Day 2
 Instrumental Variables, Two-stage Least Squares and Generalized Method of Moments

(C) A. Colin Cameron
Univ. of Calif.- Davis
Advanced Econometrics
Bavarian Graduate Program in Economics
Based on A. Colin Cameron and Pravin K. Trivedi $(2009,2010)$, Microeconometrics using Stata (MUS), Stata Press.
and A. Colin Cameron and Pravin K. Trivedi (2005),
Microeconometrics: Methods and Applications (MMA), C.U.P.
$$
\text { July 22-26, } 2013
$$

1. Introduction

- Problem: OLS inconsistent in model $y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+u_{i}$ if $\operatorname{Cov}\left[\mathbf{x}_{i}, u_{i}\right] \neq \mathbf{0}$.
- Solution: Assume there are instruments \mathbf{z}_{i} satisfying $\operatorname{Cov}\left[\mathbf{z}_{i}, u_{i}\right]=\mathbf{0}$.
- If $\#$ instruments $=\#$ regressors
- instrumental variables (IV) estimator
- If \#instruments > \#regressors then use
- two-stage least squares (2SLS)
- generalized method of moments (GMM).
- Complications
- test of assumptions (exogeneity, endogeneity)
- weak instruments

Overview

(1) Introduction.
(2) IV, 2SLS, GMM: Definitions
(3) Data Example
(9) Instrumental variable methods in practice
(5) IV Estimator Properties
(0) Nonlinear GMM
(1) Endogeneity in nonlinear models
(8) Stata
(9) Appendix: Instrumental Variables Intuition

2. IV, 2SLS and GMM estimators: Definitions

- Model is $y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+u_{i}$
- OLS is inconsistent as $\operatorname{Cov}\left[\mathbf{x}_{i}, u_{i}\right] \neq \mathbf{0}$.
- Assume there are instruments \mathbf{z}_{i} such that $\operatorname{Cov}\left[\mathbf{z}_{i}, u_{i}\right]=\mathbf{0}$.
- Then $\operatorname{Cov}\left[\mathbf{z}_{i}, u_{i}\right]=0 \Rightarrow \mathrm{E}\left[\mathbf{z}_{i} u_{i}\right]=\mathbf{0}$ given $\mathrm{E}\left[u_{i} \mid \mathbf{z}_{i}\right]=0$.
- We have the population moment condition

$$
\mathrm{E}\left[\mathbf{z}_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]=\mathbf{0} .
$$

- Method of moments: solve the corresponding sample moment condition

$$
\frac{1}{N} \sum_{i=1}^{N} \mathbf{z}_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)=\mathbf{0} .
$$

Instrumental variables (IV) estimator

- In just-identified case (\# instruments $=\#$ regressors)
- solve k equations in k unknowns $\frac{1}{N} \sum_{i} \mathbf{z}_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)=\mathbf{0}$
- gives the instrumental variables (IV) estimator.

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{\mathrm{IV}} & =\left(\sum_{i=1}^{N} \mathbf{z}_{i}^{\prime} \mathbf{x}_{i}\right)^{-1}\left(\sum_{i=1}^{N} \mathbf{z}_{i}^{\prime} y_{i}\right) \\
& =\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}
\end{aligned}
$$

- estimate using Stata 10 command ivregress 2sls
- Often just one regressor in \mathbf{x}_{i} is endogenous (i.e. correlated with u_{i}).
- Then one variable in $\mathbf{z}_{\boldsymbol{i}}$ is the instrument for this endogenous regressor.
- the remaining entries in $\mathbf{z}_{\boldsymbol{i}}$ are the exogenous variables
- i.e. exogenous variables are instruments for themselves.

Generalized method of moments estimator

- In over-identified case (\# instruments > \# regressors)
- Cannot solve $\frac{1}{N} \sum_{i} \mathbf{z}_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)=\mathbf{0}$.
- Instead generalized method of moments (GMM) estimator minimizes the quadratic form in $\frac{1}{N} \sum_{i=1}^{N} \mathbf{z}_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$

$$
\begin{aligned}
Q(\boldsymbol{\beta}) & =\left[\frac{1}{N} \sum_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \mathbf{z}_{i}\right]^{\prime} \times \mathbf{W}_{N} \times\left[\frac{1}{N} \sum_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \mathbf{z}_{i}\right] \\
& =\left(\mathbf{Z}^{\prime} \mathbf{u}\right)^{\prime} \mathbf{W}\left(\mathbf{Z}^{\prime} \mathbf{u}\right)
\end{aligned}
$$

- The symmetric full-rank weighting matrix \mathbf{W} does not depend on $\boldsymbol{\beta}$.
- Then $\partial Q(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}=\mathbf{0}$ yields the GMM estimator

