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1. Introduction

1. Introduction

Problem: OLS inconsistent in model yi = x0iβ+ ui if Cov[xi , ui ] 6= 0.
Solution: Assume there are instruments zi satisfying Cov[zi , ui ] = 0.

If #instruments = #regressors

I instrumental variables (IV) estimator

If #instruments > #regressors then use

I two-stage least squares (2SLS)
I generalized method of moments (GMM).

Complications

I test of assumptions (exogeneity, endogeneity)
I weak instruments
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2. IV, 2SLS and GMM Estimators De�nitions

2. IV, 2SLS and GMM estimators: De�nitions

Model is yi = x0iβ+ ui
I OLS is inconsistent as Cov[xi , ui ] 6= 0.

Assume there are instruments zi such that Cov[zi , ui ] = 0.

I Then Cov[zi , ui ] = 0 ) E[ziui ] = 0 given E[ui jzi ] = 0.

We have the population moment condition

E[zi (yi � x0iβ)] = 0.

Method of moments: solve the corresponding sample moment
condition

1

N ∑N

i=1
zi (yi � x0iβ) = 0.
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2. IV, 2SLS and GMM Estimators Instrumental Variables Estimator

Instrumental variables (IV) estimator

In just-identi�ed case (# instruments = # regressors)

I solve k equations in k unknowns 1
N ∑i zi (yi � x0iβ) = 0

I gives the instrumental variables (IV) estimator.

bβIV =
�

∑Ni=1 z
0
ixi

��1 �
∑Ni=1 z

0
iyi

�
= (Z0X)�1Z0y

I estimate using Stata 10 command ivregress 2sls

Often just one regressor in xi is endogenous (i.e. correlated with ui ).

I Then one variable in zi is the instrument for this endogenous regressor.
I the remaining entries in zi are the exogenous variables
I i.e. exogenous variables are instruments for themselves.
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2. IV, 2SLS and GMM Estimators GMM Estimator

Generalized method of moments estimator

In over-identi�ed case (# instruments > # regressors)

I Cannot solve 1
N ∑i zi (yi � x0iβ) = 0.

I Instead generalized method of moments (GMM) estimator minimizes

the quadratic form in 1
N ∑Ni=1 zi (yi � x0iβ)

Q(β) =

�
1

N
∑i
�
yi � x0iβ

�
zi

�0
�WN �

�
1

N
∑i
�
yi � x0iβ

�
zi

�
= (Z0u)0W(Z0u)

I The symmetric full-rank weighting matrix W does not depend on β.

Then ∂Q(β)/∂β = 0 yields the GMM estimator

bβGMM =
�

∑i xiz
0
i �WN �∑N

i=1 zix
0
i

��1 �
∑i xiz

0
i �WN �∑N

i=1 ziyi
�

= (X0ZWNZ
0X)�1X0ZWNZ

0y.
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2. IV, 2SLS and GMM Estimators Optimal GMM and 2SLS

Optimal GMM and 2SLS

The variance of bβGMM is smallest when the optimal weighting matrix
WN is consistent for (Var[Z

0u])�1

I Though in the just-identi�ed (r = K ) GMM = IV for any WN .

For homoskedastic errors Var[Z0u] = σ2 ∑N
i=1 z

0
izi

I Two-stage least squares (2SLS) estimator sets WN = (∑
N
i=1 z

0
izi )

�1

I Yields bβ2SLS = (X0Z(Z0Z)�1Z0X)�1 �X0Z(Z0Z)�1Z0y
I Estimate using Stata 10 command ivregress 2sls
I but use robust VCE to guard against errors not homoskedastic.

For heteroskedastic errors Var[Z0u] = σ2 ∑N
i=1 z

0
izi

I \Optimal" GMM estimator if errors are heteroskedastic errors sets

WN = (∑
N
i=1 bu2i z0izi )�1, bui = yi � x0i bβ2SLS

I estimate using Stata 10 command ivregress gmm.
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2. IV, 2SLS and GMM Estimators More on 2SLS

More on 2SLS

2SLS gets it's name because it can be computed in two-stages.

Suppose y1 depends in part on scalar y2 which is endogenous

Structural equation for y1 y1i = β1y2i + x
0
1iβ2 + ui

First-stage equation for y2 y2i = x01iπ1 + x02iπ2 + vi

I where x2 is one or more instruments for y2
I in earlier notation xi = (y2i x

0
1i )

0 and zi = (x
0
1i x

0
2i )

0.

OLS of y1 on y2 and x1 is inconsistent.

