Instrumental Variables Estimation

A. Colin Cameron
Univ. of California, Davis

These slides are part of the set of slides
A. Colin Cameron, Introduction to Causal Methods
https://cameron.econ.ucdavis.edu/causal/

March 2023
Introduction

- These slides give an introductory example of instrumental variables (IV) and two-stage least squares (2SLS)
 - IV is a method for causal inference
 - it is a general method, but requires existence of a valid instrument
- It relies on the strong exclusion restriction (a nontestable assumption) that the instrument(s) do not belong in the model for the outcome (y) of interest.
Separately the Stata file \texttt{iv.do} implements these methods

- using dataset \texttt{AED_RETURNSTOSCHOOLING.DTA}

The data are from chapter 17.4 of A. Colin Cameron (2022) \textit{Analysis of Economics Data: An Introduction to Econometrics} https://cameron.econ.ucdavis.edu/.

- also analyzed in A. Colin Cameron and Pravin K. Trivedi (2005), \textit{Microeconometrics: Methods and Applications}, chapter 4.9.6.

Outline

1. Introduction
2. Instrumental Variables Estimation
3. Example: Returns to Schooling
4. Results
5. Further Details
6. Local average treatment effects - LATE (advanced topic)
7. Weak Instruments (advanced topic)
8. References
Instrumental Variables Estimation

- Problem: in model $y = \beta_1 + \beta_2 x + u$ we have $E[u|x] = 0$
 - then x is called an endogenous variable and OLS is inconsistent.

- Solution: assume there exists an instrument z that
 - z does not belong in the model for y (crucial exclusion restriction)
 - z is correlated with x.

1. OLS consistent
2. OLS inconsistent
3. IV consistent

- Example: in log-wage (y) model treat schooling (x) as endogenous
 - use distance to closest college as an instrument (z).
The instrumental variables (IV) estimator of β_2 is

$$b_{2,IV} = \frac{\sum_i (z_i - \bar{z})(y_i - \bar{y})}{\sum_i (z_i - \bar{z})(x_i - \bar{x})}$$

Note: IV is only possible if one can find a valid instrument.

Intuitively IV estimates $\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta z} \times \frac{\Delta z}{\Delta x}$ as the ratio $\frac{\Delta y}{\Delta z} / \frac{\Delta x}{\Delta z}$.

- if a one-unit change in z is associated with
 - a 2 unit increase in x and
 - a 3 unit increase in y

- then $b_{IV} = 3/2 = 1.5$.
- and this can be given a causal interpretation of $\frac{\Delta y}{\Delta x} = 1.5$.
IV Exa

- Can extend to multiple regression
 - exogenous regressors \((\text{uncorrelated with } u)\) are instruments for themselves
 - if more instruments \((z)\) than endogenous regressors \((x)\) then use two-stage least squares (2SLS).

- Suppose \(y = \beta_1 + \beta_2 x + \text{other variables} + u\)
 - \(x\) is correlated with \(u\) while the other variables are uncorrelated with \(u\)
 - \(z\) is one or more instruments that are correlated with \(x\) but do not directly determine \(y\).

- Then the IV estimator can be computed in two stages
 - 1. OLS regress \(x\) on \(z\) and the other variables
 - 2. Get the prediction \(\hat{x}\) from this regression.
 - 2. OLS regress \(y\) on \(\hat{x}\) and the other variables.
IV Example: Returns to schooling

- Does more years of schooling cause higher earnings.
- Model: \(y = \beta_1 + \beta_2 x + \text{other controls} + u \).
- Dataset AED_RETURNSTOSCHOOLING.DTA has 1976 data on 3,010 males aged 24 to 34 years old.
- Outcome variable \(y = \text{wage76} = \log \text{hourly wage} \)
- Endogenous regressor \(x = \text{grade76} = \text{highest grade completed} \)
- Instrument \(z = \text{col4} = \text{indicator for four-year college in county of residence} \)
- Exogenous regressors - here just age for simplicity.
- Nontestable exclusion restriction - having a four-year college in county of residence \((z) \) does not directly affect wage \((y) \)
 - after controlling for other variables in the model.
- Relevance - need \(\text{col4} (z) \) to be correlated with \(\text{grade76} (x) \)
 - after controlling for other variables in the model.
Data Summary

- We have

```
. sum wage76 grade76 col4 age76
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage76</td>
<td>3,010</td>
<td>1.65664</td>
<td>.443798</td>
<td>0</td>
<td>3.1797</td>
</tr>
<tr>
<td>grade76</td>
<td>3,010</td>
<td>13.26346</td>
<td>2.676913</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>col4</td>
<td>3,010</td>
<td>.68206</td>
<td>.4657535</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>age76</td>
<td>3,010</td>
<td>28.1196</td>
<td>3.137004</td>
<td>24</td>
<td>34</td>
</tr>
</tbody>
</table>
OLS and IV estimates

- First OLS of wage76 on grade76 and age76.
- Then IV of wage76 on grade76 and age76 with col4 an instrument for grade76 (and age76 an instrument for itself).

* OLS and IV estimates