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{\mathrm{GMM}} & =\left(\sum_{i} \mathbf{x}_{i} \mathbf{z}_{i}^{\prime} \times \mathbf{W}_{N} \times \sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1}\left(\sum_{i} \mathbf{x}_{i} \mathbf{z}_{i}^{\prime} \times \mathbf{W}_{N} \times \sum_{i=1}^{N} \mathbf{z}_{i} y_{i}\right) \\
& =\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W}_{N} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z} \mathbf{W}_{N} \mathbf{Z}^{\prime} \mathbf{y} .
\end{aligned}
$$

Optimal GMM and 2SLS

- The variance of $\widehat{\boldsymbol{\beta}}_{\mathrm{GMM}}$ is smallest when the optimal weighting matrix \mathbf{W}_{N} is consistent for $\left(\operatorname{Var}\left[\mathbf{Z}^{\prime} \mathbf{u}\right]\right)^{-1}$
- Though in the just-identified $(r=K)$ GMM $=$ IV for any \mathbf{W}_{N}.
- For homoskedastic errors $\operatorname{Var}\left[\mathbf{Z}^{\prime} \mathbf{u}\right]=\sigma^{2} \sum_{i=1}^{N} \mathbf{z}_{i}^{\prime} \mathbf{z}_{i}$
- Two-stage least squares (2SLS) estimator sets $\mathbf{W}_{N}=\left(\sum_{i=1}^{N} \mathbf{z}_{i}^{\prime} \mathbf{z}_{i}\right)^{-1}$
- Yields $\widehat{\boldsymbol{\beta}}_{2 \text { SLS }}=\left(\mathbf{X}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \times \mathbf{X}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$
- Estimate using Stata 10 command ivregress 2sls
- but use robust VCE to guard against errors not homoskedastic.
- For heteroskedastic errors $\operatorname{Var}\left[\mathbf{Z}^{\prime} \mathbf{u}\right]=\sigma^{2} \sum_{i=1}^{N} \mathbf{z}_{i}^{\prime} \mathbf{z}_{i}$
- "Optimal" GMM estimator if errors are heteroskedastic errors sets

$$
\mathbf{W}_{N}=\left(\sum_{i=1}^{N} \widehat{u}_{i}^{2} z_{i}^{\prime} \mathbf{z}_{i}\right)^{-1}, \widehat{u}_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}_{2 S L S}
$$

- estimate using Stata 10 command ivregress gmm.

More on 2SLS

- 2SLS gets it's name because it can be computed in two-stages.
- Suppose y_{1} depends in part on scalar y_{2} which is endogenous

Structural equation for $y_{1} \quad y_{1 i}=\beta_{1} y_{2 i}+\mathbf{x}_{1 i}^{\prime} \beta_{2}+u_{i}$
First-stage equation for $y_{2} \quad y_{2 i}=\mathbf{x}_{1 i}^{\prime} \pi_{1}+\mathbf{x}_{2 i}^{\prime} \pi_{2}+v_{i}$

- where \mathbf{x}_{2} is one or more instruments for y_{2}
- in earlier notation $\mathbf{x}_{i}=\left(y_{2 i} \mathbf{x}_{1 i}^{\prime}\right)^{\prime}$ and $\mathbf{z}_{i}=\left(\mathbf{x}_{1 i}^{\prime} \mathbf{x}_{2 i}^{\prime}\right)^{\prime}$.
- OLS of y_{1} on y_{2} and x_{1} is inconsistent.
- 2 SLS can be computed as follows
- 1. First-stage: \widehat{y}_{2} as prediction from OLS of y_{2} on \mathbf{x}_{1} and \mathbf{x}_{2}.
- 2. Structural: Do OLS of y_{2} on \widehat{y}_{2} and x_{2}.
- But this method does not generalize to nonlinear models.

3. Data Example: Drug expenditures

- Example from MUS chapter 6.
- Drug expenditures for U.S. elderly (ldrugexp) regressed on
- endogenous private health insurance dummy (hi_empunion) and
- exogenous regressors defined by global x2list.
. * Read data, define g1obal x21ist (exogenous regressors), and summarize
. use mus06data.dta
. global x2list totchr age female blhisp linc
. keep if linc != .
(302 observations deleted)
. describe 1drugexp hi_empunion \$x21ist

variable name	storage type	display format	value 1abe1	variable label
1drugexp	float	$\% 9.0 \mathrm{~g}$		log (drugexp)
hi_empunion	byte	\%8.0g		Insured thro emp/union
totchr	byte	$\% 8.0 \mathrm{~g}$		Total chronic cond
age	byte	\%8.0g		Age
female	byte	\%8.0g		Female
blhisp	float	\%9.0g		B7ack or Hispanic
1inc	float	\%9.0g		log(income)

- Summary statistics
. summarize 1drugexp hi_empunion \$x21ist

Variab1e	Obs	Mean	Std. Dev.	Min	Max
1drugexp	10089	6.481361	1.362052	0	10.18017
hi_empunion	10089	.3821984	.4859488	0	1
totchr	10089	1.860938	1.292858	0	9
age	10089	75.05174	6.682109	65	91
fema1e	10089	.5770641	.4940499	0	1
b1hisp	10089	.1635445	.36988	0	1
linc	10089	2.743275	.9131433	-6.907755	5.744476

- Sample is 65+. 38% have employer or union-sponsored health insurance.

