Day 5
 Limited Dependent Variable Models (Brief)
 Binary, multinomial, censored, treatment effects

(C) A. Colin Cameron
Univ. of Calif. - Davis

Advanced Econometrics
Bavarian Graduate Program in Economics
Based on A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications (MMA), C.U.P.
A. Colin Cameron and Pravin K. Trivedi $(2009,2010)$, Microeconometrics using Stata (MUS), Stata Press.

$$
\text { July 22-26, } 2013
$$

1. Introduction

- Abbreviated handout: assumes previous exposure to nonlinear models.
- Binary outcomes
- y takes only one of two values, say 0 or 1 .
- model $\operatorname{Pr}[y=1 \mid \mathbf{x}]$
- logit and probit are standard
- Multinomial outcomes
- y takes only m possible outcomes.
- model $\operatorname{Pr}[y=j \mid \mathbf{x}]$ for $j=1, \ldots, m$
- many models including multinomial logit.
- Censored and truncated models (e.g. Tobit) and selection models
- Considerably more difficult conceptually.
- Sample is not reflective of the population (selection on y)
- Standard methods rely on strong distributional assumptions.
- Treatment evaluation

Outline

(1) Introduction
(2) Logit and Probit Models
(3) Multinomial Models
(9) Censored and truncated data (Tobit)
(5) Sample selection models
(6) Treatment Evaluation

2. Logit model: Definition

- Data y takes only one of two values, say 0 or 1 .
- OLS has problem that $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}>1$ or <0 is possible
- And OLS is inefficient (based on homoskedasticity, normality).
- So what do we do?
- Starting point from statistics is Bernoulli (binomial with 1 trial):

$$
\begin{aligned}
\operatorname{Pr}[y=1] & =p \\
\operatorname{Pr}[y=0] & =1-p .
\end{aligned}
$$

- with $\mathrm{E}[y]=p$ and $\mathrm{V}[y]=p(1-p)$.
- For regression the probability $0<p_{i}<1$ varies with regressors \mathbf{x}_{i}

Logit $\quad p_{i}=\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)=\frac{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \quad \Lambda($.$) is logistic c.d.f.$
Probit $p_{i}=\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \quad \Phi(\cdot)$ is standard normal c.d.f.

Example

- A single regressor example allows a nice plot.
- Compare predictions of $\operatorname{Pr}[y=1 \mid x]$ from logit, probit and OLS.
- Scatterplot of $y=0$ or 1 (jittered) on scalar x (data are generated).

- Logit similar to probit with predictions between 0 and 1 . OLS predicts outside the $(0,1)$ interval.

Logit and Probit MLE

- Useful notation: The Bernoulli density can be written in compact notation as

$$
f\left(y_{i} \mid \mathbf{x}_{i}\right)=p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}
$$

- Log-likelihood function:

$$
\begin{aligned}
\ln L(\boldsymbol{\beta}) & =\ln \left(\prod_{i=1}^{N} f\left(y_{i} \mid \mathbf{x}_{i}\right)\right) \\
& =\sum_{i=1}^{N} \ln f\left(y_{i} \mid \mathbf{x}_{i}\right) \\
& =\sum_{i=1}^{N} \ln \left(p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}\right) \\
& =\sum_{i=1}^{N}\left\{y_{i} \ln p_{i}+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)\right\}
\end{aligned}
$$

- MLE solves $\partial \ln L(\beta) / \partial \beta=\mathbf{0}$. After considerable algebra

Logit $\quad p_{i}=\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \quad \sum_{i=1}^{N}\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \mathbf{x}_{i}=\mathbf{0}$
Probit $\quad p_{i}=\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \quad \sum_{i=1}^{N}\left(y_{i}-\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \frac{\Phi^{\prime}\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\left(1-\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)} \mathbf{x}_{i}=\mathbf{0}$.

Properties of MLE

- The distribution is necessarily Bernoulli
- If $\operatorname{Pr}\left[y_{i}=1 \mid \mathbf{x}_{i}\right]=p_{i}$ then necessarily $\operatorname{Pr}\left[y_{i}=0 \mid \mathbf{x}_{i}\right]=1-p_{i}$ since the two probabilities must some to one.
- Only possible error is in p_{i}.
- So the MLE is consistent if p_{i} is correctly specified
- $p_{i}=\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$ for logit and $p_{i}=\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$ for probit.
- The information matrix equality necessarily holds if data are independent over i and

- Default ML standard errors implement by using $\widehat{\beta}$ in place of β.
- For independent data there is no need for robust se's in this case.

Data Example: Private health insurance

- ins=1 if have private health insurance.
- Summary statistics (sample is 50-86 years from 2000 HRS)
. describe ins retire age hstatusg hhincome educyear married hisp

| | |
| :--- | :--- | :--- |
| variable namestorage
 type display value | |
| format | labe1 1 |

ins	float $\% 9.0 \mathrm{~g}$	1 if have private health insurance
retire	double $\% 12.0 \mathrm{~g}$	if retired
age	double $\% 12.0 \mathrm{~g}$	age in years
hstatusg	float $\% 9.0 \mathrm{~g}$	1 if health status good of better
hhincome	float $\% 9.0 \mathrm{~g}$	household annual income in $\$ 000$'s
educyear	double $\% 12.0 \mathrm{~g}$	years of education
married	double $\% 12.0 \mathrm{~g}$	1 if married
hisp	double $\% 12.0 \mathrm{~g}$	1 if hispanic

. summarize ins retire age hstatusg hhincome educyear married hisp

Variable	Obs	Mean	Std. Dev.	Min	Max
ins	3206	.3870867	.4871597	0	1
retire	3206	.6247661	.4842588	0	1
age	3206	66.91391	3.675794	52	86
hstatusg	3206	.7046163	.4562862	0	1
hhincome	3206	45.26391	64.33936	0	1312.124
educyear	3206	11.89863	3.304611	0	17
married	3206	.7330006	.442461	0	1
hisp	3206	.0726762	.2596448	0	1

- Summary statistics: by whether or not have private health insurance.
. bysort ins: summarize retire age hstatusg hhincome educyear married hisp, sep(0)

-> ins $=0$					
Variable	obs	Mean	Std. Dev.	Min	Max
retire	1965	.5938931	.49123	0	1
age	1965	66.8229	3.851651	52	86
hstatusg	1965	.653944	.4758324	0	1
hhincome	1965	37.65601	58.98152	0	1197.704
educyear	1965	11.29313	3.475632	0	17
married	1965	.6814249	.4660424	0	1
hisp	1965	.1007634	.3010917	0	1

-> ins $=1$					
Variable	obs	Mean	Std. Dev.	Min	Max
retire	1241	.6736503	.469066	0	1
age	1241	67.05802	3.375173	53	82
hstatusg	1241	.7848509	.4110914	0	1
hhincome	1241	57.31028	70.3737	.124	1312.124
educyear	1241	12.85737	2.755311	2	17
married	1241	.8146656	.3887253	0	1
hisp	1241	.0282031	.1656193	0	1

- ins=1 more likely if retired, older, good health status, richer, more educated, married and nonhispanic.