2SLS can be computed as follows

I 1. First-stage: by2 as prediction from OLS of y2 on x1 and x2.
I 2. Structural: Do OLS of y2 on by2 and x2.

But this method does not generalize to nonlinear models.
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3. Data Example Drug expenditures

3. Data Example: Drug expenditures

Example from MUS chapter 6.

Drug expenditures for U.S. elderly (ldrugexp) regressed on

I endogenous private health insurance dummy (hi empunion) and
I exogenous regressors de�ned by global x2list.

linc float %9.0g log(income)
blhisp float %9.0g Black or Hispanic
female byte %8.0g Female
age byte %8.0g Age
totchr byte %8.0g Total chronic cond
hi_empunion byte %8.0g Insured thro emp/union
ldrugexp float %9.0g log(drugexp)

variable name type format label variable label
storage display value

. describe ldrugexp hi_empunion $x2list

(302 observations deleted)
. keep if linc != .

. global x2list totchr age female blhisp linc

. use mus06data.dta

. * Read data, define global x2list (exogenous regressors), and summarize data
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3. Data Example Drug expenditures

Summary statistics

linc 10089 2.743275 .9131433 -6.907755 5.744476
blhisp 10089 .1635445 .36988 0 1

female 10089 .5770641 .4940499 0 1
age 10089 75.05174 6.682109 65 91

totchr 10089 1.860938 1.292858 0 9
hi_empunion 10089 .3821984 .4859488 0 1

ldrugexp 10089 6.481361 1.362052 0 10.18017

Variable Obs Mean Std. Dev. Min Max

. summarize ldrugexp hi_empunion $x2list

Sample is 65+.
38% have employer or union-sponsored health insurance.
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3. Data Example OLS Estimates

OLS estimates

OLS is inconsistent if hi empunion endogenous

_cons 5.861131 .1571037 37.31 0.000 5.553176 6.169085
linc .0104815 .0137126 0.76 0.445 -.0163979 .037361

blhisp -.1513068 .0341264 -4.43 0.000 -.2182013 -.0844122
female .0578055 .0253651 2.28 0.023 .0080848 .1075262

age -.0035295 .001937 -1.82 0.068 -.0073264 .0002675
totchr .4403807 .0093633 47.03 0.000 .4220268 .4587346

hi_empunion .0738788 .0259848 2.84 0.004 .0229435 .1248141

ldrugexp Coef. Std. Err. t P>|t| [95% Conf. Interval]
Robust

Root MSE = 1.236
R-squared = 0.1770
Prob > F = 0.0000
F( 6, 10082) = 376.85

Linear regression Number of obs = 10089

. regress ldrugexp hi_empunion $x2list, vce(robust)

. * OLS

Drug expenditure increases by 7.4% if have private insurance.
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3. Data Example Instruments

Instruments

A valid instrument for private health insurance (hi empunion) must

I not be directly a cause of ldrugexp (so uncorrelated with ui )
I i.e. must not belong in the model for ldrugexp
I and to be relevant should be correlated with hi empunion

Possible instrument 1

I ssiratio = social security income � income from all other sources
I need to assume that the direct role of income is adequately captured
by the regressor linc

Possible instrument 2

I multlc = 1 if �rm has multiple locations
I need to assume that �rm size does not e�ect ldrugexp
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3. Data Example Instruments

Two possible instruments ssiratio and multlc

multlc 0.1198 -0.1904 1.0000
ssiratio -0.2124 1.0000

hi_empunion 1.0000

hi_emp~n ssiratio multlc

(obs=10089)
. correlate hi_empunion ssiratio multlc

multlc 10089 .0620478 .2412543 0 1
ssiratio 10089 .5365438 .3678175 0 9.25062

Variable Obs Mean Std. Dev. Min Max

. summarize ssiratio multlc

multlc byte %8.0g Multiple locations
ssiratio float %9.0g SSI/Income ratio

variable name type format label variable label
storage display value

. describe ssiratio multlc

. * Two available instruments for hi_empunion

Correlation between z and x is low

I e.g. Cor[z , x ] = �0.21 for ssiratio
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3. Data Example IV estimates