OLS estimates

- OLS is inconsistent if hi_empunion endogenous

```
. * OLS
. regress ldrugexp hi_empunion $x2list, vce(robust)
```

Linear regression

Number of obs	$=10089$	
F(6, 10082)	$=376.85$	
Prob $>$ F	$=0.0000$	
R-squared	$=$	0.1770
Root MSE	$=1.236$	

1drugexp	Robust			$P>\|t\|$	[95\% Conf. Interval]	
hi_empunion	. 0738788	. 0259848	2.84	0.004	. 0229435	. 1248141
- totchr	. 4403807	. 0093633	47.03	0.000	. 4220268	. 4587346
age	-. 0035295	. 001937	-1.82	0.068	-. 0073264	. 0002675
female	. 0578055	. 0253651	2.28	0.023	. 0080848	. 1075262
b1hisp	-. 1513068	. 0341264	-4.43	0.000	-. 2182013	-. 0844122
1 inc	. 0104815	. 0137126	0.76	0.445	-. 0163979	. 037361
_cons	5.861131	. 1571037	37.31	0.000	5.553176	6.169085

- Drug expenditure increases by 7.4% if have private insurance.

Instruments

- A valid instrument for private health insurance (hi_empunion) must
- not be directly a cause of ldrugexp (so uncorrelated with u_{i})
- i.e. must not belong in the model for ldrugexp
- and to be relevant should be correlated with hi_empunion
- Possible instrument 1
- ssiratio $=$ social security income \div income from all other sources
- need to assume that the direct role of income is adequately captured by the regressor linc
- Possible instrument 2
- multlc $=1$ if firm has multiple locations
- need to assume that firm size does not effect ldrugexp
- Two possible instruments ssiratio and multlc
. * Two available instruments for hi_empunion
. describe ssiratio multlc

variable name	storage type	display format	value labe1	variable 1abe1
ssiratio	float	$\% 9.0 \mathrm{~g}$ mult1c	byte	$\% 8.0 \mathrm{~g}$

. summarize ssiratio multlc

Variab1e	Obs	Mean	Std. Dev.	Min	Max
ssiratio	10089	.5365438	.3678175	0	9.25062
mu1t1c	10089	.0620478	.2412543	0	1

. correlate hi_empunion ssiratio multlc (obs=10089)

	hi_emp~n ssiratio	mult1c	
hi_empunion	1.0000		
ssiratio	-0.2124	1.0000	
mult1c	0.1198	-0.1904	1.0000

- Correlation between z and x is low
- e.g. $\operatorname{Cor}[z, x]=-0.21$ for ssiratio

IV estimates

- IV estimates using the single instrument ssiratio for hi_empunion
. * IV estimator with ssiratio as single instrument for hi_empunion
. ivregress 2sls 1drugexp (hi_empunion = ssiratio) \$x2list, vce(robust)
Instrumental variables (2SLS) regression

Number of obs	$=10089$
Wald chi2(6)	$=2000.86$
Prob chi2	$=0.0000$
R-squared	$=0.0640$
Root MSE	$=1.3177$

1drugexp	Coef.	Robust Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interva1]	
hi_empunion	-.8975913	.2211268	-4.06	0.000	-1.330992	-.4641908
totchr	.4502655	.0101969	44.16	0.000	.43028	.470251
age	-.0132176	.0029977	-4.41	0.000	-.0190931	-.0073421
female	-.020406	.0326114	-0.63	0.531	-.0843232	.0435113
b1hisp	-.2174244	.0394944	-5.51	0.000	-.294832	-.1400167
1inc	.0870018	.0226356	3.84	0.000	.0426368	.1313668
_cons	6.78717	.2688453	25.25	0.000	6.260243	7.314097

Instrumented: hi_empunion Instruments: totchr age female blhisp linc ssiratio

- Coefficient even changes sign, from 0.074 (OLS) to -0.898 (IV). Standard error increases from 0.026 (OLS) to 0.221 (IV).