Logit data example

- Stata command logit gives the logit MLE $\left(p=\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)$.
- $\mathrm{ME}_{j}=\frac{\partial \operatorname{Pr}[y=1 \mid \mathbf{x}]}{\partial x_{j}}=\Lambda^{\prime}\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right) \beta_{j}=\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\left(1-\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) \beta_{j}$

Iteration 0: log likelihood = -2139.7712						
Iteration 1: log likelihood $=-1998.8563$						
Iteration 2: $\quad \mathrm{log}$ likelihood $=-1994.9129$						
Iteration 3: log likelihood $=-1994.8784$						
Iteration 4: $\quad \mathrm{log}$ likelihood $=-1994.8784$						
Logistic regression				Number of obs = 3206		
Logistic regr				LR	(7)	289.79
				Prob	chi2	0.0000
Log likelihood $=-1994.8784$				Pseu		0.0677
ins	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\%	Interval]
retire	. 1969297	. 0842067	2.34	0.019	. 0318	. 3619718
age	-. 0145955	. 0112871	-1.29	0.196	-. 0367	. 0075267
hstatusg	. 3122654	. 0916739	3.41	0.001	. 1325	. 491943
hhincome	. 0023036	. 000762	3.02	0.003	. 00	. 0037972
educyear	. 1142626	. 0142012	8.05	0.000	. 0864	. 1420963
married	. 578636	. 0933198	6.20	0.000	. 3957	. 7615394
hisp	-. 8103059	. 1957522	-4.14	0.000	-1.193	-. 4266387
_cons	-1.715578	. 7486219	-2.29	0.022	-3.18	-. 2483064

- Average marginal effect $\mathrm{AME}_{j}=\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \operatorname{Pr}\left[y_{i}=1 \mid \mathbf{x}_{i}\right]}{\partial x_{j}}=\frac{1}{N} \sum_{i=1}^{N} \Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\left(1-\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) \beta_{j}$
- Compute AME after logit using Stata 11 margins, $\operatorname{dydx}(*)$ or Stata 10 add-on command margeff.
. margins, dydx (*)
Warning: cannot perform check for estimable functions.

Average marginal effects Number of obs Model VCE OIM	
Expression	Pr(ins), predict()
dy/dx w.r.t.	retire age hstatusg hhincome educyear married hisp

	Delta-method					
	dy/dx	Std. Err.	z	$\mathrm{P}>\mid \mathrm{zl}$	[95\% Conf. Interval]	
retire	.0427616	.018228	2.35	0.019	.0070354	.0784878
age	-.0031693	.0024486	-1.29	0.196	-.0079686	.00163
hstatusg	.0678058	.0197778	3.43	0.001	.0290419	.1065696
hhincome	.0005002	.0001646	3.04	0.002	.0001777	.0008228
educyear	.0248111	.0029705	8.35	0.000	.0189891	.0306332
married	.1256459	.0198205	6.34	0.000	.0867985	.1644933
hisp	-.175951	.0421962	-4.17	0.000	-.258654	-.0932481

- Marginal effects: 0.043, -0.003, 0.067, $0.0005,0.025,0.126,-0.176 \mathrm{vs}$. Coefficients: $0.197,-0.015,0.312,0.0023,0.114,0.579,-0.810$.
- Marginal effect here is about one-fifth the size of the coefficient.

Probit data example

- Stata command probit gives the probit MLE.
. probit ins retire age hstatusg hhincome educyear married hisp

Iteration 0:	log likelihood $=-2139.7712$
Iteration 1:	log likelihood $=-1996.0367$
Iteration 2:	log likelihood $=-1993.6288$
Iteration 3:	log likelihood $=-1993.6237$

Probit regression

Number of obs	$=$	3206
LR chi2(7)	$=$	292.30
Prob > chi2	$=$	0.0000
Pseudo R2	$=$	0.0683

ins	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
retire	.1183567	.0512678	2.31	0.021	.0178737	.2188396
age	-.0088696	.006899	-1.29	0.199	-.0223914	.0046521
hstatusg	.1977357	.0554868	3.56	0.000	.0889836	.3064877
hhincome	.001233	.0003866	3.19	0.001	.0004754	.0019907
educyear	.0707477	.0084782	8.34	0.000	.0541308	.0873646
married	.362329	.0560031	6.47	0.000	.2525651	.472093
hisp	-.4731099	.1104385	-4.28	0.000	-.6895655	-.2566544
_cons	-1.069319	.4580791	-2.33	0.020	-1.967138	-.1715009

- Scaled differently to logit but similar t-statistics (see below).

OLS data example

- OLS estimates for private health insurance
- If do OLS need to use heteroskedastic-robust standard errors
. regress ins retire age hstatusg hhincome educyear married hisp, vce(robust)

Linear regres					Number of obs F(7, 3198) Prob $>\mathrm{F}$ R-squared Root MSE	$\begin{array}{lr} = & 3206 \\ = & 58.98 \\ = & 0.0000 \\ = & 0.0826 \\ = & .46711 \end{array}$
ins	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
retire	. 0408508	. 0182217	2.24	0.025	. 0051234	. 0765782
age	-. 0028955	. 0023254	-1.25	0.213	-. 0074549	. 0016638
hstatusg	. 0655583	. 0190126	3.45	0.001	. 0282801	. 1028365
hhincome	. 0004921	. 0001874	2.63	0.009	. 0001247	. 0008595
educyear	. 0233686	. 0027081	8.63	0.000	. 0180589	. 0286784
married	. 1234699	. 0186521	6.62	0.000	. 0868987	. 1600411
hisp	-. 1210059	. 0269459	-4.49	0.000	-. 1738389	-. 068173
_cons	.1270857	.1538816	0.83	0.409	-. 1746309	. 4288023

Compare logit, probit and OLS estimates

- Coefficients in different models are not directly comparable!
- Though the t-statistics are similar.
. * Compare coefficient estimates across models with default and robust standard
. estimates table blogit bprobit bols blogitr bprobitr bolsr, ///
$>\quad$ stats (N 11) b(\%7.3f) t(\%7.2f) stfmt(\%8.2f)

Variable	blogit	bprobit	bols	blogitr	bprobitr	bolsr
retire	0.197	0.118	0.041	0.197	0.118	0.041
age	-0.34	2.31	2.24	2.32	2.30	2.24
	-1.29	-0.009	-0.003	-0.015	-0.009	-0.003
hstatusg	0.312	-1.29	-1.20	-1.32	-1.32	-1.25
hhincome	3.41	3.56	0.066	0.312	0.198	0.066
educyear	0.002	0.001	0.37	3.40	3.57	3.45
married	0.114	3.19	3.58	0.002	0.001	0.000
hisp	0.579	0.071	0.023	0.01	2.21	2.63
	0.34	8.15	7.96	0.071	0.023	
cons	-0.810	-4.14	-0.473	-4.28	-0.121	-3.59
	-1.716	-1.069	0.127	-4.818	-1.716	-1.069
	-2.29	-2.33	0.79	-2.36	-2.40	0.127
N	3206	3206	3206	3206	3206	3206
11	-1994.88	-1993.62	-2104.75	-1994.88	-1993.62	-2104.75

