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1. Introduction

1. Introduction

@ Brief discussion of nonparametric and semiparametric methods and
the bootstrap.

@ Introduction

@ Nonparametric (kernel) density estimation

© Nonparametric (kernel) regression

@ Semiparametric regression

© Bootstrap

O Stata Commands

@ Appendix: Histogram and kernel density estimate
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2. Nonparametric (kernel) density estimation [T\ E1aY

2. Nonparametric (kernel) density estimation

@ Parametric density estimate

» assume a density and use estimated parameters of this density
> e.g. normal density estimate: assume y; ~ N[y, 0?] and use N[y, s?].

@ Nonparametric density estimate: a histogram

» break data into bins and use relative frequency within each bin
» Problem: a histogram is a step function, even if data are continuous

@ Smooth nonparametric density estimate: kernel density estimate.

@ Kernel density estimate smooths a histogram in two ways:

» use overlapping bins so evaluate at many more points
> use bins of greater width with most weight at the middle of the bin.
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Histogram data example
e Formula: fH/ST(Xo) 2Nh YN, l(xo —h<x;<xp+h) or

fHIST XO = Nh Zl—l 2 ‘Xi;XO‘ < 1) .

o Data example: histogram of Inwage for 175 observations

> Varies with the bin width (or equivalently the number of bins)
» Here 30 bins, each of width 2h ~ 0.20 so h ~ 0.10.

]

Density

2 3
naturallog ofhwage
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2. Nonparametric (kernel) density estimation CIENCHIA ETERSET T

o Kernel density estimate of f(xg) replaces 1 (A) by kernel K(A) :

~ N -
f(x0) = ﬁ Zizl K (X'_hxo)
o Data example: kernel of Inwage for 175 observations

> Epanechnikov kernel K(z) = 0.75(1 — z?) x 1(|z| < 1)
» h = 0.07 (oversmooths), 0.21 (default) or 0.63 (undersmooths)

kdensity Inhwage

Default ~  ——-——- Halfdefault
--=----=o- Twice default
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2. Nonparametric (kernel) density estimation [Tl Eyatel )

Implementation

@ Stata examples are

» kdensity y uses defaults

» kdensity y, bw(0.2) manually set bandwidth

» kdensity y, normal overlays the N[y, 52] density

» hist y, kdensity gives both histogram and kernel estimates
@ Key is choice of bandwidth

» The default can oversmooth: may need to decrease bw()
@ Less important is choice of kernel: default is Epanechnikov.

@ Other smooth estimators exist including k-nearest neighbors.
But usually no reason to use anything but kernel.
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N 8\ UML) Local average estimator
3. Kernel regression: Local average estimator

@ The regression model is y; = m(x;) + u;, u;j ~ i.i.d. (0,0(x)?).
» The functional form m(-) is not specified, so NLS not possible.

e If many obs have x = xo use the average of the y/s at x; = x :

(T o) 7 (T )
= (XM 1= )/ (TN, 100 =)

@ Instead few values of y; at x = xp so do local average estimator:
A N N
m(xo) = <Z,-:1 Wio}/i) / (Zi:l WiO)

» where weights w;g = w(x;, xp) are largest for x; close to xg.

m(xo)

@ Evaluate at a variety of points xg gives regression curve.

e Different methods use different weight functions wip = w(x;, xo)
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Common nonparametric regression estimators
Common nonparametric regression estimators

o 1. Kernel estimate of m(xp) replaces 1 (x; — xp = 0) by K (*7%2)
N

-~ _ 1 N Xj— X 1 Xj— X
m(x0) = (mZile( ho)yl'>/<m2i:1K( h0)>
@ 2. Local linear estimate of m(xp) minimizes w.r.t. agp and by

AN K (3522) (yi — 20 — bo(x; — x0))?

» Motivation: Kernel estimate is equivalent to m(xg) minimizes
ﬁ Z,N:1 K (tho) (y; — mg)? with respect to my.
> better on endpoints
@ 3. Lowess (locally weighted scatterplot smoothing)
» variation of local linear with variable bandwidth, tricubic kernel and
downweighting of outliers.
@ 4. K-Nearest neighbors
> Average the y/s for the k x/s that are closest to xg
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3. Kernel regression Kernel regression data example

o Kernel regression with 95% confidence bands, default Kernel
(Epanechnikov) and default bandwidths

» lpoly lnhwage educatn, ci msize(medsmall)

Local poly nomial smooth
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kernel=epanechnikov,degree =0, bandwidth = 1.53, pwidth =2.3
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SACIOEREEEEII  Different bandwidths

o Kernel regression with three bandwidths: default, half and double.

