Compulsory. Closed book. Total of 58 points and worth 45% of course grade.
Read question carefully so you answer the question.

| Question | 1a | 1b | 1c | 2a | 2b | 2c | 2d | 2e | 2f | 3a | 3b | 3c | 3d | 4a | 4b | 4c | Points |
|----------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|
| 1. | a | b | c | d | e | | | | | | | | | | | | |
| 2. | a | b | c | d | e | | | | | | | | | | | | |
| 3. | a | b | c | d | e | | | | | | | | | | | | |
| 4. | a | b | c | d | e | | | | | | | | | | | | |
| 5. | a | b | c | d | e | | | | | | | | | | | | |
| 6. | a | b | c | d | e | | | | | | | | | | | | |
| 7. | a | b | c | d | e | | | | | | | | | | | | |
| 8. | a | b | c | d | e | | | | | | | | | | | | |
| 9. | a | b | c | d | e | | | | | | | | | | | | |
| 10. | a | b | c | d | e | | | | | | | | | | | | |
Questions 1-4
Consider data on sales and advertising for 200 regional markets
Note: pay attention to the units of measurement.

Dependent Variable
sales = sales in units
lnsales = Natural logarithm of sales.

Regressors
tv = TV advertising in thousands of dollars
radio = radio advertising in thousands of dollars
newspaper = newspaper advertising in thousands of dollars
tvbynews = tv × news
region1 = 1 if region 1 and = 0 otherwise
region2 = 1 if region 2 and = 0 otherwise
region3 = 1 if region 3 and = 0 otherwise

Use the two pages of output provided at the end of this exam on:
t critical values, summary statistics, correlations and regressions.

Part of the following questions involves deciding which output to use.
You can use the output that gets the correct answer in the quickest possible way.

1.(a) Give a 95% confidence interval for population mean sales.

(b) Perform a test at significance level .05 of the claim that population mean sales exceed 13,000 units. State clearly the null and alternative hypotheses of your test, and your conclusion.

(c) Suppose we give Stata command `summarize sales, detail`
Provide three different statistics that this provides in addition to command `summarize sales`
(Two points for three correct; 1 point for 2 correct; 0 points for 1 or 0 correct).
2. In this question the regression studied is a linear regression of sales on tv.

(a) Give a 95 percent confidence interval for the population slope parameter.

(b) Give a 99 percent confidence interval for the population slope parameter.

(c) Test the hypothesis at significance level 1% that the population slope coefficient is equal to 50. State clearly the null and alternative hypothesis in terms of population parameters and state your conclusion.

(d) Predict the actual sales when tv advertising equals $100,000.
(Hint: Be careful with units here).

(e) A statistician states that a 95 percent confidence interval for actual sales given tv advertising equals $100,000 will have width of at least 10,000 units. Is she correct? Explain your answer.

(f) Suppose we regress tv on sales rather than sales on tv? How well will the model fit? Explain.
3. This question and the next consider all three models given in the second page of Stata output. Pay attention to the units of measurement used in defining the variables. Note that there are only three regions: region 1, region 2 and region 3.

(a) In the second model what is the effect on sales of increasing TV advertising by $1,000. Evaluate this at the sample mean value of relevant variables.

(b) In the second model provide an interpretation of the coefficient of variable region1.

(c) Are the additional regressors in the second model, compared to the first model, jointly statistically significant at significance level 0.05? Perform an appropriate test. **State clearly** the null and alternative hypotheses of your test, and your conclusion given that the critical value for the test statistic is 2.261.

(d) Suppose in the second model we replaced regressors region1 and region2 with region2 and region3. How would the output differ from that of the second model? **Explain.**
4. (a) In the third model what is the effect on the number of units sold of $1,000 more spending on TV advertising?

(b) Suppose we estimate the third model and then predict sales using the Stata commands

\[
\text{predict lnsaleshat} \\
\text{gen saleshat = exp(lnsaleshat)}
\]

Will this provide a good prediction of the level of sales? Explain your answer.

(c) Given the output provided is it possible to prefer the third model to the first model? Explain your answer.

5. (a) Calculate \(\sum_{i=1}^{n} z_i\) for \(z_i = 6/i\) and \(n = 3\).