1egend: b/t

Compare predicted probabilities from models

- Predicted probabilities $\frac{1}{N} \sum_{i=1}^{N} F\left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)$ for different models.
. * Comparison of predicted probabilities from logit, probit and ols
. quietly logit ins retire age hstatusg hhincome educyear married hisp
- predict plogit, p
- quietly probit ins retire age hstatusg hhincome educyear married hisp
. predict pprobit, p
- quietly regress ins retire age hstatusg hhincome educyear married hisp
. quietly predict pols
. summarize ins plogit pprobit pOLS

Variable	Obs	Mean	Std. Dev.	Min	Max
ins	3206	.3870867	.4871597	0	1
plogit	3206	.3870867	.1418287	.0340215	.9649615
probit	3206	.3861139	.1421416	.0206445	.9647618
poLs	3206	.3870867	.1400249	-.1557328	1.197223

- Average probabilities are very close (and for logit and OLS $=\bar{y}$).
- Range similar for logit and probit but OLS gives $\widehat{p}_{i}<0$ and $\widehat{p}_{i}>1$.

Marginal effects: Approximations for logit and probit

- In general for $p=F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right), \mathrm{ME}_{j}=\frac{\partial p}{\partial x_{j}}=F^{\prime}\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right) \times \beta_{j}$.
- For OLS: $\mathrm{ME}_{j}=\widehat{\beta}_{j}$.
- For logit: $\mathrm{ME}_{j} \leq 0.25 \widehat{\beta}_{j}$ as $F^{\prime}\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)=\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\left(1-\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) \leq 0.25$.
- For probit: $\mathrm{ME}_{j} \leq 0.40 \widehat{\beta}_{j}$ as $F^{\prime}\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)=\phi\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right) \leq(1 / \sqrt{2 \pi}) \simeq 0.40$.
- This leads to the following rule of thumb for slope parameters

$$
\begin{aligned}
\widehat{\beta}_{\text {Logit }} & \simeq 4 \widehat{\beta}_{\text {OLS }} \\
\widehat{\beta}_{\text {Probit }} & \simeq 2.5 \widehat{\beta}_{\mathrm{OLS}} \\
\widehat{\beta}_{\text {Logit }} & \simeq 1.6 \widehat{\beta}_{\text {Probit }} .
\end{aligned}
$$

- Also for logit a useful approximation is $\mathrm{ME}_{j} \simeq \bar{y}(1-\bar{y}) \widehat{\beta}_{j}$.

Which model?

- Logit: binary model most often used by statisticians.
- generalizes simply to multinomial data ($>$ two outcomes)
- $\widehat{\beta}_{j}$ measures change in log-odds ratio $p /(1-p)$ due to x_{j} change.
- Probit: binary model most often used by economists.
- motivated by a latent normal random variable.
- generalizes to Tobit models and multinomial probit.
- Empirically: either logit or probit can be used
- give similar predictions and marginal effects
- greatest difference is in prediction of probabilities close to 0 or 1 .
- Complementary log-odds model
- sometimes used when outcomes are mostly 0 or mostly 1.
- OLS: can be useful for preliminary data analysis
- but final results should use probit or logit.

3. Multinomial models: Definition

- There are m mutually-exclusive alternatives.
- y takes value j if the outcome is alternative $j, j=1, \ldots, m$.
- Probability that the outcome is alternative j is

$$
p_{j}=\operatorname{Pr}[y=j], \quad j=1, \ldots, m
$$

- Introduce m binary variables for each observed y

$$
y_{j}= \begin{cases}1 & \text { if } y=j \\ 0 & \text { if } y \neq j\end{cases}
$$

- $y_{j}=1$ if alternative j is chosen and $y_{j}=0$ for all non-chosen alternatives.
- For an individual exactly one of $y_{1}, y_{2}, \ldots, y_{m}$ will be non-zero.
- Density for one observation is conveniently written as

$$
f(y)=p_{1}^{y_{1}} \times p_{2}^{y_{2}} \times \ldots \times p_{m}^{y_{m}}=\prod_{j=1}^{m} p_{j}^{y_{j}} .
$$

Regression Model

- Introduce individual characteristics
- parameterize $p_{i j}$ in terms of observed data \mathbf{x}_{i} and parameters β :

$$
p_{i j}=\operatorname{Pr}\left[y_{i}=j\right]=F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right), \quad j=1, \ldots, m .
$$

- these probabilities should lie between 0 and 1 and sum over j to one.
- MLE maximizes the log-likelihood function

$$
\begin{aligned}
\ln L(\cdot) & =\ln \left(\prod_{i=1}^{N} f\left(y_{i}\right)\right)=\ln \left(\prod_{i=1}^{N} \prod_{j=1}^{m} p_{j}^{y_{j}}\right) \\
& =\sum_{i=1}^{N} \sum_{j=1}^{m} y_{i j} \ln p_{i j}
\end{aligned}
$$

- Different models have different models for $p_{i j}$.
- e.g. multinomial logit

$$
p_{i j}=\operatorname{Pr}\left[y_{i}=j\right]=\frac{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}\right)}{\sum_{k=1}^{m} \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}\right)}, j=1, \ldots, m, \quad \boldsymbol{\beta}_{1}=\mathbf{0} .
$$

- nested logit, multinomial probit, ordered logit, ... use different $p_{i j}$.

Data example: Fishing site

- Multinomial variable y has outcome one of
- $y=1$ if fish from beach
- $y=2$ if fish from pier
- $y=3$ if fish from private boat
- $y=4$ if fish from charter boat
- Regressors are
- price: varies by alternative and individual
- catch rate: varies by alternative and individual
- income: varies by individual but not alternative
- Variable definitions
. describe
Contains data from mus15data.dta
obs: 1,182
vars: $16 \quad 12$ May 2008 20:46
size: $\quad 85,104$ (99.2\% of memory free)

variable name \begin{tabular}{c}
storage

type

display value

format
\end{tabular} labe1 variable labe1

mode	float	\%9.0g	modetype	Fishing mode
price	float	\%9.0g		price for chosen alternative
crate	float	\%9.0g		catch rate for chosen alternative
dbeach	float	\%9.0g		1 if beach mode chosen
dpier	float	\%9.0g		1 if pier mode chosen
dprivate	float	\%9.0g		1 if private boat mode chosen
dcharter	float	\%9.0g		1 if charter boat mode chosen
pbeach	float	\%9.0g		price for beach mode
ppier	float	\%9.0g		price for pier mode
pprivate	float	\%9.0g		price for private boat mode
pcharter	float	\%9.0g		price for charter boat mode
qbeach	float	\%9.0g		catch rate for beach mode
qpier	float	\%9.0g		catch rate for pier mode
qprivate	float	\%9.0g		catch rate for private boat mode
qcharter	float	\%9.0g		catch rate for charter boat mode
income	float	\%9.0g		monthly income in thousands \$