» smoother with larger bandwidth

2.5 3
L L

Ipoly smooth: natural log of hwage
2
1

n
o
T T T T T
0 10 15 20
Ipoly smooathing grid
— Defat =~ 0———-—- Half default
----------- Twice defautt
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SICIOEREEESEI  Compare three methods

@ Kernel, local linear and lowess with default bandwidths

» graph twoway lpoly y x || lpoly y x, deg(l) || lowess y x
> kernel erroneously underestimates m(x) at the endpoint x = 17.

o 4
o 4
o
o 4
w
- T T T T T
0 5 10 15 20
Kermel ———-—- Local linear
----------- lowess
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3. Kernel regression Implementation

Implementation

@ Different methods work differently

» Local linear and local polynomial handle endpoints better than kernel.
e m(xg) is asymptotically normal

» this gives confidence bands that allow for heteroskedasticity
e Bandwidth choice is crucial

» optimal bandwidth trades off bias (minimized with small bandwidth)
and variance (minimized with large bandwidth)

theory just says optimal bandwidth for kernel regression is O(N~0-2)
“plug-in" or default bandwidth estimates are often not the best

so also try e.g. half and two times the default.

cross validation minimizes the empirical mean square error

Y (yi — m_j(x;))?, where m_;(x;) is the “leave-one-out” estimate of
m(x;) formed with y; excluded.

Yy vV.vvY
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4. Semiparametric estimation Motivation

4. Semiparametric estimation

@ Nonparametric regression is problematic when more than one
regressor

» in theory can do multivariate kernel regression
» in practice the local averages are over sparse cells
» called the “curse of dimensionality”

@ Semiparametric methods place some structure on the problem

» parametric component for part of the model
» nonparametric component that is often one dimensional
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Loz cranplies
Leading semiparametric examples

o Partially linear model

E[y,-|x,-, Z,'] = X:ﬁ + )\(Z,’)

> Estimate A(-) nonparametrically and ideally v/N(B — B) 9, N[0, V]
@ Single-index model
Elyilxi] = g(xiB)

> Estimate g(-) nonparametrically and ideally v/N(B — B) LA N0,V]
» Can only estimate B up to scale in this model
» Still useful as ratio of coefficients equals ratio of marginal effects in a

single-index models

@ Generalized additive model
Elyilxi] = g1(x1i) + -+ + gx (xki)

July 22-26, 2013 14 /29
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LTSI Estimate of standard error

5. Bootstrap estimate of standard error

@ Basic idea is view {(y1,x1), ..., (yn, Xn)} as the population.
@ Then obtain B random samples from this population
» Get B estimates 51,A---,55-

» Then estimate Var[f] using the usual standard deviation of the B
estimates

=

V(0] = 5= IZble 6 WhereH—Pszlﬂb

» Square root of this is called a bootstrap standard error.

@ To get B different samples of size N we resample with replacement
from {(y1,x1), ... (yn, xn)}

» In each bootstrap sample some original data points appear more than
once while others not appear at all.
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Regression application

e Data: Doctor visits (count) and chronic conditions. N = 50.

Cont ai ns data from bootdata. dta

obs: 50
vars: 3 26 Nov 2008 10: 46
si ze: 350
storage display val ue
vari abl e name type f or mat | abel vari abl e | abel
docvi s int %8. 0g nunber of doctor visits
age float 98.0g Age in years / 10
chronic byte  %8.0g =1 if a chronic condition
Sorted by:
sumari ze
Vari abl e Obs Mean Std. Dev. Mn Max
docvi s 50 4.12 7.82106 0 43
age 50 4.162 1.160382 2.6 6.2
chronic 50 .28 . 4535574 0 1
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LINELTIEIET N Standard error estimation

Bootstrap standard errors after Poisson regression

@ Use option vce(boot)

> Set the seed!
> Set the number of bootstrap repetitions!

