

# Treatment effects

A. Colin Cameron  
Univ. of California, Davis

These slides are part of the set of slides  
A. Colin Cameron, Introduction to Causal Methods  
<https://cameron.econ.ucdavis.edu/causal/>

November 2024

# Introduction

- These slides give an introductory summary and data application of treatment effects estimation
  - ▶ for a binary treatment.
- The methods give a causal estimate **after suitable use of control variables**
  - ▶ this may be done to balance an unbalanced RCT
  - ▶ or to control for self-selection into treatment
    - ★ then we additionally need to make the non-testable assumption of selection-on-observables-only (or unconfoundedness).
- The methods allow different (heterogeneous) treatment effects for different individuals
  - ▶ so compute an average treatment effect
  - ▶ using a framework called the potential outcomes model.

- Separately the Stata file `treat.do` implements these methods
  - ▶ using dataset `mus224ohiesmallrecode.dta`
- The data are from chapter 24.8 of A. Colin Cameron and Pravin K. Trivedi (2022), *Microeconometrics using Stata*, Second edition, Volume 2
  - ▶ chapter 24 details the methods, the data and the application.
- The data source is NBER: The Oregon health insurance experiment - Data. Public use data archive  
<https://www.nber.org/research/data/oregon-health-insurance-experiment-data>.
- For analysis see Katherine Baicker, S. L. Taubman, H. L. Allen, M. Bernstein, J. H. Gruber, J. P. Newhouse, E. C. Schneider, B. J. Wright, A. M. Zaslavsky, and A. N. Finkelstein (2013), "The Oregon experiment - Effects of Medicaid on clinical outcomes," *New England Journal of Medicine*, 368, pages 1713-1722.

# Outline

- ① Introduction
- ② Potential outcomes
- ③ Observational data and unconfoundedness assumption
- ④ Methods
  - ① Regression adjustment
  - ② Inverse-probability weighting
  - ③ Doubly-robust
  - ④ Matching
- ⑤ Data example: Oregon health experiment
- ⑥ Results

# Potential Outcomes Model

- Potential outcomes model or Rubin causal model
  - ▶ standard framework that is used.
- Consider a binary treatment  $D$ 
  - ▶  $D_i = 1$  for individual  $i$  if treated
  - ▶  $D_i = 0$  if individual  $i$  is not treated (a control).
- There are two potential outcomes for  $Y_i$ 
  - ▶  $Y_{1i}$  if  $D_i = 1$  and  $Y_{0i}$  if  $D_i = 0$ .
- Interest lies in estimating the treatment effect  $\gamma_i \equiv Y_{1i} - Y_{0i}$ 
  - ▶ note that  $\gamma_i$  can vary across individuals (heterogeneous effect)
  - ▶ we cannot estimate  $\gamma_i$  as we only observe one of  $Y_{1i}$  and  $Y_{0i}$ 
    - ★ so restrict attention to more aggregated measures.
- The average treatment effect (ATE) in the population is
  - ▶  $\text{ATE} = E[\gamma_i] = E[Y_{1i} - Y_{0i}]$ .
- The average treatment effect on the treated (ATET) is
  - ▶  $\text{ATET} = E[\gamma_i | D_i = 1] = E[(Y_{1i} - Y_{0i}) | D_i = 1]$ .

# Randomized control trial

- A random controlled trial (RCT) is an experiment where randomly assign people to treatment and control.
  - ▶ then estimate ATE (and ATET) by the difference in means
  - ▶  $\widehat{\text{ATE}} = \bar{y}_{1i} - \bar{y}_{0i}$ .
- Note that this can be mechanically computed using OLS
  - ▶  $\widehat{\text{ATE}} = \widehat{\gamma}$  from OLS in the model  $y_i = \alpha + \gamma d_i + u_i$
  - ▶ but it is still the case that  $\gamma_i$  varies across individuals
  - ▶  $\widehat{\gamma}$  is the average over the individuals.
- An RCT may not perfectly randomize and may be unbalanced
  - ▶ covariates (that determine in part the outcome) may systematically differ between control and treated individuals
  - ▶ so use methods (detailed below) to control for the difference in covariates.

# Observational data

- RCT's are difficult to run in economics due to high cost and/or ethical reasons.
  - ▶ so we rely on observational data where individuals select into treatment
- With observational data individuals may additionally differ on unobservables (model errors) that determine in part self-selection into treatment or nontreatment.
- A stereotypical example is returns to training where self-select into training
  - ▶  $y_i = \beta_1 + \gamma d_i + u_i$  where  $d_i$  is a binary indicator for training
- People choose to get training, so we expect that those with higher (unobserved) expected benefits to training will select training
  - ▶ then  $E[u_i|d_i = 1] > E[u_i|d_i = 0]$  so  $E[u_i|d_i] \neq 0$  and OLS is inconsistent.