- Data organization
- here wide form with one observation per individual
- each observation has data for all the possible alternatives.
. list mode $\mathrm{d}^{*} \mathrm{p}$ * income in $1 / 2$, clean
mode dbeach dpier dprivate dcharter price pbeach ppier pprivat

$>$	e	pcharter	pmlogit1	pmlogit2	pmlogit3	pmlogit4	income		
1.	charter	0	0	0	182.93	157.93	157.93	157.9	
$>$	3	182.93	.1125092	.0919656	.4516733	.3438518	7.083332		
2.	charter	0	0	0	1	34.534	15.114	15.114	10.53
>4	34.534	.1122198	.2117394	.2635553	.4124855	1.25			

- Here person 2 chose charter fishing (mode=charter or dcharter=1) when beach, pier, private and charter fishing cost, respectively, 15.11, 15.11, 10.53 and 34.53 .
- Summary statistics
- Columns $y=1, \ldots, 4$ give sample means for those with $y=1, \ldots, 4$.

	Sub-sample averages				
Explanatory Variable	$y=1$ Beach	$\mathrm{y}=2$ Pier	$\mathrm{y}=3$ Private	All $=4$ Charter	Overall
Income ($\$ 1,000$'s per month)	4.052	3.387	4.654	3.881	4.099
Price beach (\$)	36	31	138	121	103
Price pier (\$)	36	31	138	121	103
Price private (\$)	98	82	42	45	55
Price charter (\$)	125	110	71	75	84
Catch rate beach	0.28	0.26	0.21	0.25	0.24
Catch rate pier	0.22	0.20	0.13	0.16	0.16
Catch rate private	0.16	0.15	0.18	0.18	0.17
Catch rate charter	0.52	0.50	0.65	0.69	0.63
Sample probability	0.113	0.151	0.354	0.382	1.000
Observations	134	178	418	452	1182

- On average a person chooses to fish where it is cheapest to fish.
- Multinomial logit of fishing mode regressed on intercept and income
$-\operatorname{Pr}\left[y_{i j}=1\right]=\frac{e^{\mathbf{x}_{i}^{\prime}\left(\alpha_{j}+\beta_{j} \text { income }\right)}}{\sum_{k=1}^{4} e^{\mathbf{x}_{i}^{\prime}\left(\alpha_{k}+\beta_{k} \text { income }\right)}}, j=1,2,3,4, \alpha_{1}=0, \beta_{1}=0$.
- normalization that base outcome is beach fishing $(y=1)$

multinomial logistic regression	Number of obs		1182
	LR chi2 (3)		41.14
	Prob > chi2	=	0.0000

Log likelihood $=-1477.1506 \quad$ Pseudo R2 $=0.0137$

| mode | coef. | Std. Err. | z P>\|z| | | [95\% Conf. Interval] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pier | | | | | | |
| income cons | $\begin{array}{r} -.1434029 \\ .8141503 \end{array}$ | $\begin{array}{r} .0532882 \\ .2286316 \end{array}$ | $\begin{array}{r} -2.69 \\ 3.56 \end{array}$ | $\begin{aligned} & 0.007 \\ & 0.000 \end{aligned}$ | $\begin{array}{r} -.2478459 \\ .3660405 \end{array}$ | $\begin{aligned} & -.03896 \\ & 1.26226 \end{aligned}$ |
| private | | | | | | |
| income | . 0919064 | . 0406638 | 2.26 | 0.024 | . 0122069 | . 1716059 |
| _cons | . 7389208 | . 1967309 | 3.76 | 0.000 | . 3533352 | 1.124506 |
| charter | | | | | | |
| income | -. 0316399 | . 0418463 | -0.76 | 0.450 | -. 1136571 | . 0503774 |
| _cons | 1.341291 | . 1945167 | 6.90 | 0.000 | . 9600457 | 1.722537 |

(mode=beach is the base outcome)

- Predicted probabilities of each outcome:
$\widehat{\operatorname{Pr}}\left[y_{i j}=1\right]=\frac{e^{\mathbf{x}_{i}^{\prime}\left(\widehat{\alpha}_{j}+\widehat{\beta}_{j} \text { income }\right)}}{\sum_{k=1}^{4} e^{\mathbf{x}_{i}^{\prime}\left(\widehat{\alpha}_{k}+\widehat{\beta}_{k}^{\text {income })}\right.}}$
. * Compare average predicted probabilities to sample average frequencies
- predict pmlogit1 pmlogit2 pmlogit3 pmlogit4, pr
. summarize pmlogit* dbeach dpier dprivate dcharter, separator(4)

| variable | Obs | Mean | Std. Dev. | Min | |
| ---: | :---: | :---: | :---: | ---: | ---: | ---: |
| pmlogit1 | 1182 | .1133672 | .0036716 | .0947395 | .1153659 |
| pmlogit2 | 1182 | .1505922 | .0444575 | .0356142 | .2342903 |
| pmlogit3 | 1182 | .3536379 | .0797714 | .2396973 | .625706 |
| pmlogit4 | 1182 | .3824027 | .0346281 | .2439403 | .4158273 |
| dbeach | 1182 | .1133672 | .3171753 | 0 | 1 |
| dpier | 1182 | .1505922 | .3578023 | 0 | 1 |
| dprivate | 1182 | .3536379 | .4783008 | 0 | 1 |
| dcharter | 1182 | .3824027 | .4861799 | 0 | 1 |

- As expected average predicted probabilities sum to one.
- Furthermore average predicted probabilities of each outcome equals frequency of that outcome
- Property of multinomial logit and conditional logit
- Analog of OLS residuals sum to zero so $\overline{\hat{y}}=\bar{y}$.
- Parameter interpretation is complex.
- There are many marginal effects: one for each outcome value.
- Here $\mathrm{ME}_{i j}=\partial p_{i j} / \partial \mathbf{x}_{i}=p_{i j}\left(\boldsymbol{\beta}_{j}-\overline{\boldsymbol{\beta}}_{i}\right)$ where $\overline{\boldsymbol{\beta}}_{i}=\sum_{l} p_{i l} \boldsymbol{\beta}_{l}$.
- e.g. average marginal effect (AME) of $\$ 1,000$ increase in annual income on probability fish from private boat (the third outcome) if a $\$ 1,000$ increase in monthly income increases Pr[charter fish] by 0.032 .

```
. * AME of income change for outcome 3
. margins, dydx(*) predict(outcome(3))
Warning: cannot perform check for estimable functions.
```

```
Average marginal effects Number of obs = 1182
```

Average marginal effects Number of obs = 1182
Mode1 VCE : OIM
Mode1 VCE : OIM
Expression : Pr(mode==3), predict(outcome(3))
Expression : Pr(mode==3), predict(outcome(3))
dy/dx w.r.t. : income

```
dy/dx w.r.t. : income
```

	De7ta-method					
	$\mathrm{dy} / \mathrm{dx}$	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interva1]	
income	.0317562	.0052589	6.04	0.000	.021449	.0420633

Further details

- $\widehat{\boldsymbol{\beta}}$ is consistently asymptotically normal by the usual asymptotic theory if the d.g.p. is correctly specified.
- The distribution is necessarily multinomial.
- So key is correct specification of $p_{i j}=F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)$.
- And no need to use vce(robust) option if independent data.
- Distinguish between two different types of regressors.
- Alternative-specific or case-specific or alternative-invariant regressors do not vary across alternatives.
\star e.g. income (in our example), gender.
- Alternative-varying regressors may vary across alternatives.