(b) Suppose \(Y_i\) is distributed with mean 10 and variance 100, though is not necessarily normally distributed. We obtain 10,000 samples each of size 100 and for each sample compute the sample mean \(\bar{y}\). What distribution do you expect the sample means to have? Provide the mean, standard deviation and, if appropriate, the distribution.

(c) Let \(X\) be the number of students who miss a midterm exam due to illness. Suppose \(X = 1\) with probability 0.5, \(X = 2\) with probability 0.3 and \(X = 3\) with probability 0.2. What is the mean of \(X\)? Show all workings.

(d) Consider a simple random sample of size 4 with values 18, 20, 28, 30. Compute the sample standard deviation. Show all workings.
6. You are given the following partial Stata output

```
. regress y x z
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>540</td>
<td></td>
<td></td>
<td>F(2, 18) = (C)</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td></td>
<td>Prob > F =</td>
</tr>
<tr>
<td>Total</td>
<td>720</td>
<td></td>
<td></td>
<td>Adj R-squared =</td>
</tr>
</tbody>
</table>

| y | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---|-------|------------|---|-----|----------------------|
| x | 3 | (A) 1.5 | | | |
| z | 2 | 1.0 | | | |
| _cons | -4 | 1.0 | | | |

(a) Calculate missing entry (A).

(b) Calculate missing entry (B).

(c) Calculate missing entry (C).

(d) Suppose we perform an F test of $H_0 : \beta_z = 0$ against $H_a : \beta_z \neq 0$. What will the value of the F statistic be?
7. For each of the following conditions state whether or not OLS estimates of β_1, β_2 and β_3 in the model $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + u_i$ are likely to be biased.

(a) The sample comprises six observations.

(b) We should not have included variable z in the model.

(c) We should have included variable w in the model.

(d) The correlation of x and z equals 0.98.

(e) The error u is heteroskedastic.
Multiple choice questions (1 point each)

1. A pie chart is best used for summarizing
 a. categorical data
 b. continuous data
 c. both a. and b.
 d. neither a. nor b.

2. The skewness statistic is approximately
 a. \(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s} \right)^3 \) where \(s \) is the sample standard deviation
 b. \(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \)
 c. \(s^3 \) where \(s \) is the sample standard deviation
 d. none of the above.

3. For monthly data a 11 month moving average
 a. reduces variation in the original data
 b. can help control for seasonal variation in the data
 c. neither a. not b.
 d. both a. and b.

4. A correlation coefficient equal to 1.1
 a. indicates strong association between \(x \) and \(y \) that may be positive or negative
 b. indicates strong positive association between \(x \) and \(y \)
 c. indicates strong negative association between \(x \) and \(y \)
 d. is not possible.

5. If \(X_i \) are independent and identically distributed as \(N(\mu, \sigma^2) \) then
 a. \((\bar{X} - \mu)/\sigma \) is \(T(n-1) \) distributed
 b. \((\bar{X} - \mu)/\sigma \) is standard normal distributed
 c. neither a. nor b.
6. For a hypothesis test with size 0.05
 a. the probability of not rejecting H_0 when H_0 is false is 0.05
 b. the probability of not rejecting H_0 when H_0 is false is 0.95
 c. the probability of rejecting H_0 when H_0 is true is 0.05
 d. the probability of rejecting H_0 when H_0 is true is 0.95

7. Let b be the slope coefficient from OLS regression of y on an intercept and x and let c be the slope coefficient from regression of x on an intercept and y
 a. if $b > c$ than necessarily x causes y
 b. if $c > b$ than necessarily y causes x
 c. neither of the above.

8. In the linear regression model the conditional mean of y given x is
