

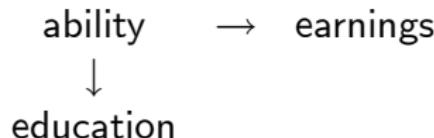
Causal Inference

A. Colin Cameron
Univ. of California, Davis

These slides are part of the set of slides
A. Colin Cameron, Introduction to Causal Methods
<https://cameron.econ.ucdavis.edu/causal/>

November 2024

Causal Inference


- Regression measures correlation and not necessarily causation.
- There are several methods to estimate causal effects using observational data.
- These slides emphasize analysis of data arising from so called natural experiments or quasi-experiments.
- Each method relies on its own assumptions.
- Each method has special data needs.
- In many applications we do not have the data to allow use of any of the causal methods.
- Use of any of these methods entails assumptions and subtleties
 - ▶ **so you need to read relevant references.**

Outline

- ① Introduction
- ② The Causal Inference Problem
- ③ Causal Methods
- ④ References

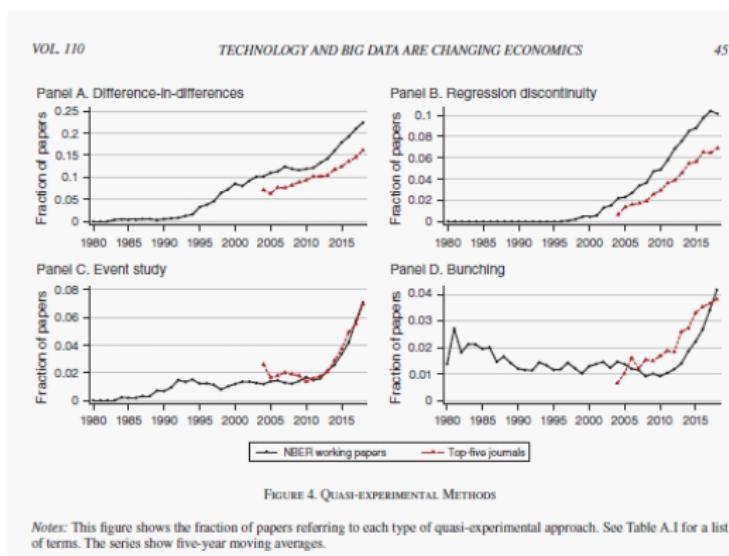
The Causal Inference Problem

- Regression measures correlation and not necessarily causation.
- For example individual earnings are positively **correlated** with education.
- But does that imply that more education is **causing** higher earnings?
- It could be, for example, that we are just picking up that it is higher ability that causes the higher earnings (and, of course higher ability is correlated with more earnings).
- The following paths are enough to induce (noncausal) correlation between earnings and education

OLS generally gives association and not causation

- Suppose we regress individual annual earnings on years of schooling and other regressors and find that the estimated slope coefficient of years of schooling is 500.
- Then we can only say that one more year of schooling **is associated with** an average increase of \$500 in annual earnings.
- In general we cannot say that one more year of schooling **causes** an average increase of \$500 in annual earnings
- Note that for many purposes it is enough to measure the association.
 - ▶ but at times we want a causal estimate.
- Much of the recent empirical microeconomics research has sought to obtain causal estimates.

Control function approach


- Causal estimates can be obtained if we make the strong assumption that the model error term is uncorrelated with the regressors.
- Since in the model $y_i = \beta_1 + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$, consistency of the OLS estimates requires that the error term u_i is uncorrelated with the regressors.
- This is a very strong assumption that is unreasonable in many applications.
- Here we need to assume that the regressors in the model explain enough of annual earnings that the unexplained part of earnings (the error) is uncorrelated with education
 - ▶ this is felt to be too strong an assumption.
- Instead, other methods need to be used.

Causal Methods

- Here are leading causal methods, summarized in other slides
 - ▶ each method has its own assumptions and data needs.
- Randomized control trial (RCT)
 - ▶ provides a useful reference point but their use is limited in economics
- Control function
- Regression discontinuity design
- Instrumental variables (and LATE)
- Fixed effects for panel data and for grouped data
- Differences in differences
- Synthetic control
- Regression adjustment, inverse-probability weighting, matching methods
 - ▶ especially to balance unbalanced RCTs.

Most Popular Causal Methods in Economics

- From Janet Currie, Henrik Kleven, and Esmée Zwiers (2020), AEA Papers and Proceedings, 110, pp. 42-48, who study papers 1980-2018
 - ▶ a large fraction of papers use quasi-experimental causal methods.

Notes: This figure shows the fraction of papers referring to each type of quasi-experimental approach. See Table A.1 for a list of terms. The series show five-year moving averages.

Graphical Presentation

- Causal relationships can be subtle and a visual map can be helpful.
- Directed acyclic graphs (DAGs) present all the paths from a causal variable D to outcome Y , including the role of any intermediate variables
 - ▶ Cunningham (2021), chapter 3, provides a good introduction
 - ▶ Judea Pearl (2009), *Causality*, Cambridge University Press, is the main reference.
- DAGs are unidirectional so do not handle all cases of causality
 - ▶ they do not handle reverse causality
 - ▶ they do not handle simultaneity, such as the demand-supply model
 - ▶ but they do handle most applications in modern microeconomics.
- For models with simultaneity (and with latent (unobservable) variables) many social sciences use path diagrams for structural equation models.

References for causal methods

- These books are given in approximate order of increasing difficulty.
- A. Colin Cameron (2020), *Analysis of Economics Data: An Introduction to Econometrics*, <https://cameron.econ.ucdavis.edu/aed/>.
- Joshua D. Angrist and Jörn-Steffen Pischke (2015), *Mastering Metrics*, Princeton University Press.
- Cunningham, Scott (2021), *Causal Inference: The MixTape*, Yale University Press.
- A. Colin Cameron and Pravin K. Trivedi (2022), *Microeconometrics using Stata: Volumes 1 and 2*, Second Edition, Stata Press, especially chapters 24 and 25.
- Joshua D. Angrist and Jörn-Steffen Pischke (2009), *Mostly Harmless Econometrics: An Empiricist's Companion*, Princeton University Press.
- A. Colin Cameron and Pravin K. Trivedi (2005), *Microeconometrics: Methods and Applications*, Cambridge University Press, especially chapter 25.
- Wooldridge, Jeffrey M. (2010), *Econometric Analysis of Cross Section and Panel Data*, Second Edition, MIT Press, especially chapters 20 and 21.
- Guido W. Imbens and Donald B. Rubin (2015), "Causal Inference in Statistics, Social, and Biomedical Sciences," Cambridge University Press.

References by non-economists

- These books by non-economists are similar to *Mastering Metrics* in accessibility.
- Stephen L. Morgan and Christopher Winship (2015), *Counterfactuals and Causal Inference: Methods and Principles for Social Research*, Second edition, Cambridge University Press.
- Richard J. Murnane and John B. Willett (2010), *Methods Matter: Improving Causal Inference in Educational and Social Science Research*, Oxford University Press.
- Andrew Gelman, Jennifer Hill and Aki Vehtari (2022), *Regression and Other Stories*, Cambridge University Press, especially chapters 18-21.