夫 e.g. price.

- Multinomial logit: all regressors are individual-specific.
- Conditional logit: same as multinomial logit regressors are alternative varying.

Unordered models

- Unordered model: no obvious ordering of alternatives.
- Additive random utility model (ARUM) specifies utility of each alternative (of m) as

$$
\begin{array}{cc}
U_{1} & =V_{1}+\varepsilon_{1} \\
U_{2} & =V_{2}+\varepsilon_{2} \\
\vdots & \vdots \\
\vdots \\
U_{m} & =V_{m}+\varepsilon_{m}
\end{array}
$$

- Here V_{j} is deterministic part of utility, e.g. $V_{j}=\mathbf{x}^{\prime} \boldsymbol{\beta}_{j}$ or $\mathbf{x}_{j}^{\prime} \boldsymbol{\beta}$, and ε_{j} are errors.
- Then j is chosen if it has the highest utility

$$
\begin{aligned}
\operatorname{Pr}[y=j] & =\operatorname{Pr}\left[U_{j} \geq U_{k}, \text { all } k \neq j\right] \\
& =\operatorname{Pr}\left[\varepsilon_{k}-\varepsilon_{j} \leq-\left(V_{k}-V_{j}\right), \text { all } k \neq j\right]
\end{aligned}
$$

- Different error distributions lead to different multinomial models.

Examples of unordered Models

- 1. Multinomial logit and conditional logit:
- errors ε_{j} are i.i.d. type I extreme value.
- 2. Nested logit
- ε_{j} are correlated type I extreme value.
- 3. Random parameters logit:
- ε_{j} are i.i.d. type I extreme value
- but additionally parameters β_{i} are multivariate normal
- no analytical solution for $p_{i j}$.
- 4. Multinomial probit:
- ε_{j} are correlated multivariate normal
- no analytical solution for $p_{i j}$.
- Model 1: multinomial logit, conditional logit
- attraction is that tractable (easy to estimate) but too limited
- independence of irrelevant alternatives
$\star \operatorname{Pr}\left[y_{i k}=1 \mid y_{i k}=1\right.$ or $\left.y_{i j}=1\right]$ depends only on alternatives j and k
\star assumes $\varepsilon_{i j}$ independent of $\varepsilon_{i k}$
\star red bus - blue bus problem.
- Model 2: nested logit
- richer and still easy but requires specifying error correlation structure
- two versions - only one consistent with ARUM
- Model 3: random parameters logit
- currently very popular (use simulated ML or Bayesian)
- Model 4: multinomial probit
- potentially rich but hard to estimate and fits poorly.

Ordered multinomial models

- For outcomes for which there is a natural ordering
- e.g. y^{*} is a person's health status. We observe poor or fair $(y=1)$, good $(y=2)$ or excellent $\left(y_{i}=3\right)$.
- Model is based on a single latent variable $y^{*}=\mathbf{x}^{\prime} \boldsymbol{\beta}+u$.
- Multinomial outcomes depend on magnitude of y^{*}. For 3 outcomes:

$$
y_{i}= \begin{cases}1 & \text { if } y^{*} \leq \alpha_{1} \\ 2 & \text { if } \alpha_{1}<y^{*} \leq \alpha_{2} \\ 3 & \text { if } y^{*}>\alpha_{2}\end{cases}
$$

- Ordered probit model specifies $u \sim \mathcal{N}[0,1]$. Then

$$
\begin{aligned}
& p_{1}=\operatorname{Pr}\left[y^{*} \leq \alpha_{1}\right]=\operatorname{Pr}\left[\mathbf{x}^{\prime} \boldsymbol{\beta}+u \leq \alpha_{1}\right]=\Phi\left(\alpha_{1}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \\
& p_{2}=\operatorname{Pr}\left[\alpha_{1}<\mathbf{x}^{\prime} \boldsymbol{\beta}+u \leq \alpha_{2}\right]=\Phi\left(\alpha_{2}-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)-\Phi\left(\alpha_{1}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \\
& p_{3}=1-p_{1}-p_{2}
\end{aligned}
$$

- ML estimation is straightforward.
- Ordered logit model specifies $u \sim$ logistic: replace $\Phi(\cdot)$ above by $\Lambda(\cdot)$.

Stata commands

- Stata commands

Command	Model
mlogit	multinomial logit
asclogit	conditional logit
clogit	older command for conditional logit
nlogit	nested logit (ARUM version)
mprobit	multinomial probit
asmprobit	multinomial probit
mixlogit	random parameters logit (Stata add-on)

- Commands mlogit and mprobit for individual-specific regressors only
- data in wide form (one obs is all alternatives for individual)
- Other commands allow individual-varying regressors (e.g. price)
- data in long form (one obs is one alternative for individual)
- commands reshape to move from wide to long form.

4. Censored data: Tobit

- Problem: with censored or truncated data:
- The incomplete sample is not representative of the population. Instead, sample is selected on basis of y (vs. selection on \mathbf{x} is okay).
- Simple estimators are inconsistent and get wrong marginal effects. So need alternative estimators. These require strong assumptions.
- Censored Data: For part of the range of y we observe only that y is in that range, rather than observing the exact value of y.
- e.g. Annual income top-coded at \$75,000 (censored from above).
- e.g. Expenditures or hours worked bunched at 0 (censored from below).
- Truncated data: For part of range of y we do not observe y at all.
- e.g. Sample excludes those with annual income $>\$ 75,000$ per year.
- e.g. Those with expenditures of $\$ 0$ are not observed.

Tobit Model Definition

- Latent dependent variable y^{*} follows regular linear regression

$$
\begin{aligned}
y^{*} & =\mathbf{x}^{\prime} \boldsymbol{\beta}+\varepsilon \\
\varepsilon & \sim \mathcal{N}\left[0, \sigma^{2}\right]
\end{aligned}
$$

- But this latent variable is only partially observed.
- Censored regression (from below at 0): we observe

$$
y= \begin{cases}y^{*} & \text { if } y^{*}>0 \\ 0 & \text { if } y^{*} \leq 0\end{cases}
$$

- Truncated regression (from below at 0): we observe only

$$
y=y^{*} \quad \text { if } y^{*}>0
$$

- In either case can estimate by MLE (skip this)
- very fragile: e.g. inconsistent if ε is nonnormal or is heteroskedastic.
- We focus on conditional means, for intuition and later work.