2SLS Estimates

- Overidentified as two instruments ssiratio and multlc
. * 2sLs estimator with ssiratio and multlc as instruments for hi_empunion
- ivregress 2s1s 1drugexp (hi_empunion = ssiratio multlc) \$x21ist, vce(robust)

Instrumental variables (2SLS) regression

Number of obs	$=10089$
Wa1d chi2(6)	$=1955.36$
Prob > chi2	$=0.0000$
R-squared	$=0.0414$
Root MSE	$=1.3335$

| | Coef. | Robust
 Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | :---: | :---: | :---: | ---: | ---: |
| 1drugexp | hi_empunion | -.9899269 | .2045907 | -4.84 | 0.000 | -1.390917 |
| totchr | .4512051 | .0103088 | 43.77 | 0.000 | .4310001 | .4789365 |
| age | -.0141384 | .0029 | -4.88 | 0.000 | -.0198223 | -.0084546 |
| female | -.0278398 | .0321743 | -0.87 | 0.387 | -.0909002 | .0352207 |
| blhisp | -.2237087 | .0395848 | -5.65 | 0.000 | -.3012934 | -.1461239 |
| 1inc | .0942748 | .0218841 | 4.31 | 0.000 | .0513828 | .1371668 |
| _cons | 6.875188 | .2578855 | 26.66 | 0.000 | 6.369741 | 7.380634 |

Instrumented: hi_empunion
Instruments: totchr age female blhisp linc ssiratio multlc

- Coefficient changes from -0.898 (IV) to -0.990 (2SLS). Standard error decreases from 0.221 (IV) to 0.205 (2SLS).

Optimal GMM

- Two instruments ssiratio and multlc
- optimal GMM if errors are heteroskedastic and start with $\mathrm{E}[\mathbf{z u}]=\mathbf{0}$.
. * GMM estimator with ssiratio and multlc as instruments for hi_empunion - ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) \$x21ist, vce(robust)

Instrumental variables (GMM) regression Number of obs = 10089
wald chi2(6) $=1952.65$
Prob > chi2 20.0000
R-squared $=0.0406$
Root MSE = 1.3341

| | Coef. | Robust
 Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | :---: | :---: | :---: | ---: | ---: |
| hi_empunion | -.9932795 | .2046731 | -4.85 | 0.000 | -1.394431 | -.5921275 |
| totchr | .4509508 | .0103104 | 43.74 | 0.000 | .4307428 | .4711588 |
| age | -.0141509 | .0029014 | -4.88 | 0.000 | -.0198375 | -.0084644 |
| female | -.0281716 | .0321881 | -0.88 | 0.381 | -.0912592 | .034916 |
| b1hisp | -.2231048 | .0395972 | -5.63 | 0.000 | -.3007139 | -.1454957 |
| linc | .0944632 | .0218959 | 4.31 | 0.000 | .0515481 | .1373783 |
| _cons | 6.877821 | .2579974 | 26.66 | 0.000 | 6.372155 | 7.383486 |

Instrumented: hi_empunion
Instruments: totchr age female blhisp linc ssiratio multlc

- Estimate and standard error for hi_empunion are very similar to 2SLS
- Little efficiency gain compared to 2SLS.

Estimator comparison

- Compare OLS, IV, 2SLS (over-identified), GMM (over-identified)

```
* Compare estimators
. quietly regress 1drugexp hi_empunion $x2list, vce(robust)
. estimates store OLS
. quietly ivregress 2sls 1drugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)
. estimates store IV
. quietly ivregress 2sls 1drugexp (hi_empunion = ssiratio) $x2list, vce(robust)
. estimates store TWOSLS
. quietly ivregress gmm 1drugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)
. estimates store GMM
. estimates table OLS IV TWOSLS GMM, b(%9.4f) se(%9.3f) stats(N r2 F)
```

Variable	OLS	IV	TWOSLS	GMM
hi_empunion	0.0739	-0.9899	-0.8976	-0.9933
-_empunion	0.026	0.205	0.221	0.205
totchr	0.4404	0.4512	0.4503	0.4510
	0.009	0.010	0.010	0.010
age	-0.0035	-0.0141	-0.0132	-0.0142
	0.002	0.003	0.003	0.003
female	0.0578	-0.0278	-0.0204	-0.0282
	0.025	0.032	0.033	0.032
b7hisp	-0.1513	-0.2237	-0.2174	-0.2231
	0.034	0.040	0.039	0.040
1inc	0.0105	0.0943	0.0870	0.0945
	0.014	0.022	0.023	0.022
_cons	5.8611	6.8752	6.7872	6.8778
	0.157	0.258	0.269	0.258
N	10089	10089	10089	10089
r2	0.1770	0.0414	0.0640	0.0406
F	376.8458			

4. Instrumental variables methods in practice

- Do we need to use instruments?
- Hausman test of endogeneity.
- Is the instrument valid (uncorrelated with the error)?
- If model is over-identified can do over-identifying restrictions test.
- What if the instrument is weakly correlated with regressor instrumented
- Lose efficiency
- If really weak can have finite-sample bias and wrong test size.
- How many instruments?
- Need \# instruments \geq \# endogenous regressors.
- In theory more is better but too many can have finite-sample bias.