IV estimates

IV estimates using the single instrument ssiratio for hi empunion

Instruments: totchr age female blhisp linc ssiratio
Instrumented: hi_empunion

_cons 6.78717 .2688453 25.25 0.000 6.260243 7.314097
linc .0870018 .0226356 3.84 0.000 .0426368 .1313668

blhisp -.2174244 .0394944 -5.51 0.000 -.294832 -.1400167
female -.020406 .0326114 -0.63 0.531 -.0843232 .0435113

age -.0132176 .0029977 -4.41 0.000 -.0190931 -.0073421
totchr .4502655 .0101969 44.16 0.000 .43028 .470251

hi_empunion -.8975913 .2211268 -4.06 0.000 -1.330992 -.4641908

ldrugexp Coef. Std. Err. z P>|z| [95% Conf. Interval]
Robust

Root MSE = 1.3177
R-squared = 0.0640
Prob > chi2 = 0.0000
Wald chi2(6) = 2000.86

Instrumental variables (2SLS) regression Number of obs = 10089

. ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list, vce(robust)

. * IV estimator with ssiratio as single instrument for hi_empunion

Coe�cient even changes sign, from 0.074 (OLS) to �0.898 (IV).
Standard error increases from 0.026 (OLS) to 0.221 (IV).
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3. Data Example 2SLS estimates

2SLS Estimates

Overidenti�ed as two instruments ssiratio and multlc

Instruments: totchr age female blhisp linc ssiratio multlc
Instrumented: hi_empunion

_cons 6.875188 .2578855 26.66 0.000 6.369741 7.380634
linc .0942748 .0218841 4.31 0.000 .0513828 .1371668

blhisp -.2237087 .0395848 -5.65 0.000 -.3012934 -.1461239
female -.0278398 .0321743 -0.87 0.387 -.0909002 .0352207

age -.0141384 .0029 -4.88 0.000 -.0198223 -.0084546
totchr .4512051 .0103088 43.77 0.000 .4310001 .47141

hi_empunion -.9899269 .2045907 -4.84 0.000 -1.390917 -.5889365

ldrugexp Coef. Std. Err. z P>|z| [95% Conf. Interval]
Robust

Root MSE = 1.3335
R-squared = 0.0414
Prob > chi2 = 0.0000
Wald chi2(6) = 1955.36

Instrumental variables (2SLS) regression Number of obs = 10089

. ivregress 2sls ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)

. * 2SLS estimator with ssiratio and multlc as instruments for hi_empunion

Coe�cient changes from �0.898 (IV) to �0.990 (2SLS).
Standard error decreases from 0.221 (IV) to 0.205 (2SLS).
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3. Data Example Optimal GMM Estimates

Optimal GMM
Two instruments ssiratio and multlc

I optimal GMM if errors are heteroskedastic and start with E[zu] = 0.

Instruments: totchr age female blhisp linc ssiratio multlc
Instrumented: hi_empunion

_cons 6.877821 .2579974 26.66 0.000 6.372155 7.383486
linc .0944632 .0218959 4.31 0.000 .0515481 .1373783

blhisp -.2231048 .0395972 -5.63 0.000 -.3007139 -.1454957
female -.0281716 .0321881 -0.88 0.381 -.0912592 .034916

age -.0141509 .0029014 -4.88 0.000 -.0198375 -.0084644
totchr .4509508 .0103104 43.74 0.000 .4307428 .4711588

hi_empunion -.9932795 .2046731 -4.85 0.000 -1.394431 -.5921275

ldrugexp Coef. Std. Err. z P>|z| [95% Conf. Interval]
Robust

GMM weight matrix: Robust Root MSE = 1.3341
R-squared = 0.0406
Prob > chi2 = 0.0000
Wald chi2(6) = 1952.65

Instrumental variables (GMM) regression Number of obs = 10089

. ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)

. * GMM estimator with ssiratio and multlc as instruments for hi_empunion

Estimate and standard error for hi empunion are very similar to 2SLS
I Little e�ciency gain compared to 2SLS.
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3. Data Example Estimator comparison

Estimator comparison
Compare OLS, IV, 2SLS (over-identi�ed), GMM (over-identi�ed)

legend: b/se

F 376.8458
r2 0.1770 0.0414 0.0640 0.0406
N 10089 10089 10089 10089

0.157 0.258 0.269 0.258
_cons 5.8611 6.8752 6.7872 6.8778

0.014 0.022 0.023 0.022
linc 0.0105 0.0943 0.0870 0.0945

0.034 0.040 0.039 0.040
blhisp -0.1513 -0.2237 -0.2174 -0.2231

0.025 0.032 0.033 0.032
female 0.0578 -0.0278 -0.0204 -0.0282

0.002 0.003 0.003 0.003
age -0.0035 -0.0141 -0.0132 -0.0142

0.009 0.010 0.010 0.010
totchr 0.4404 0.4512 0.4503 0.4510

0.026 0.205 0.221 0.205
hi_empunion 0.0739 -0.9899 -0.8976 -0.9933

Variable OLS IV TWOSLS GMM

. estimates table OLS IV TWOSLS GMM, b(%9.4f) se(%9.3f) stats(N r2 F)

. estimates store GMM

. quietly ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)

. estimates store TWOSLS

. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list, vce(robust)

. estimates store IV

. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)

. estimates store OLS

. quietly regress ldrugexp hi_empunion $x2list, vce(robust)

. * Compare estimators
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4. Instrumental variables in practice

4. Instrumental variables methods in practice

Do we need to use instruments?