Tobit example with Simulated Data

- Specify a linear relationship between
- y : annual hours worked, and
- x : log hourly wage.
- Desired hours of work, y^{*}, generated by model

$$
\begin{aligned}
y_{i}^{*} & =-2500+1000 x_{i}+\varepsilon_{i}, \quad i=1, \ldots, 250 \\
\varepsilon_{i} & \sim \mathcal{N}\left[0,1000^{2}\right] \\
x_{i} & \sim \mathcal{N}\left[2.75,0.6^{2}\right]\left(\Rightarrow w_{i} \sim\left[18.73,12.32^{2}\right]\right)
\end{aligned}
$$

- Tobit model: Instead of observing y^{*} we observe y where

$$
y_{i}=\left\{\begin{aligned}
y_{i}^{*} & \text { if } y_{i}^{*}>0 \\
0 & \text { if } y_{i}^{*} \leq 0 .
\end{aligned}\right.
$$

- Here if desired hours are negative people do not work and $y=0$.
- Scatterplot \& true regression curves (derived later) for three samples:
- truncated (top), censored (middle) and completely observed (bottom).

Tobit: Censored and Truncated Means

- Censored and truncated data the model is now nonlinear
- and linear model will be flatter line than true line ($\widehat{\beta} \simeq 0.5 \beta$).

Truncated Mean in Tobit model

- Truncated mean: We observe y only when $y>0$.
- The truncated conditional mean (suppressing conditioning on \mathbf{x}) is

$$
\begin{array}{ll}
\mathrm{E}[y \mid y>0] & \\
=\mathrm{E}\left[\mathbf{x}^{\prime} \boldsymbol{\beta}+\varepsilon \mid \mathbf{x}^{\prime} \boldsymbol{\beta}+\varepsilon>0\right] & \text { as } y=\mathbf{x}^{\prime} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
=\mathbf{x}^{\prime} \boldsymbol{\beta}+\mathrm{E}\left[\varepsilon \mid \varepsilon>-\mathbf{x}^{\prime} \boldsymbol{\beta}\right] & \text { as } \mathbf{x} \text { and } \varepsilon \text { independent } \\
=\mathbf{x}^{\prime} \boldsymbol{\beta}+\sigma \mathrm{E}\left[\frac{\varepsilon}{\sigma} \left\lvert\, \frac{\varepsilon}{\sigma}>\frac{-\mathbf{x}^{\prime} \boldsymbol{\beta}}{\sigma}\right.\right] & \text { transform to } \varepsilon / \sigma \sim \mathcal{N}[0,1] \\
=\mathbf{x}^{\prime} \boldsymbol{\beta}+\sigma \lambda\left(\frac{\mathbf{x}^{\prime} \boldsymbol{\beta}}{\sigma}\right) & \text { using next slide: key result for } \mathcal{N}[0,1] .
\end{array}
$$

- where $\lambda(z)=\phi(z) / \Phi(z)$ is called the inverse Mills ratio.
- The regression function is not just $\mathbf{x}^{\prime} \boldsymbol{\beta}$ (and is nonlinear).
- OLS of y on \mathbf{x} is inconsistent for β
- Need NLS or MLE for consistent estimates.
- Derivation: Truncated mean $\mathrm{E}[z \mid z>c]$ for the standard normal
- key result used in the previous slide
- consider $z \sim \mathcal{N}[0,1]$, with density $\phi(z)$ and c.d.f. $\Phi(z)$.
- conditional density of $z \mid z>c$ is $\phi(z) /(1-\Phi(c))$.
- truncated conditional mean is

$$
\begin{aligned}
\mathrm{E}[z \mid z>c] & =\int_{c}^{\infty} z(\phi(z) /(1-\Phi(c))) d z \\
& =\int_{c}^{\infty} z \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right) d z /(1-\Phi(c)) \\
& =\left[-\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right)\right]_{c}^{\infty} /(1-\Phi(c)) \\
& =\frac{\phi(c)}{1-\Phi(c)} \\
& =\frac{\phi(-c)}{\Phi(-c)} \\
& =\lambda(-c), \text { where } \lambda(c)=\phi(c) / \Phi(c)
\end{aligned}
$$

Tobit Model: Censored Mean

- Censored mean: We observe $y=0$ if $y^{*}<0$ and $y=y^{*}$ otherwise.
- The censored conditional mean (suppressing conditioning on \mathbf{x}) is

$$
\begin{aligned}
\mathrm{E}[y] & =\mathrm{E}_{\boldsymbol{y}^{*}}\left[\mathrm{E}\left[y \mid y^{*}\right]\right] \\
& =\operatorname{Pr}\left[y^{*} \leq 0\right] \times 0+\operatorname{Pr}\left[y^{*}>0\right] \times \mathrm{E}\left[y^{*} \mid y^{*}>0\right] \\
& =\Phi\left(\mathbf{x}^{\prime} \boldsymbol{\beta} / \sigma\right)\left\{\mathbf{x}^{\prime} \boldsymbol{\beta}+\sigma \frac{\phi\left(\mathbf{x}^{\prime} \boldsymbol{\beta} / \sigma\right)}{\Phi\left(\mathbf{x}^{\prime} \beta / \sigma\right)}\right\} \\
\mathrm{E}[y \mid \mathbf{x}] & =\Phi\left(\mathbf{x}^{\prime} \boldsymbol{\beta} / \sigma\right) \mathbf{x}^{\prime} \boldsymbol{\beta}+\sigma \phi\left(\mathbf{x}^{\prime} \boldsymbol{\beta} / \sigma\right),
\end{aligned}
$$

using earlier result for the truncated mean $\mathrm{E}\left[y^{*} \mid y^{*}>0\right]$.

- This conditional mean is again nonlinear.
- OLS of y on \mathbf{x} is inconsistent for β
- Need NLS or MLE for consistent estimates.

Tobit MLE: Data Example

- Data from 2001 Medical Expenditure Survey (MUS chapter 16).
- ambexp (ambulatory expenditure = physician and hospital outpatient).
- dambexp (=1 if ambexp>0 and =0 if ambexp=0).
- Regressors: age (in tens of years), female, educ (years of completed schooling), blhisp ($=1$ if black or hispanic), totchr (number of chronic conditions), and ins ($=1$ if PPO or HMO health insurance).