Hausman test

- In general a Hausman test considers two different estimators $\widehat{\boldsymbol{\theta}}$ and $\widehat{\boldsymbol{\theta}}$ that have the same plim under H_{0} and different plim's under H_{a}.
- $H_{0}: \operatorname{plim}(\widehat{\boldsymbol{\theta}}-\widetilde{\boldsymbol{\theta}})=\mathbf{0}$ versus $H_{a}: \operatorname{plim}(\widehat{\boldsymbol{\theta}}-\widetilde{\boldsymbol{\theta}}) \neq \mathbf{0}$.
- We reject H_{0} if the difference is large, using

$$
\mathrm{H}=(\widehat{\boldsymbol{\theta}}-\widetilde{\boldsymbol{\theta}})^{\prime}(\widehat{\mathrm{V}}[\widehat{\boldsymbol{\theta}}-\widetilde{\boldsymbol{\theta}}])^{-1}(\widehat{\boldsymbol{\theta}}-\widetilde{\boldsymbol{\theta}}) \stackrel{a}{\sim} \chi^{2}(q) .
$$

- Tricky bit is estimating $\mathrm{V}[\widehat{\boldsymbol{\theta}}-\widetilde{\boldsymbol{\theta}}]=\mathrm{V}[\widehat{\boldsymbol{\theta}}]+\mathrm{V}[\widetilde{\boldsymbol{\theta}}]-2 \times \operatorname{Cov}[\widehat{\boldsymbol{\theta}}, \widetilde{\boldsymbol{\theta}}]$
- usual Hausman test implementation assumes one of $\widehat{\theta}$ and $\widetilde{\boldsymbol{\theta}}$ is fully efficient under the null. Say $\widetilde{\boldsymbol{\theta}}$: then $\mathrm{V}[\widehat{\boldsymbol{\theta}}-\widetilde{\boldsymbol{\theta}}]=\mathrm{V}[\widehat{\boldsymbol{\theta}}]-\mathrm{V}[\widetilde{\boldsymbol{\theta}}]$
- such efficiency is not usually the case in practice
\star e.g. if errors are heteroskedastic then OLS is inefficient
- instead need to use a robust form of the Hausman test.
- Hausman test of endogeneity: 2 SLS $(\widehat{\boldsymbol{\theta}})$ versus OLS $(\widehat{\boldsymbol{\theta}})$
- $H_{0}: \operatorname{plim}\left(\widehat{\boldsymbol{\theta}}_{2 S L S}-\widetilde{\boldsymbol{\theta}}_{\text {OLS }}\right)=\mathbf{0}$ if exogeneity vs. $H_{a}: \operatorname{plim}\left(\widehat{\boldsymbol{\theta}}_{2 S L S}-\widetilde{\boldsymbol{\theta}}_{\mathrm{OLS}}\right) \neq \mathbf{0}$ if endogeneity
- Use heteroskedasticity-robust version of Hausman test
- this is command estat endogenous and not hausman

```
. * Robust version of Hausman test using augmented regression
. quietly ivregress 2sls 1drugexp (hi_empunion = ssiratio) $x21ist, vce(robust)
. estat endogenous
Tests of endogeneity
Ho: variables are exogenous
Robust score chi2(1) = 24.935 (p = 0.0000)
Robust regression F(1,10081) = 26.4333 (p = 0.0000)
```

- Reject H_{0} as $p=0.000$.

Conclude that hi_empunion is endogenous. Need to do IV.

Test of instrument validity

- Cannot test validity in a just identified model
- Intuition: Test based on $\operatorname{Cov}\left[\mathbf{z}_{i}, \widehat{u}_{i}\right] \simeq 0$ requires \widehat{u}_{j} based on a consistent estimator of β which requires at least just-identified model.
- Test of overidentifying restrictions (for over-identified model)
- Test $H_{0}: \mathrm{E}\left[\mathbf{z}_{i}^{\prime} u_{i}\right]=\mathbf{0}$ by testing if $N^{-1} \sum_{i} \mathbf{z}_{i}^{\prime} \widehat{u}_{i} \simeq \mathbf{0}$.
- Limited test as assumes instruments in just-identified model are valid.
- In Stata command estat overid after command ivregress gmm.
- Here one over-identifying restriction (2 instruments for 1 endogenous)

```
* Test of overidentifying restrictions following ivregress gmm
. quietly ivregress gmm 1drugexp (hi_empunion = ssiratio multlc) $x21ist, wmatrix(robust)
estat overid
Test of overidentifying restriction:
Hansen's J chi2(1) = 1.04754 (p = 0.3061)
```

- Do not reject H_{0} as $p=0.31<0.05$.