. * Compute bootstrap standard errors using option vce(bootstrap) to
. poisson docvis chronic, vce(boot, reps(400) seed(10101) nodots)

Poisson regression Number of obs = 50

Replications = 400

wald chi2(1) = 3.50

pProb > chi2 = 0.0612

Log Tikelihood = -238.75384 Pseudo R2 = 0.0917
Observed Bootstrap Normal-based

docvis Coef. std. Err. z P>|z| [95% conf. Interval]

chronic .9833014 .5253149 1.87 0.061 -.0462968 2.0129

_cons 1.031602 3497212 2.95 0.003 .3461607 1.717042

@ Bootstrap se = 0.525 versus White robust se = 0.515.
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LINELTIEIET N Standard error estimation

Results vary with seed and number of reps

. quietly poisson docvis c
. estimates store boot50

. quietly poisson docvis c

* Bootstrap standard errors for

hronic,

hronic,

. estimates store boot50diff

. quietly poisson docvis c
. estimates store boot2000
. quietly poisson docvis c

. estimates store robust

hronic,

hronic,

different reps and seeds
vce(boot, reps(50) seed(10101))

vce(boot, reps(50) seed(20202))

vce(boot, reps(2000) seed(10101))

vce(robust)

. estimates table boot50 boot50diff boot2000 robust, b(%8.5f) se(%8.5f)

variable boot50

boot50~f  boot2000 robust

chronic 0.98330
0.47010

_cons 1.03160
0.39545

0.98330
0.50673
1.03160
0.32575

0.98330 0.98330
0.53479 0.51549
1.03160 1.03160
0.34885 0.34467

legend: b/se
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Leading uses of bootstrap standard errors

@ Sequential two-step m-estimator

» First step gives & used to create a regressor z(EZ)
» Second step regresses y on x and z(a)

» Do a paired bootstrap resampling (x, y, z)

» e.g. Heckman two-step estimator.

@ 2SLS estimator with heteroskedastic errors (if no White option)
» Paired bootstrap gives heteroskedastic robust standard errors.
o Functions of other estimates e.g. § = & x

> replaces delta method
» Clustered data with many small clusters, such as short panels.

* Then resample the clusters.
* But be careful if model includes cluster-specific fixed effects.

For these in Stata need to use prefix command bootstrap:
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e
The bootstrap: general algorithm

@ A general bootstrap algorithm is as follows:
» 1. Given data wy, ..., wy

* draw a bootstrap sample of size N (see below)
* denote this new sample wy, ..., wj,.

» 2. Calculate an appropriate statistic using the bootstrap sample.
Examples include:
* (a) estimate 0" of 0;
* (b) standard error s;- of estimate 0
* (c) t—statistic t* = (5* 7/9\)/5@»« centered at 0.
» 3. Repeat steps 1-2 B independent times.

. o %
* Gives B bootstrap replications of 01, ...,0 or t{,..., tg or .....

» 4. Use these B bootstrap replications to obtain a bootstrapped version
of the statistic (see below).
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5. Bootstrap Implementation

Implementation
@ Number of bootstraps: B high is best but increases computer time.
» CT use 400 for se's and 999 for tests and confidence intervals.
» Defaults are often too low. And set the seed!
@ Various resampling methods
» 1. Paired (or nonparametric or empirical dist. func.) is most common
* wj,...,wpy obtained by sampling with replacement from wy, ..., wy.
» 2. Parametric bootstrap for fully parametric models.
* Suppose y|x ~ F(x,6p) and generate y* by draws from F(x;,8)
» 3. Residual bootstrap for regression with additive errors
* Resample fitted residuals Ty, ..., Uy to get (uf, ..., TUy) and form new
(y{ x1), - (YN XN)-
@ Need to resample over i.i.d. observations
» resample over clusters if data are clustered

* But be careful if model includes cluster-specific fixed effects.

» resample over moving blocks if data are serially correlated.
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Asymptotic refinement

@ The simplest bootstraps are no better than usual asymptotic theory
» advantage is easy to implement, e.g. standard errors.

@ More complicated bootstraps provide asymptotic refinement
» this may provide a better finite-sample approximation.

o Conventional asymptotic tests (such as Wald test).

» « = nominal size for a test, e.g. & = 0.05.
> Actual size= & + O(N~1/2).

@ Tests with asymptotic refinement

> Actual size= a + O(N71).
> asymptotic bias of size O(N~1) < O(N~1/2) is smaller asymptotically.
» But need simulation studies to confirm finite sample gains.