# Observational data (continued)

- Again use methods that control for the difference in covariates
  - ▶ but now need to assume that these also control for unobservables that determine in part selection into treatment
    - ★ nontestable crucial assumption called selection-on-observables only, or unconfoundedness, or ignorable selection.
- In summary, the same adjustment methods (detailed below) may be used for RCTs and for observational data.
- But in the latter case we need to assume that the adjustments also control for unobservables that determine self-selection into treatment.
- When this assumption is not reasonable to make we need to use other methods (if possible) including instrumental variables, differences in differences, regression discontinuity design and synthetic control.

# Unconfoundedness assumption

- Also called selection-on-observables only, or unconfoundedness.
- After controlling for other variables, selection in to treatment can be viewed as if treatment was randomly assigned.
- Define
  - ▶  $y_0$  and  $y_1$  are potential outcomes
  - ▶  $d$  is treatment
  - ▶  $x$  are control variables
- The unconfoundedness assumption is that conditional on  $x$ , the treatment assignment  $d$  and the potential outcomes  $y_0$  and  $y_1$  are independent
  - ▶ this rules out, for example that people with high  $y_1 - y_0$  are more likely to receive treatment compared to those with low  $y_1 - y_0$
  - ▶ formally this is denoted  $(y_0, y_1 \perp x) | d$ .

# Method 0: Control function

- A simple control function approach adds controls
  - ▶  $\widehat{\text{ATE}} = \widehat{\gamma}$  from OLS of  $y_i = \beta_1 + \gamma d_i + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + u_i$ .
- For consistent estimation of  $\gamma$  we need to assume  $d_i$  and  $u_i$  uncorrelated once the controls are added.
- The subsequent methods are preferred richer methods.

# Method 1: Regression Adjustment

- The regression adjustment estimator runs separate regressions for the treated and untreated
  - ▶ and estimates ATE by the difference in predicted means.
- 1. Regress  $y_i$  on intercept and  $x_{2i}, \dots, x_{ki}$  for  $d_i = 1$  only observations  
 Compute  $\frac{1}{n} \sum_{i=1}^n \hat{y}_{1i}$  where  $\hat{y}_{1i} = \mathbf{x}'_i \hat{\beta}_1$  is resulting prediction for observations with  $d_i = 0$  and with  $d_i = 1$ .
- 2. Regress  $y_i$  on intercept and  $x_{2i}, \dots, x_{ki}$  for  $d_i = 0$  only observations  
 Compute  $\frac{1}{n} \sum_{i=1}^n \hat{y}_{0i}$  where  $\hat{y}_{0i} = \mathbf{x}'_i \hat{\beta}_0$  is resulting prediction for observations with  $d_i = 0$  and with  $d_i = 1$ .

$$\widehat{\text{ATE}} = \frac{1}{n} \sum_{i=1}^n \hat{y}_{1i} - \frac{1}{n} \sum_{i=1}^n \hat{y}_{0i}.$$

## Method 2: Inverse-probability weighting (IPW)

- Inverse-probability weighting uses weighted averages of the outcome.
- We use a model such as a logit model to estimate the propensity score, the predicted probability of treatment
  - ▶  $\hat{p}_i = \hat{\Pr}[d_i = 1 | (x_{2i}, \dots, x_{ki})]$ .
- The higher is  $\hat{p}_i$  the larger the treatment effect is likely to be
  - ▶ so if person is treated ( $d_i = 1$ ) we should downweight their outcome  $y_i$
  - ▶ inverse-probability weighting uses  $y_i / \hat{p}_i$  for those with  $d_i = 1$
  - ▶ and for similar reasons use  $1 / (1 - \hat{p}_i)$  if untreated ( $d_i = 0$ ).

$$\widehat{\text{ATE}} = \frac{1}{n} \sum_{i=1}^n \frac{d_i y_i}{\hat{p}_i} - \frac{1}{n} \sum_{i=1}^n \frac{(1 - d_i) y_i}{1 - \hat{p}_i}.$$

- Propensity score overlap requires that  $0 < \hat{p}_i < 1$  so that for each value of  $\hat{p}_i$  there are both treated and untreated observations.