Conclude that, assuming the just-identifying restriction is valid, then the over-identifying restriction is also valid.

Weak instruments

- Weak instrument means that instrument(s) are weakly correlated with endogenous regressor(s), after controlling for exogenous regressors.
- Then
- 1. standard errors \uparrow greatly as 2SLS much less efficient than OLS.
- 2. even slight correlation between error and the instrument can lead to 2SLS more inconsistent than OLS.
- 3. even if instrument(s) are valid so 2SLS is inconsistent, in typical sample sizes usual asymptotic theory can provide a poor approximation e.g. bias.
- Consequences
- 1. key coefficient estimate(s) can become statistically insignificant.
- 2. even more important to ensure that the instrument is valid.
- 3. focus of the weak instrument literature.
- In Stata for 3. use
- command estat firststage after command ivregress
- add-on commands condivreg and ivreg2

5. IV estimator properties: consistency

- Stacking all observations

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{IV}}=\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}
$$

- Substitute $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$ for \mathbf{y} yields

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{\mathrm{IV}} & =\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime}[\mathbf{X} \boldsymbol{\beta}+\mathbf{u}] \\
& =\boldsymbol{\beta}+\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{u} \\
& =\boldsymbol{\beta}+\left(\frac{1}{N} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \frac{1}{N} \mathbf{Z}^{\prime} \mathbf{u}
\end{aligned}
$$

- So $\widehat{\beta}_{\mathrm{IV}} \xrightarrow{p} \beta$ and $\widehat{\boldsymbol{\beta}}_{\mathrm{IV}}$ is consistent for β if
- $\operatorname{plim} \frac{1}{N} \mathbf{Z}^{\prime} \mathbf{u}=\mathbf{0}$ (instruments are valid) and
- $\operatorname{plim} \frac{1}{N} \mathbf{Z}^{\prime} \mathbf{X} \neq \mathbf{0}$ (instruments are relevant).

IV estimator: asymptotic distribution

- Informal derivation:

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{\mathrm{GMM}}-\boldsymbol{\beta} & =\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \times \mathbf{Z}^{\prime} \mathbf{u} \\
& \underset{\sim}{\sim}\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \times \mathcal{N}\left[\mathbf{0}, \mathrm{V}\left[\mathbf{Z}^{\prime} \mathbf{u}\right]\right] \\
& \underset{\sim}{\underset{2}{2}}\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \times \mathcal{N}\left[\mathbf{0}, \mathbf{Z}^{\prime} \mathrm{V}[\mathbf{u} \mid \mathbf{Z}] \mathbf{Z}\right] \\
& \underset{\sim}{\sim}\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \times \mathcal{N}\left[\mathbf{0}, \mathbf{Z}^{\prime} \Omega \mathbf{Z}\right]
\end{aligned}
$$

- Thus

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{IV}} \stackrel{a}{\sim} \mathcal{N}\left[\boldsymbol{\beta},\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \Omega \mathbf{Z}\left(\mathbf{X}^{\prime} \mathbf{Z}\right)^{-1}\right] ; \quad \Omega=\mathrm{V}[\mathbf{u} \mid \mathbf{Z}] .
$$

- With independent heteroskedastic errors (Stata option vce(robust))

$$
\widehat{\mathrm{V}}\left[\widehat{\boldsymbol{\beta}}_{\text {IV }}\right]=\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \widehat{\Omega} \mathbf{Z}\left(\mathbf{X}^{\prime} \mathbf{Z}\right)^{-1} ; \quad \widehat{\Omega}=\operatorname{Diag}\left[\hat{u}_{i}^{2}\right] .
$$

- Note: $\operatorname{Cor}[\mathbf{Z}, \mathbf{X}] \Rightarrow \mathbf{Z}^{\prime} \mathbf{X}$ small $\Rightarrow\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1}$ large $\Rightarrow \widehat{\boldsymbol{\beta}}_{\text {IV }}$ is imprecise.