```stata
reg wage76 grade76 age76, vce(robust)
estimates store OLS
ivregress 2sls wage76 age76 (grade76 = col4), vce(robust)
estimates store IV
estimates table OLS IV, b(%8.4f) se t(%8.2f) stats(N r2)
```
Results

- IV estimate of grade76 is much larger - a 17% return.
- IV standard error of grade76 is much larger
 - but grade76 is still statistically significant at level 0.05.

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>grade76</td>
<td>0.0525</td>
<td>0.1740</td>
</tr>
<tr>
<td></td>
<td>0.0028</td>
<td>0.0242</td>
</tr>
<tr>
<td></td>
<td>18.87</td>
<td>7.18</td>
</tr>
<tr>
<td>age76</td>
<td>0.0407</td>
<td>0.0416</td>
</tr>
<tr>
<td></td>
<td>0.0024</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td>16.98</td>
<td>13.77</td>
</tr>
<tr>
<td>_cons</td>
<td>-0.1831</td>
<td>-1.8196</td>
</tr>
<tr>
<td></td>
<td>0.0773</td>
<td>0.3345</td>
</tr>
<tr>
<td></td>
<td>-2.37</td>
<td>-5.44</td>
</tr>
<tr>
<td>N</td>
<td>3010</td>
<td>3010</td>
</tr>
<tr>
<td>r2</td>
<td>0.1813</td>
<td>.</td>
</tr>
</tbody>
</table>

Legend: b/se/t
In practice we would add more control variables than just age.

If we had more than one instrument we use two-stage least squares.

If we had more than one endogenous regressor then we need at least as many instruments as the number of endogenous regressors.

An advanced method interprets IV as estimating a local average treatment effects (LATE).

In applications with a weak instrument we need to use nonstandard inference method

- this is usually not a problem for time series examples
- but is often a problem with individual cross-section examples
- see final section.
Local Average Treatment Effects (LATE) (advanced topic)

- Consider instrumental variables (IV) estimator in model $y_i = \beta_1 + \gamma d_i$ where z_i is instrument for x_i.
- This model restricts constant treatment effect γ for all individuals.
- Instead allow different (heterogeneous) treatment effects γ_i.
- Specialize to a binary treatment D and suppose for simplicity that higher value of Z makes selection into treatment ($D = 1$) more likely.
- Distinguish between four types of people:
 - Always-takers chose treatment ($D = 1$) regardless of the value of Z
 - Never-takers never chose treatment ($D = 0$) regardless of the value of Z
 - Compliers are induced into treatment so $D = 1$ when $Z = 1$ and $D = 0$ when $Z = 0$
 - Defiers are induced away from treatment so $D = 0$ when $Z = 1$ and $D = 1$ when $Z = 0$.

- Then, under the crucial and nontestable assumption that there are no defiers, also called the monotonicity assumption, the IV estimator estimates the average treatment effect for compliers.
Weak instruments (advanced topic)

- An instrument z for endogenous regressor x is weak if it is weakly correlated with z after controlling for other variables.
- A diagnostic is to do OLS of $x_i = \alpha_1 + \alpha_2 z_i + \text{other controls} + v_i$
 - this is called the first-stage regression
 - if the t statistic for test that $\alpha_2 = 0$ is low then the instrument is weak
 - there is no clear value of how low is low but definitely $|t| < 3$ is a serious problem.

- Here the instrument is unlikely to be weak as $t = 7.80$

```
.regress grade76 col4 age76, vce(robust) noheader
```

| grade76 | Coefficient | Robust std. err. | t | P>|t| | [95% conf. interval] |
|---------|-------------|------------------|------|------|---------------------|
| col4 | .832565 | .1067308 | 7.80 | 0.000 | .6232922 | 1.041838 |
| age76 | -.0126164 | .0156219 | -0.81| 0.419| -.0432471 | .0180142 |
| _cons | 13.05037 | .4366304 | 29.89| 0.000| 12.19424 | 13.90649 |
Weak instruments (continued)

- With a weak instrument the usual asymptotic theory for inference can fail even in large samples
 - though with infinite amount of data IV is still consistent.
- Instead use an alternative method - the Anderson-Rubin Wald test and confidence interval
 - this requires a specialized command.
- Here this alternative gives a similar 95% confidence interval for β_{grade76} as the instrument was not weak.

Note: Wald test not robust to weak instruments. Confidence sets estimated for 100

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p-value</th>
<th>95% Confidence Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>chi2(1) = 75.66</td>
<td>Prob > chi2 = 0.0000</td>
<td>[0.132709, 0.230591]</td>
</tr>
<tr>
<td>Wald</td>
<td>chi2(1) = 51.53</td>
<td>Prob > chi2 = 0.0000</td>
<td>[0.126472, 0.221475]</td>
</tr>
</tbody>
</table>

Note: Wald test not robust to weak instruments. Confidence sets estimated for 100
References for IV

- Basic instrumental variables is presented in many texts.
- The following present LATE in addition to IV.
- Cunningham, Scott (2021), Causal Inference: The MixTape, Yale UP, chapter 7.
These books by non-economists are similar to *Mastering Metrics* in accessibility.

This econometrics article reviews inference with weak instruments.