Variable	Obs	Mean	Std. Dev.	Min	Max
ambexp	3328	1386.519	2530.406	0	49960
dambexp	3328	.8419471	.3648454	0	1
age	3328	4.056881	1.121212	2.1	6.4
fema1e	3328	.5084135	.5000043	0	1
educ	3328	13.40565	2.574199	0	17
b1hisp	3328	.3085938	.4619824	0	1
totchr	3328	.4831731	.7720426	0	5
ins	3328	.3650841	.4815261	0	1

- 16% of sample are censored (since dambexp has mean 0.84).
- Stata command tobit, $11(0)$ yields
. * Tobit on censored data
. tobit ambexp age female educ blhisp totchr ins, 11(0)

Tobit regression	Number of obs	$=$
	LR chi2 (6)	$=$
	Prob $>$ chi2	$=$
Log likelihood $=-26359.424$	Pseudo R2	$=0.007$

ambexp	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{t\mid}$	[95\% Conf. Interval]	
age	314.1479	42.63358	7.37	0.000	230.5572	397.7387
female	684.9918	92.85445	7.38	0.000	502.9341	867.0495
educ	70.8656	18.57361	3.82	0.000	34.44873	107.2825
bhisisp	-530.311	104.2667	-5.09	0.000	-734.7443	-325.8776
totchr	1244.578	60.51364	20.57	0.000	1125.93	1363.226
ins	-167.4714	96.46068	-1.74	0.083	-356.5998	21.65696
_cons	-1882.591	317.4299	-5.93	0.000	-2504.969	-1260.214
/sigma	2575.907	34.79296			2507.689	2644.125

Obs. summary: \quad\begin{tabular}{r}
526

2802

left-censored observations at ambexp<=0

0

right-censored observations observations
\end{tabular}

- Question: How do we interpret the coefficients?
- Uncensored mean: $\partial \mathrm{E}\left[y^{*} \mid \mathbf{x}\right] / \partial x_{j}=\beta_{j}$
- Censored mean: $\partial \mathrm{E}[y \mid \mathbf{x}] / \partial x_{j}=\Phi\left(\mathbf{x}^{\prime} \boldsymbol{\alpha}\right) \beta_{j}$ after some algebra
- The Tobit model is vary fragile
- MLE is inconsistent if errors are nonnormal and even if they are normal but heteroskedastic.
- This has led to semiparametric estimators.
- In particular censored least absolute deviations (CLAD) estimator
- Basic idea is that censoring and truncation effect the mean, but not the median (if less than 50% censored)
- LAD is the regression analog of the median estimate
- Censored LAD can work well particularly for top coded data.
- Also when there is censoring from below at zero, the process for zeroes can differ from that for nonzeroes.
- We consider this next.

5. Sample Selection Model: Overview

- There are many generalizations of standard Tobit, often involving sample selection or self-selection.
- We consider the most common, Heckman's sample selection model
- Also called type 2 Tobit, Tobit with stochastic threshold, Tobit with probit selection.
- For censoring below this is often more realistic than standard Tobit, as it allows different equations for participation and the outcome.

Sample Selection Model: Definition

- Define two latent variables as follows:

$$
\begin{array}{ll}
\text { Participation: } & y_{1}^{*}=\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}+\varepsilon_{1} \\
\text { Outcome: } & y_{2}^{*}=\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}+\varepsilon_{2}
\end{array}
$$

- Neither y_{1}^{*} nor y_{2}^{*} are completely observed.
- Participation: We observe whether y_{1}^{*} is positive or negative

$$
y_{1}= \begin{cases}1 & \text { if } y_{1}^{*}>0 \\ 0 & \text { if } y_{1}^{*} \leq 0 .\end{cases}
$$

- Outcome: Only positive values of y_{2}^{*} are observed

$$
y_{2}=\left\{\begin{array}{cl}
y_{2}^{*} & \text { if } y_{1}^{*}>0 \\
0 & \text { if } y_{1}^{*} \leq 0 .
\end{array}\right.
$$

- MLE is used if error terms are specified to be joint normal
- $\left(\varepsilon_{1}, \varepsilon_{2}\right) \sim \mathcal{N}\left[(0,0),\left(\sigma_{1}^{2}=1, \sigma_{12}, \sigma_{2}^{2}\right)\right]$
- Fragile: e.g. inconsistent if ε is nonnormal or is heteroskedastic.

Sample Selection Model: Heckman 2-step estimator

- Assume instead that errors $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ satisfy

$$
\varepsilon_{2}=\delta \times \varepsilon_{1}+v,
$$

where $\varepsilon_{1} \sim \mathcal{N}[0,1]$ and v is independent of ε_{1}.

- This is implied by $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ joint normal.
- But it is a weaker assumption.
- Then $y_{2}=x_{2}^{\prime} \beta_{2}+\varepsilon_{2}$ if $y_{1}^{*}>0$ implies

$$
\begin{aligned}
\mathrm{E}\left[y_{2} \mid y_{1}^{*}>0\right] & =\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}+\mathrm{E}\left[\varepsilon_{2} \mid \mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}+\varepsilon_{1}>0\right] \\
& =\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}+\mathrm{E}\left[\left(\delta \times \varepsilon_{1}+v\right) \mid \varepsilon_{1}>-\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}\right] \\
& =\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}+\delta \times \mathrm{E}\left[\varepsilon_{1} \mid \varepsilon_{1}>-\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}\right] \\
& =\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}+\delta \times \lambda\left(\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}\right)
\end{aligned}
$$

where third equality uses v independent of ε_{1} and $\lambda(c)=\phi(c) / \Phi(c)$ is the inverse Mills ratio.

- For the observed outcomes:

$$
\mathrm{E}\left[y_{2} \mid y_{1}^{*}>0\right]=\mathbf{x}_{2}^{\prime} \beta_{2}+\delta \lambda\left(\mathbf{x}_{1}^{\prime} \beta_{1}\right) .
$$

- OLS of y_{2} on \mathbf{x}_{2} only is inconsistent as regressor $\lambda\left(\mathbf{x}_{1}^{\prime} \beta_{1}\right)$ is omitted.
- Heckman included an estimate of $\lambda\left(\mathbf{x}_{1}^{\prime} \beta_{1}\right)$ as an additional regressor.
- Heckman's two-step procedure:
- 1. Estimate β_{1} by probit for $y_{1}^{*}>0$ or $y_{1}^{*}<0$ with regressors $\mathbf{x}_{1 i}$.
- Calculate $\widehat{\lambda}_{i}=\lambda\left(\mathbf{x}_{1 i}^{\prime} \widehat{\boldsymbol{\beta}}_{1}\right)=\phi\left(\mathbf{x}_{1 i}^{\prime} \widehat{\boldsymbol{\beta}}_{1}\right) / \Phi\left(\mathbf{x}_{1 i}^{\prime} \widehat{\beta}_{1}\right)$.
- 2. For observed y_{2} estimate β_{2} and σ in the OLS regression

$$
y_{2 i}=\mathbf{x}_{2 i}^{\prime} \boldsymbol{\beta}_{2}+\delta \widehat{\lambda}_{i}+w_{i} .
$$

- Need standard errors that correct for w_{i} heteroskedastic and $\widehat{\lambda}_{i}$ estimated. Stata command heckman does this.
- Exclusion restriction:
- desirable to include some regressors in participation equation (\mathbf{x}_{1}) that can be excluded from the outcome equation $\left(x_{2}\right)$
- otherwise identification solely from nonlinearity.
- Selection on observables only
- If $\operatorname{Cov}\left[\varepsilon_{1}, \varepsilon_{2}\right]=0$ model then there is no longer selection on unobservables
- Model reduces to a two-part model
\star Probit for whether $y>0$
\star Regular OLS for the positives.
\star Can be reasonable for individual's hospital expenditure data.
- Logs for the outcome
- Often the outcome is expenditure
- Then better to use a log model for the outcome
- But will then need to transform to levels for prediction.