I Hausman test of endogeneity.

Is the instrument valid (uncorrelated with the error)?

I If model is over-identi�ed can do over-identifying restrictions test.

What if the instrument is weakly correlated with regressor
instrumented

I Lose e�ciency
I If really weak can have �nite-sample bias and wrong test size.

How many instruments?

I Need # instruments � # endogenous regressors.
I In theory more is better but too many can have �nite-sample bias.
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4. Instrumental variables in practice Hausman test of endogeneity

Hausman test

In general a Hausman test considers two di�erent estimators bθ andbθ
that have the same plim under H0 and di�erent plim0 s under Ha.

I H0 : plim(bθ� eθ) = 0 versus Ha : plim(bθ� eθ) 6= 0.
We reject H0 if the di�erence is large, using

H = (bθ� eθ)0(bV[bθ� eθ])�1(bθ� eθ) a� χ2(q).

Tricky bit is estimating V[bθ� eθ] = V[bθ]+ V[eθ]� 2�Cov[bθ,eθ]
I usual Hausman test implementation assumes one of bθ and eθ is fully
e�cient under the null. Say eθ: then V[bθ� eθ] = V[bθ]�V[eθ]

I such e�ciency is not usually the case in practice

F e.g. if errors are heteroskedastic then OLS is ine�cient

I instead need to use a robust form of the Hausman test.
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4. Instrumental variables in practice Hausman test of endogeneity

Hausman test of endogeneity: 2SLS (bθ) versus OLS (bθ)
I H0 : plim(bθ2SLS � eθOLS) = 0 if exogeneity
vs. Ha : plim(bθ2SLS � eθOLS) 6= 0 if endogeneity

Use heteroskedasticity-robust version of Hausman test

I this is command estat endogenous and not hausman

Robust regression F(1,10081) = 26.4333 (p = 0.0000)
Robust score chi2(1) = 24.935 (p = 0.0000)

Ho: variables are exogenous
Tests of endogeneity

. estat endogenous

. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list, vce(robust)

. * Robust version of Hausman test using augmented regression

Reject H0 as p = 0.000.
Conclude that hi empunion is endogenous. Need to do IV.
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4. Instrumental variables in practice Test of instrument validity

Test of instrument validity
Cannot test validity in a just identi�ed model

I Intuition: Test based on Cov[zi , bui ] ' 0 requires bui based on a
consistent estimator of β which requires at least just-identi�ed model.

Test of overidentifying restrictions (for over-identi�ed model)
I Test H0 : E[z0iui ] = 0 by testing if N

�1 ∑i z0ibui ' 0.
I Limited test as assumes instruments in just-identi�ed model are valid.

In Stata command estat overid after command ivregress gmm.
I Here one over-identifying restriction (2 instruments for 1 endogenous)

Hansen's J chi2(1) = 1.04754 (p = 0.3061)

Test of overidentifying restriction:

. estat overid

. quietly ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x2list, wmatrix(robust)

. * Test of overidentifying restrictions following ivregress gmm

Do not reject H0 as p = 0.31 < 0.05.
Conclude that, assuming the just-identifying restriction is valid, then
the over-identifying restriction is also valid.
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4. Instrumental variables in practice Weak instruments

Weak instruments

Weak instrument means that instrument(s) are weakly correlated with
endogenous regressor(s), after controlling for exogenous regressors.

Then

I 1. standard errors " greatly as 2SLS much less e�cient than OLS.
I 2. even slight correlation between error and the instrument can lead to
2SLS more inconsistent than OLS.

I 3. even if instrument(s) are valid so 2SLS is inconsistent, in typical
sample sizes usual asymptotic theory can provide a poor approximation
e.g. bias.

Consequences

I 1. key coe�cient estimate(s) can become statistically insigni�cant.
I 2. even more important to ensure that the instrument is valid.
I 3. focus of the weak instrument literature.