Asymptotic Distribution of GMM

- Informal derivation:

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}_{\mathrm{GMM}}=\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z} \mathbf{W Z}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& \widehat{\boldsymbol{\beta}}_{\mathrm{GMM}}-\boldsymbol{\beta}=\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z} \mathbf{Z} \mathbf{Z}^{\prime} \mathbf{u} \\
& \underset{\sim}{a}\left(\mathbf{X}^{\prime} \mathbf{Z W Z} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z W} \times \mathcal{N}\left[\mathbf{0}, V\left[\mathbf{Z}^{\prime} \mathbf{u}\right]\right] \\
& \underset{\sim}{\sim}\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z W} \times \mathcal{N}\left[\mathbf{0}, \mathbf{Z}^{\prime} \mathbf{V}[\mathbf{u} \mid \mathbf{Z}] \mathbf{Z}\right] \\
& \underset{\sim}{\sim}\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z W} \times \mathcal{N}\left[\mathbf{0}, \mathbf{Z}^{\prime} \Omega \mathbf{Z}\right]
\end{aligned}
$$

- Thus

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{\mathrm{GMM}} & \stackrel{a}{\sim} \mathcal{N}\left[\boldsymbol{\beta},\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \Omega \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1}\right] \\
\Omega & =\mathrm{V}[\mathbf{u} \mid \mathbf{Z}] .
\end{aligned}
$$

- Optimal \mathbf{W} is a consistent estimate of Ω^{-1}. Then

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{OptGMM}} \stackrel{\beth}{\sim} \mathcal{N}\left[\boldsymbol{\beta},\left(\mathbf{X}^{\prime} \mathbf{Z} \Omega^{-1} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1}\right]
$$

6. Nonlinear GMM estimator: Definition

- Nests LS, MLE, IV, GMM, The way to view estimation.
- Population unconditional moment condition

$$
\mathrm{E}\left[\mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}_{0}\right)\right]=\mathbf{0} ; \quad \mathbf{w}=(\mathbf{y}, \mathbf{x}, \mathbf{z}) \text { is all observables. }
$$

- $\widehat{\boldsymbol{\theta}}$ solves the corresponding sample moment condition

$$
\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}\left(\mathbf{w}_{i}, \widehat{\boldsymbol{\theta}}\right)=\mathbf{0} .
$$

- just-identified case $(r=q)$ can solve for β
- over-identified case $(r>q)$ cannot as r equations in k unknowns.
- The generalized method of moments (GMM) estimator (for $r>q$) minimizes the quadratic form in $N^{-1} \sum_{i} \mathbf{h}\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right)$

$$
\begin{aligned}
Q(\boldsymbol{\theta}) & =\left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right)\right]^{\prime} \mathbf{W}_{N}\left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right)\right] \\
& =\mathbf{g}(\boldsymbol{\theta})^{\prime} \mathbf{W}_{N} \mathbf{g}(\boldsymbol{\theta})
\end{aligned}
$$

- where $\mathbf{g}(\boldsymbol{\theta})=\sum_{i=1}^{N} \mathbf{h}_{i}(\boldsymbol{\theta})$ and $\frac{1}{N} \sum_{i=1}^{N} \mathbf{W}_{N}$ is a symmetric full-rank weighting matrix that does not depend on $\boldsymbol{\theta}$.

Nonlinear GMM estimator: Properties

- $\widehat{\boldsymbol{\theta}}_{\mathrm{GMM}}$ is asymptotically normally distributed with

$$
\mathrm{V}\left[\widehat{\boldsymbol{\theta}}_{\mathrm{GMM}}\right]=N\left(\mathbf{G}^{\prime} \mathbf{W} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime} \mathbf{W} \mathbf{S W G}\left(\mathbf{G}^{\prime} \mathbf{W} \mathbf{G}\right)^{-1} .
$$

where

$$
\begin{aligned}
\mathbf{G} & =\lim \mathrm{E}\left[\frac{\partial \mathbf{g}_{N}(\boldsymbol{\theta})^{\prime}}{\partial \boldsymbol{\theta}}\right]=\lim \mathrm{E}\left[\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathbf{h}_{i}(\boldsymbol{\theta})^{\prime}}{\partial \boldsymbol{\theta}}\right] \\
\mathbf{S} & =\operatorname{Var}\left[\sqrt{N} \mathbf{g}_{N}(\boldsymbol{\theta})\right]=\operatorname{Var}\left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbf{h}\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right)\right] .
\end{aligned}
$$

- Optimal GMM: $\mathbf{W}_{N}=\widehat{\mathbf{S}}^{-1}$ where $\widehat{\mathbf{S}} \xrightarrow{p} \mathbf{S}$.
- Similar issues as for weighted LS in the linear model.
- Model choice: specify moment conditions for estimation.
- Estimator choice: specify a weighting function.
- Statistical inference: use robust standard errors.
- Most efficient estimator: a particular choice of weighting function.
- In Stata 11 use the new command gmm.

