogit for binary data
 - xtmepoisson for counts
- Stata add-on that is very rich:
 - gllamm (generalized linear and latent mixed models)
 - Developed by Sophia Rabe-Hesketh and Anders Skrondal.

• In general not possible in short panels.

• Incidental parameters problem:

- N fixed effects α_i plus K regressors means (N + K) parameters
- But $(N + K) \rightarrow \infty$ as $N \rightarrow \infty$
- Need to eliminate α_i by some sort of differencing
- possible for Poisson, negative binomial and logit.
- Stata commands
 - xtlogit, fe
 - xtpoisson, fe (better to use xtpqml as robust se's)
 - xtnbreg, fe
- Fixed effects extended to **dynamic models** for logit and probit. No Stata command.

12. Conclusion

- Stata provides commands for panel models and estimators commonly used in microeconometrics and biostatistics.
- Stata also provides diagnostics and postestimation commands, not presented here.
- The emphasis is on short panels. Some commands provide cluster-robust standard errors, some do not.
- A big distinction is between fixed effects models, emphasized by microeconometricians, and random effects and mixed models favored by many others.
- Extensions to nonlinear panel models exist, though FE models may not be estimable with short panels.
- This presentation draws on two chapters in Cameron and Trivedi, *Microeconometrics using Stata*, forthcoming.

Book Outline

For Cameron and Trivedi, Microeconometrics using Stata, forthcoming.

- 1. Stata basics
- 2. Data management and graphics
- 3. Linear regression basics
- 4. Simulation
- 5. GLS regression
- 6. Linear instrumental variable regression
- 7. Quantile regression
- 8. Linear panel models
- 9. Nonlinear regression methods
- 10. Nonlinear optimization methods
- 11. Testing methods
- 12. Bootstrap methods

- **13.** Binary outcome models
- 14. Multinomial models
- 15. Tobit and selection models
- 16. Count models
- 17. Nonlinear panel models
- 18. Topics
- A. Programming in Stata
- B. Mata

Econometrics graduate-level panel data texts

- Comprehensive panel texts
 - Baltagi, B.H. (1995, 2001, 200?), *Econometric Analysis of Panel Data*, 1st and 2nd editions, New York, John Wiley.
 - Hsiao, C. (1986, 2003), *Analysis of Panel Data*, 1st and 2nd editions, Cambridge, UK, Cambridge University Press.
- More selective advanced panel texts
 - Arellano, M. (2003), *Panel Data Econometrics*, Oxford, Oxford University Press.
 - Lee, M.-J. (2002), Panel Data Econometrics: Methods-of-Moments and Limited Dependent Variables, San Diego, Academic Press.
- Texts with several chapters on panel
 - Cameron, A.C. and P.K. Trivedi (2005), *Microeconometrics: Methods and Applications*, New York, Cambridge University Press.
 - Greene, W.H. (2003), *Econometric Analysis*, fifth edition, Upper Saddle River, NJ, Prentice-Hall.
 - Wooldridge, J.M. (2002, 200?), *Econometric Analysis of Cross Section and Panel Data*, Cambridge, MA, MIT Press.