Heckman 2-step: Data Example

- 2-step where outcome is for $\ln y$.

Stata commands

- Stata commands

Command	Model
tobit	Tobit MLE (censored)
truncreg	Tobit MLE (truncated)
cnreg	Tobit (varying known threshold)
intreg	Interval normal data (e.g. \$1-\$100, \$101-\$200,..)
heckman, mle	Sample selection MLE
heckman, 2step	Sample selection two step

6. Treatment effects models

- What is the effect of a binary treatment?
- Outcome y (e.g. earnings) depends on whether or not get treatment d (e.g. training).
- Model

$$
\begin{aligned}
& \text { Treatment } \quad d_{i}=0 \text { or } d_{i}=1 \\
& \text { Outcome } \quad y_{i}= \begin{cases}y_{1 i} & \text { if } y_{i}=1 \\
y_{0 i} & \text { if } y_{i}=1\end{cases}
\end{aligned}
$$

- Problem: We want treatment effect $y_{1 i}-y_{0 i}$.
- But we observe only one of $y_{1 i}$ and $y_{0 i}$.
- And people self-select into training
* not randomized like an experiment.
- Solutions: many. Key distinction between
- selection on observables only (just $x^{\prime} s$)
- selection on observables and unobservables ($x^{\prime} s$ and $\varepsilon^{\prime} s$)

Selection on observables only

- A. Naive: Compare means
- use $\bar{y}_{1}-\bar{y}_{0}$
- same as $\widehat{\alpha}$ in OLS of $y_{i}=\alpha d_{i}+u_{i}$
- consistent if $\operatorname{Cov}\left(u_{i}, d_{i}\right)=0$
- method for a randomized experiment, otherwise likely invalid.
- B. Control function
- add $x_{i}^{\prime} s$ to control for d_{i} being chosen
- use $\widehat{\alpha}$ in OLS of $y_{i}=\alpha d_{i}+\mathbf{x}_{i}^{\prime} \beta+u_{i}$
- consistent if $\operatorname{Cov}\left(u_{i}, d_{i} \mid \mathbf{x}_{i}\right)=0$
- C. Propensity score matching
- propensity score $p=\operatorname{Pr}[$ treated $\mid \mathbf{x}]=\operatorname{Pr}[d=1 \mid \mathbf{x}]$
- calculate using a very flexible logit model (interactions ...)
- compare $y_{1}^{\prime} s$ (treated) with $y_{0}^{\prime} s$ (untreated) for those with similar p.
- practical variation of matching those with similar $\mathbf{x}^{\prime} s$.
- D. Sharp regression discontinuity design
- suppose $y_{i}=f\left(s_{i}\right)+\alpha d_{i}+\mathbf{x}_{i}^{\prime} \beta+u_{i}$ and $d_{i}=\mathbf{1}\left(s_{i}>s_{i}^{*}\right)$.
- compare y_{i} for those with s_{i} either side of threshold s_{i}^{*}

Selection on observables and unobservables

- A. Panel data
- $y_{i t}=\alpha d_{i t}+\mathbf{x}_{i t}^{\prime} \beta+v_{i}+\varepsilon_{i t}$
- first difference (or mean difference) gets rid of v_{i}
\star OLS on $\Delta y_{i t}=\alpha \Delta d_{i t}+\Delta \mathbf{x}_{i t}^{\prime} \beta+\Delta \varepsilon_{i t}$
- consistent if $\operatorname{Cov}\left(\varepsilon_{i t}, d_{i t} \mid \mathbf{x}_{i t}\right)=0$ but allows $\operatorname{Cov}\left(v_{i}, d_{i t} \mid \mathbf{x}_{i t}\right) \neq 0$
\star okay if treatment correlated only with time invariant part of the error
- B. Difference in differences
- variation of preceding that does not require panel data.
- suppose treatment occurs only in second time period (not in first)
\star use $\widehat{\alpha}=\Delta \bar{y}_{\text {treated }}-\Delta \bar{y}_{\text {untreated }}=\left(y_{1, \text { tr }}-y_{0, \text { tr }}\right)-\left(y_{1, \text { untr }}-y_{0, \text { untr }}\right)$.
\star more generally OLS on $\Delta y_{i}=\alpha d_{i}+\Delta \mathbf{x}_{i}^{\prime} \beta+u_{i}$
\star requires common time trend for treated and untreated groups
- Extends to more time periods (model in level with $d_{i t}$)
- Extend to contrasts other than in time e.g. male/female
- Extension is event history analysis.
- C. Instrumental variables
- IV estimation with instrument \mathbf{z}_{i} in $y_{i}=\alpha d_{i}+\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+u_{i}$
- consistent if $\operatorname{Cov}\left(u_{i}, d_{i} \mid \mathbf{x}_{i}\right)=0$
- D. Fuzzy regression discontinuity design
- in fuzzy design not everyone with $s_{i}>s_{i}^{*}$ gets the treatment.
- this introduces a role for unobservables.
- E. Parametric model e,g, Roy model:
- introduce latent variables $d_{i}^{*}, y_{1 i}^{*}, y_{0 i}^{*}$ for $d_{i}, y_{1 i}, y_{0 i}$.
- then $\mathrm{E}\left[y_{1 i}\right]=\mathrm{E}\left[y_{1 i}^{*} \mid d_{i}=1\right]=\mathrm{E}\left[y_{1 i}^{*} \mid d_{i}^{*}>0\right]$ $=\mathrm{E}\left[\mathbf{x}_{1 i}^{\prime} \beta+\varepsilon_{1 i} \mid \mathbf{z}_{i}^{\prime} \gamma+v_{i}>0\right]=\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}+\mathrm{E}\left[\varepsilon_{1 i} \mid v_{i}>-\mathbf{z}_{i}^{\prime} \gamma\right]$
- so $\mathrm{E}\left[y_{1 i}\right]=\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}+\delta_{1} \lambda\left(\mathbf{z}_{i}^{\prime} \gamma\right)$ where $\lambda(\cdot)$ is inverse Mills ratio if $\varepsilon_{1 i}=\delta_{1} v_{i}+\xi_{i}>0, v_{i} \sim \mathcal{N}[0,1], \xi_{i}$ independent.
- F. LATE (local average treatment effects)
- allows α to vary with i and applies to many estimators.
- for example consider IV interpreted as local effect
\star e.g. in earnings-education regression with instrument law change that increased school leaving age, the earnings effect is for those with low levels of education.