In Stata for 3. use

I command estat firststage after command ivregress
I add-on commands condivreg and ivreg2
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5. IV Estimator Properties Consistency

5. IV estimator properties: consistency

Stacking all observations

bβIV = �Z0X��1 Z0y.
Substitute y = Xβ+ u for y yields

bβIV =
�
Z0X

��1
Z0[Xβ+ u]

= β+
�
Z0X

��1
Z0u

= β+
�
1
NZ

0X
��1 1

NZ
0u

So bβIV p! β and bβIV is consistent for β if

I plim 1
NZ

0u = 0 (instruments are valid) and
I plim 1

NZ
0X 6= 0 (instruments are relevant).
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5. IV Estimator Properties Asymptotic distribution

IV estimator: asymptotic distribution

Informal derivation:bβGMM � β = (Z0X)�1 � Z0u
a� (Z0X)�1 �N [0, V[Z0u]]
a� (Z0X)�1 �N [0, Z0V[ujZ]Z]
a� (Z0X)�1 �N [0, Z0ΩZ]

Thus

bβIV a� N [β, (Z0X)�1Z0ΩZ(X0Z)�1]; Ω = V[ujZ].

With independent heteroskedastic errors (Stata option vce(robust))

bV[bβIV] = (Z0X)�1Z0 bΩZ(X0Z)�1; bΩ = Diag[bu2i ].
Note: Cor[Z ,X] ) Z0X small ) (Z0X)�1 large ) bβIV is imprecise.
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5. IV Estimator Properties Asymptotic distribution for GMM

Asymptotic Distribution of GMM

Informal derivation:bβGMM = (X0ZWZ0X)�1X0ZWZ0(Xβ+ u)bβGMM � β = (X0ZWZ0X)�1X0ZWZ0u
a� (X0ZWZ0X)�1X0ZW�N [0, V[Z0u]]
a� (X0ZWZ0X)�1X0ZW�N [0, Z0V[ujZ]Z]
a� (X0ZWZ0X)�1X0ZW�N [0, Z0ΩZ]

ThusbβGMM a� N [β, (X0ZWZ0X)�1X0ZWZ0ΩZWZ0X(X0ZWZ0X)�1]
Ω = V[ujZ].

Optimal W is a consistent estimate of Ω�1. Then

bβOptGMM a� N [β, (X0ZΩ�1Z0X)�1]
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6. Nonlinear GMM

6. Nonlinear GMM estimator: De�nition
Nests LS, MLE, IV, GMM, .... The way to view estimation.
Population unconditional moment condition

E[h(w, θ0)] = 0; w = (y, x, z) is all observables.bθ solves the corresponding sample moment condition
1
N ∑N

i=1 h(wi ,bθ) = 0.
I just-identi�ed case (r = q) can solve for β
I over-identi�ed case (r > q) cannot as r equations in k unknowns.

The generalized method of moments (GMM) estimator (for r > q)
minimizes the quadratic form in N�1 ∑i h(wi , θ)

Q(θ) =

�
1

N ∑N

i=1
h(wi , θ)

�0
WN

�
1

N ∑N

i=1
h(wi , θ)

�
= g(θ)0WNg(θ)

I where g(θ) = ∑Ni=1 hi (θ) and
1
N ∑Ni=1WN is a symmetric full-rank

weighting matrix that does not depend on θ.
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6. Nonlinear GMM Properties

Nonlinear GMM estimator: PropertiesbθGMM is asymptotically normally distributed with
V[bθGMM] = N(G0WG)�1G0WSWG(G0WG)�1.

where

G = lim E
h

∂gN (θ)
0

∂θ

i
= lim E

h
1
N ∑N

i=1
∂hi (θ)

0

∂θ

i
S = Var[

p
NgN(θ)] = Var

h
1p
N

∑N
i=1 h(wi , θ)

i
.

Optimal GMM: WN = bS�1 where bS p! S.

Similar issues as for weighted LS in the linear model.

I Model choice: specify moment conditions for estimation.
I Estimator choice: specify a weighting function.
I Statistical inference: use robust standard errors.
I Most e�cient estimator: a particular choice of weighting function.
I In Stata 11 use the new command gmm.
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7. Endogeneity in Nonlinear Models

7. Endogeneity in nonlinear models

Example is yi = exp(x0iβ) + ui and Cov[xi , ui ] 6= 0.
Several very di�erent methods (and associated models) exist.