 a. $\beta_1 + \beta_2 x + u$
 b. $\beta_1 + \beta_2 x$
 c. $b_1 + b_2 x + e$ where b_1 and b_2 are estimated coefficients and e is the residual
 d. $b_1 + b_2 x$ where b_1 and b_2 are estimated coefficients and e is the residual.

9. The main lesson from regression analysis of school scores on the California Academic performance Index is that
 a. by far the biggest determinant is teacher quality
 b. by far the biggest determinant is educational attainment of parents
 c. by far the biggest determinant is student disadvantage (English learner, free meals)
 d. all of a., b. and c. are substantial determinants.

10. Let Q, K and L denote the level of output, capital and labor. A Cobb-Douglas production is estimated by regressing
 a. $\ln Q$ on $\ln K$ and $\ln L$
 b. Q on K and L
 c. $\ln Q$ on K and L
 d. Q on $\ln K$ and $\ln L$
SOME USEFUL FORMULAS

Univariate Data
\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{and} \quad s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
\[
\bar{x} \pm t_{\alpha/2,n-1} \times (s_x/\sqrt{n}) \quad \text{and} \quad t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}
\]
t_{\alpha/2} such that \(\text{Pr}[|T| > t_{\alpha/2}] = \alpha\) is calculated using \(\text{invttail}(df, \alpha/2)\).

Bivariate Data
\[
r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \times \sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{s_{xy}}{s_x \times s_y} \quad [\text{Here } s_{xx} = s_x^2 \text{ and } s_{yy} = s_y^2].
\]
\[
\hat{y} = b_1 + b_2x_i \quad b_2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \quad b_1 = \bar{y} - b_2\bar{x}
\]
\[
\text{TSS} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad \text{ResidualSS} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \quad \text{Explained SS} = \text{TSS} - \text{Residual SS}
\]
\[
R^2 = 1 - \text{ResidualSS/TSS}
\]
\[
b_2 = t_{\alpha/2,n-2} \times s_{b_2}
\]
\[
t = \frac{b_2 - \beta_{20}}{s_{b_2}} \quad s_{b_2}^2 = \frac{s^2_x}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \quad s_{e}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
\]
\[
y|x = x^* \in b_1 + b_2x^* \pm t_{\alpha/2,n-2} \times s_e \times \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} + 1}
\]
\[
E[y|x = x^*] \in b_1 + b_2x^* \pm t_{\alpha/2,n-2} \times s_e \times \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}
\]

Multiple Regression
\[
\hat{y} = b_1 + b_2x_{2i} + \cdots + b_kx_{ki}
\]
\[
R^2 = 1 - \text{ResidualSS/TSS} \quad \bar{R}^2 = R^2 - \frac{k-1}{n-k}(1 - R^2)
\]
\[
b_j = t_{\alpha/2,n-k} \times s_{b_j} \quad \text{and} \quad t = \frac{b_j - \beta_{j0}}{s_{b_j}}
\]
\[
F = \frac{R^2/(k-1)}{(1 - R^2)/(n-k)} \sim F(k-1,n-k)
\]
\[
F = \frac{(\text{ResSS}_r - \text{ResSS}_u)/(k-g)}{\text{ResSS}_u/(n-k)} \sim F(k-g,n-k)
\]
\(F\alpha\) such that \(\text{Pr}[F > f_{\alpha}] = \alpha\) is calculated using \(\text{invFtail}(df_1, df_2, \alpha)\).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>sales</td>
<td>200</td>
<td>14022.5</td>
<td>5217.457</td>
<td>1600</td>
<td>27000</td>
</tr>
<tr>
<td>tv</td>
<td>200</td>
<td>147.0425</td>
<td>85.85424</td>
<td>.7</td>
<td>296.4</td>
</tr>
<tr>
<td>radio</td>
<td>200</td>
<td>23.264</td>
<td>14.84681</td>
<td>0</td>
<td>49.6</td>
</tr>
<tr>
<td>newspaper</td>
<td>200</td>
<td>30.554</td>
<td>21.77862</td>
<td>.3</td>
<td>114</td>
</tr>
<tr>
<td>tvbynews</td>
<td>200</td>
<td>4598.126</td>
<td>4870.717</td>
<td>6.09</td>
<td>29906.76</td>
</tr>
<tr>
<td>region1</td>
<td>200</td>
<td>.23</td>
<td>.421886</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>region2</td>
<td>200</td>
<td>.445</td>
<td>.4982129</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>lnsales</td>
<td>200</td>
<td>9.471746</td>
<td>.4143507</td>
<td>7.377759</td>
<td>10.20359</td>
</tr>
</tbody>
</table>