7. Endogeneity in nonlinear models

- Example is $y_{i}=\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)+u_{i}$ and $\operatorname{Cov}\left[\mathbf{x}_{i}, u_{i}\right] \neq 0$.
- Several very different methods (and associated models) exist.
- 1. Nonlinear IV (often called nonlinear 2SLS) is nonlinear GMM based on $\mathrm{E}\left[\mathbf{z}_{i} u_{i}\right]=\mathbf{0}$ and $\mathbf{W}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1}$.
- 2. Control function: add estimated first-stage error \widehat{v}_{i} as regressor.
- differs from 1. in nonlinear models
- 3. Fully structural approach adds an equation for endogenous regressors and estimates the model
- Differs from 1. and 2. in most nonlinear models and is computationally difficult.
- 4. The following is inconsistent in nonlinear models: get $\widehat{\mathbf{x}}_{i}$ from first stage regressions and estimate $y_{i}=\exp \left(\widehat{\mathbf{x}}_{i}^{\prime} \boldsymbol{\beta}\right)+$ error.
- The two-stage LS interpretation of 2SLS does not carry over to nonlinear models.

8. Stata commands

IV (just-identified) 2SLS (over-identified)
GMM (over-identified)
Overidentifying restrictions test Hausman test (if i.i.d. error) Hausman test (if heteroskedastic error)
Weak instruments
(plus user written commands)
Static panel IV
Dynamic panel IV
Nonlinear GMM (new in Stata 11)
ivregress 2sls
ivregress 2sls
ivregress gmm
xtoverid
hausman
estat endogenous
estat firststage
condivreg; ivreg2
xtivreg; xthaustaylor
xtabond; xtdpdsys; xtdpd gmm

9. Appendix: Instrumental variables Intuition

- Simplify to scalar regression of y on single regressor x (no intercept).
- Linear regression model
- $y=\beta x+u$ where u is an error term.
- In general
- $\mathrm{E}[y \mid x]=\beta x+\mathrm{E}[u \mid x]$.
- Standard regression:
- assume $\mathrm{E}[u \mid x]=0$ i.e. regressors uncorrelated with error
- implies the following path analysis diagram

where there is no association between x and u.
- But there may be an association between regressors and errors.
- Example: regression of earnings (y) on years of schooling (x).
- The error u embodies all factors other than schooling that determine earnings, such as ability.
- Suppose a person has high u, due to high (unobserved) ability.
- This increases earnings, since $y=\beta x+u$.
- But it may also increase x, since schooling is likely to be higher for those with high ability.
- So high u
- (1) directly increases y and
- (2) indirectly increases y via higher x.
- The path analysis diagram becomes

where now there is an association between x and u.
- Then $y=\beta x+u(x)$ implies

$$
\frac{d y}{d x}=\beta+\frac{d u}{d x}
$$

- OLS is inconsistent for β as it measures $d y / d x$, not just β.
- Assume there exists an instrument z that has the properties
- changes in z do not directly lead to changes in y
- changes in z are associated with changes in x
- The path analysis diagram becomes

- Note: z does not directly cause y, though z and y are correlated via indirect path of z being correlated with x which in turn determines y.
- Formally, z is an instrument for regressor x if
- (1) z is uncorrelated with the error u; and
- (2) z is correlated with the regressor x.
- Example: a one unit change in the instrument z is associated with
- 0.2 more years of schooling (x) and
- \$500 increase in annual earnings (y) (due to $z \uparrow \Rightarrow x \uparrow \Rightarrow y \uparrow$.)
- Then 0.2 years extra schooling is associated with $\$ 500$ extra earnings.
- So a one year increase in schooling is associated with a $\$ 500 / 0.2=\$ 2,500 \mathrm{increase}$ in earnings.
- The causal estimate of β is therefore 2500 .
- Mathematically we estimated changes $d x / d z$ and $d y / d z$ and calculated the causal estimator as

$$
\beta_{\mathrm{IV}}=\frac{d y / d z}{d x / d z}
$$

- $d y / d z$ estimated by OLS of y on z with slope estimate $\left(z^{\prime} \mathbf{z}\right)^{-1} z^{\prime} \mathbf{y}$
- $d x / d z$ estimated by OLS of x on z with slope estimate $\left(z^{\prime} \mathbf{z}\right)^{-1} \mathbf{z}^{\prime} \mathbf{x}$.
- The IV estimator is

$$
\begin{aligned}
\widehat{\beta}_{\mathrm{IV}} & =\frac{\left(\mathbf{z}^{\prime} \mathbf{z}\right)^{-1} \mathbf{z}^{\prime} \mathbf{y}}{\left(\mathbf{z}^{\prime} \mathbf{z}\right)^{-1} \mathbf{z}^{\prime} \mathbf{x}} \\
& =\left(\mathbf{z}^{\prime} \mathbf{x}\right)^{-1} \mathbf{z}^{\prime} \mathbf{y} \\
& =\left(\sum_{i=1}^{N} z_{i} x_{i}\right)^{-1} \sum_{i=1}^{N} z_{i} y_{i}
\end{aligned}
$$