1. Nonlinear IV (often called nonlinear 2SLS) is nonlinear GMM
based on E[ziui ] = 0 and W = (Z0Z)�1.

2. Control function: add estimated �rst-stage error bvi as regressor.
I di�ers from 1. in nonlinear models

3. Fully structural approach adds an equation for endogenous
regressors and estimates the model

I Di�ers from 1. and 2. in most nonlinear models and is computationally
di�cult.

4. The following is inconsistent in nonlinear models: get bxi from �rst
stage regressions and estimate yi = exp(bx0iβ) + error .

I The two-stage LS interpretation of 2SLS does not carry over to
nonlinear models.

c A. Colin Cameron Univ. of Calif.- Davis (Advanced Econometrics Bavarian Graduate Program in Economics . Based on A. Colin Cameron and Pravin K. Trivedi (2009, 2010), Microeconometrics using Stata (MUS), Stata Press. and A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications (MMA), C.U.P. )BGPE Course: IV, 2SLS, GMM July 22-26, 2013 28 / 35



8. Stata commands

8. Stata commands

IV (just-identi�ed) ivregress 2sls

2SLS (over-identi�ed) ivregress 2sls

GMM (over-identi�ed) ivregress gmm

Overidentifying restrictions test xtoverid

Hausman test (if i.i.d. error) hausman

Hausman test (if heteroskedastic error) estat endogenous

Weak instruments estat firststage

(plus user written commands) condivreg; ivreg2

Static panel IV xtivreg; xthaustaylor

Dynamic panel IV xtabond; xtdpdsys; xtdpd

Nonlinear GMM (new in Stata 11) gmm
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9. Appendix IV Intuition

9. Appendix: Instrumental variables Intuition

Simplify to scalar regression of y on single regressor x (no intercept).

Linear regression model

I y = βx + u where u is an error term.

In general

I E[y jx ] = βx+ E[ujx ].

Standard regression:

I assume E[ujx ] = 0 i.e. regressors uncorrelated with error
I implies the following path analysis diagram

x �! y
%

u

where there is no association between x and u.
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9. Appendix IV Intuition

But there may be an association between regressors and errors.

Example: regression of earnings (y) on years of schooling (x).

The error u embodies all factors other than schooling that determine
earnings, such as ability.

Suppose a person has high u, due to high (unobserved) ability.

I This increases earnings, since y = βx + u.
I But it may also increase x , since schooling is likely to be higher for
those with high ability.

So high u

I (1) directly increases y and
I (2) indirectly increases y via higher x .

c A. Colin Cameron Univ. of Calif.- Davis (Advanced Econometrics Bavarian Graduate Program in Economics . Based on A. Colin Cameron and Pravin K. Trivedi (2009, 2010), Microeconometrics using Stata (MUS), Stata Press. and A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications (MMA), C.U.P. )BGPE Course: IV, 2SLS, GMM July 22-26, 2013 31 / 35



9. Appendix IV Intuition

The path analysis diagram becomes

x �! y
" %
u

where now there is an association between x and u.

Then y = βx + u(x) implies

dy

dx
= β+

du

dx
.

OLS is inconsistent for β as it measures dy/dx , not just β.
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9. Appendix IV Intuition

Assume there exists an instrument z that has the properties

I changes in z do not directly lead to changes in y
I changes in z are associated with changes in x

The path analysis diagram becomes

z �! x �! y
" %
u

Note: z does not directly cause y , though z and y are correlated via
indirect path of z being correlated with x which in turn determines y .

Formally, z is an instrument for regressor x if

I (1) z is uncorrelated with the error u ; and
I (2) z is correlated with the regressor x .
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9. Appendix IV Intuition

Example: a one unit change in the instrument z is associated with

I 0.2 more years of schooling (x) and
I $500 increase in annual earnings (y) (due to z " ) x " ) y ".)

Then 0.2 years extra schooling is associated with $500 extra earnings.

I So a one year increase in schooling is associated with a
$500/0.2 = $2, 500 increase in earnings.

The causal estimate of β is therefore 2500.
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9. Appendix IV Intuition

Mathematically we estimated changes dx/dz and dy/dz and
calculated the causal estimator as

βIV =
dy/dz
dx/dz

.

I dy/dz estimated by OLS of y on z with slope estimate (z0z)�1z0y
I dx/dz estimated by OLS of x on z with slope estimate (z0z)�1z0x.

The IV estimator is

bβIV =
(z0z)�1z0y

(z0z)�1z0x

= (z0x)�1z0y

=
�

∑N
i=1 zixi

��1
∑N
i=1 ziyi .
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