* e.g. if N =100 then 100/N = O(N~1) > 5//N = O(N~1/2).
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Aeyimgisilly Pie) Sesie
Asymptotically pivotal statistic

@ Asymptotic refinement bootstraps an asymptotically pivotal statistic
» this means limit distribution does not depend on unknown parameters.
e An estimator 6 — 8y < N[0, 0%] is not asymptotically pivotal

> since 0'% is an unknown parameter.

@ But the studentized t—statistic is asymptotically pivotal
> since t = (6 — 00)/ sy 2 N[0,1] has no unknown parameters.

@ So bootstrap Wald test statistic to get tests and confidence intervals
with asymptotically refinement.

@ For confidence intervals can also use BC (bias-corrected) and BCa
methods.

@ Econometricians rarely use asymptotic refinement.
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@ The solid line bootstrap estimate of the density (with 999 bootstraps)
is used to get t-statistic critical values and p values

< 4
™ |
(\l' 4
—
o
T T T
-5 0 5
tstar
Bootstrap density @~ ——-——- Standard normal
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PRI IETN  Confidence intervals

. * Bootstrap confidence intervals: normal-based, percentile, BC, and BCa
. quietly poisson docvis chronic, vce(boot, reps(999) seed(10101) bca)

. estat bootstrap, all

Poisson regression Number of obs = 50
Replications = 999
Observed Bootstrap
docvis Coef. Bias std. Err. [95% conf. Interval]
chronic .98330144 -.0244473 .54040762 -.075878  2.042481 (N)
-.1316499 2.076792 ()
-.0820317 2.100361 (BC)
-.0215526  2.181476 (BCa)
_cons 1.0316016 -.0503223 .35257252 .3405721 1.722631 (N)
.2177235 1.598568 (P)
.2578293  1.649789 (BC)
.3794897 1.781907 (BCa)
(N) normal confidence interval
P) percentile confidence interval

(BC) bias-corrected confidence interval
(BCa) bias-corrected and accelerated confidence interval

(N) is observed coefficient £ 1.96 x bootstrap s.e.

~%

°
e (P)is 2.5 to 97.5 percentile of the bootstrap estimates Ei ... Bg-
e (BC) and (BCa) have asymptotic refinement.
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Bootstrap failure

@ The following are cases where standard bootstraps fail

» so need to adjust standard bootstraps.

GMM (and empirical likelihood) in over-identified models
» For overidentified models need to recenter or use empirical likelihood.
@ Nonparametric Regression:

» Nonparametric density and regression estimators converge at rate less
than root-N and are asymptotically biased.
» This complicates inference such as confidence intervals.

@ Non-Smooth Estimators: e.g. LAD.
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6. Stata Commands

6. Stata commands

Command kernel does kernel density estimate.

Command 1poly does several nonparametric regressions

> kernel is default
» local linear is option degree (1)
» local polynomial of degree p is option degree (p)

Command lowess does Lowess.

@ Stata has no built-in commands for the semiparametric estimators

» These methods are not easy to automate as no easy way to automate
bandwidth choice and treatment of outliers.

@ For bootstrap use option ,vce(boot) or command bootstrap:

> set the seed!!
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Histogram estimate
7. Appendix: Histogram estimate

@ A histogram is a nonparametric estimate of the density of y

» break data into bins of width 2h
» form rectangles of area the relative frequency = freq/N
> the height is freq/2Nh (then area = (freq/2Nh) x 2h = freq/N).

o Use freq =Y N 1 1(xo — h < x; < xo + h)

» where indicator function 1(A) equals 1 if event A happens and equals
0 otherwise

@ The histogram estimate of f(xg), the density of x evaluated at xp, is

2 N
frisT(x0) = 35 2o 1 1(x—h<x; <xo+h)

= thl 12X1(

Xj— xo{ <1)
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YAV Kernel density estimate

Appendix: Kernel density estimate

Recall /)EH/ST(X()) = ﬁzll\lzl % x1 (}thol < 1)

Replace 1 (A) by a kernel function

Kernel density estimate of f(xp), the density of x evaluated at x, is
Flow) =y T K (572
X0) = Nh Lui=1 h

» K(-) is called a kernel function
» his called the bandwidth or window width or smoothing parameter h

@ Example is Epanechnikov kernel

» K(z) =0.75(1 — 22) x 1(|z] < 1)
» more weight on data at center. less weight at end

@ More generally kernel function must satisfy conditions including

» Continuous, K(z) = K(—z), [K(2)dz=1, [ K(z)dz =1,
tails go to zero.
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