```
Degrees of freedom: 200 199 198 197 196 195 194 193
```

t_.05: 1.6525 1.6525 1.6526 1.6526 1.6527 1.6527 1.6527 1.6528

t_.025: 1.9719 1.9720 1.9720 1.9721 1.9721 1.9722 1.9723 1.9723

t_.01: 2.3451 2.3452 2.3453 2.3454 2.3455 2.3456 2.3457 2.3458

t_.005: 2.6006 2.6008 2.6009 2.6010 2.6011 2.6013 2.6014 2.6015

```
\begin{verbatim}
Variable          Obs    Mean    Std. Dev.   Min    Max
sales             200   14022.5  5217.457   1600   27000
tv                200   147.0425 85.85424    .7     296.4
radio             200   23.264   14.84681   0     49.6
newspaper         200   30.554   21.77862   .3     114
rvbynew            200  4598.126 4870.717  6.09  29906.76
region1            200   .23    .421886   0     1
region2            200   .445   .4982129  0     1
lnsales            200  9.471746 .4143507  7.377759 10.20359
\end{verbatim}
```
. regress sales tv

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3.3146e+09</td>
<td>1</td>
<td>3.3146e+09</td>
<td>F(1, 198) = 312.14</td>
</tr>
<tr>
<td>Residual</td>
<td>2.1025e+09</td>
<td>198</td>
<td>10618841.6</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>5.4171e+09</td>
<td>199</td>
<td>27221853</td>
<td>Adj R-squared = 0.6099</td>
</tr>
</tbody>
</table>

| sales | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|--------|-----------|-------|------|---------------------|
| tv | 47.53664 | 2.690607 | 17.67 | 0.000 | 42.23072 - 52.84256 |
| _cons | 7032.594 | 457.8429 | 15.36 | 0.000 | 6129.719 - 7935.468 |

. regress sales tv radio newspaper tvbynews region1 region2

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4.8988e+09</td>
<td>6</td>
<td>816466409</td>
<td>F(6, 193) = 304.00</td>
</tr>
<tr>
<td>Residual</td>
<td>518350292</td>
<td>193</td>
<td>2685752.81</td>
<td>R-squared = 0.9043</td>
</tr>
<tr>
<td>Total</td>
<td>5.4171e+09</td>
<td>199</td>
<td>27221853</td>
<td>Adj R-squared = 0.9013</td>
</tr>
</tbody>
</table>

| sales | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|--------|-----------|-------|------|---------------------|
| tv | 38.80747 | 2.31232 | 16.78 | 0.000 | 34.24681 - 43.36813 |
| radio | 187.3695 | 8.701045 | 21.53 | 0.000 | 170.2081 - 204.5308 |
| newspaper | -32.16059 | 10.46367 | -3.07 | 0.002 | -52.79842 -11.52276 |
| tvbynews | .2010003 | .0568861 | 3.53 | 0.001 | .088802 - .3131985 |
| region1 | -404.474 | 346.3489 | -1.17 | 0.264 | -852.7135 - 235.1121 |
| region2 | -308.8007 | 275.7715 | -1.12 | 0.264 | -525.7135 - 118.1121 |
| _cons | 4246.044 | 493.7597 | 8.60 | 0.000 | 3272.187 - 5219.902 |

. regress lnsales tv

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.032308</td>
<td>1</td>
<td>21.032308</td>
<td>F(1, 198) = 317.09</td>
</tr>
<tr>
<td>Residual</td>
<td>13.1333104</td>
<td>198</td>
<td>.066329851</td>
<td>R-squared = 0.6156</td>
</tr>
<tr>
<td>Total</td>
<td>34.1656184</td>
<td>199</td>
<td>.171686525</td>
<td>Root MSE = 3258.7</td>
</tr>
</tbody>
</table>

| lnsales | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|--------|-----------|-------|------|---------------------|
| tv | .0037867 | .0002127 | 17.81 | 0.000 | .0033673 - .004206 |
| _cons | 8.914947 | .0361853 | 246.37| 0.000 | 8.843589 - 8.986306 |