## Method 3: Doubly-robust estimator

- The regression adjustment estimator that gives  $\hat{y}_{1i}$  and  $\hat{y}_{0i}$  requires correct specification of the regression model.
- The IPW regression adjustment model that gives  $\hat{p}_i$  requires correct specification of the propensity score model.
- The doubly-robust estimator or augmented IPW estimator
  - ▶ combines regression adjustment and inverse-propensity score estimation
  - ▶ for consistency requires correct specification of just one of the regression model and the propensity score model.

$$\widehat{\text{ATE}} = \frac{1}{n} \sum_{i=1}^n \left( \frac{d_i(y_i - \hat{y}_{1i})}{\hat{p}_i} - \hat{y}_{1i} \right) - \frac{1}{n} \sum_{i=1}^n \left( \frac{(1-d_i)(y_i - \hat{y}_{0i})}{1-\hat{p}_i} - \hat{y}_{0i} \right).$$

## Method 4: Matching

- Matching compares each treated individual to a similar (on  $x$ 's) untreated individual
  - ▶ ideally we match on exactly the same  $x$ 's but with many  $x$ 's and/or continuous  $x$ 's this is not possible.
- Nearest neighbor matching compares  $y_i$  for each treated individual to the average  $y_i$  of the  $k$  untreated individuals (e.g.  $k = 10$ ) whose values of  $x_2, \dots, x_k$  are closest to those for the treated observation
  - ▶ several different measures of closeness have been proposed.
- Propensity score matching instead compares outcomes with those with similar probability of treatment
  - ▶ where  $\hat{p}_i = \hat{\Pr}[d_i = 1 | (x_{2i}, \dots, x_{ki})]$  is a prediction from e.g. a logit model.

# Regressor balance check

- In the simplest RCT, regressors are independent of the outcome.
- With observational data this is no longer the case, so we ideally rebalance so that the covariates for treatment and control are similar.
- For a single variable let  $\bar{z}_1$  and  $\bar{z}_0$  (and  $s_{z1}^2$  and  $s_{z0}^2$ ) denote means (and variances) for treated and untreated individuals.
- Two measures of the difference across treatment groups are
  - ▶ standardized difference:  $(\bar{z}_1 - \bar{z}_0) / \sqrt{(s_{z1}^2 + s_{z0}^2)/2}$
  - ▶ variance ratio:  $s_{z1}^2 / s_{z0}^2$ .
- For methods that use weights that are the inverse of the propensity scores we want
  - ▶ weighted means to be similar for treated and untreated
  - ▶ weighted variances to be similar for treated and untreated
  - ▶ weighted standardized difference to be close to 0
  - ▶ weighted variance ratio to be close to 1.
- Qualitatively similar balance measures can be constructed for nearest-neighbors matching.

# Example: The Oregon Health Insurance Experiment

- Oregon expanded access to Medicaid, its health insurance program for low income people.
- It did so through a lottery.
  - ▶ 90,000 people registered for the lottery
  - ▶ the lottery occurred in eight waves over six months
  - ▶ 35,000 people were selected.
- We compare the out-of-pocket (OOP) expenditures of those who won the lottery with those who entered the lottery and did not win
  - ▶ for those who filled out a subsequent mail questionnaire.
- Note that not all lottery winners subsequently entered Medicaid
  - ▶ formally we are estimating intention to treat.

## Data summary

- Although the state randomly sampled from individuals on the list, the entire household of any selected individual was considered selected and eligible to apply.
  - ▶ so selected (treatment) individuals are disproportionately drawn from larger households.
- Additionally for the sample at hand, winning the lottery varied with the time of the lottery and the survey.
- So even though this is an RCT we should control for household size and time of lottery.
- Additionally, to possibly improve estimator efficiency, we control for some individual characteristics
  - ▶ smoker, household income, education and employment.

# Variables: Outcome, treatment and individual controls

| Variable name | Storage type | Display format | Value label | Variable label                                                   |
|---------------|--------------|----------------|-------------|------------------------------------------------------------------|
| oop           | float        | %9.0g          |             | Out of pocket costs (cost_tot_oop_mod_12m)                       |
| lottery       | byte         | %12.0g         | lottery     | Selected in the lottery                                          |
| household_id  | float        | %9.0g          |             | Scrambled household identifier                                   |
| dsmoke        | byte         | %10.0g         | smk_lbl     | Currently smoke cigs (smk_curr_12m)                              |
| hhinc         | float        | %3.0f          |             | Household income as % of federal poverty line (hhinc_pctfp1_12m) |
| deduc2        | byte         | %8.0g          |             | HS diploma or GED (edu_12m_2)                                    |
| deduc3        | byte         | %8.0g          |             | Voc or 2yr degree (edu_12m_3)                                    |
| deduc4        | byte         | %8.0g          |             | Four year degree (edu_12m_4)                                     |
| demploy2      | byte         | %8.0g          |             | Work < 20 hrs/wk (employ_hrs_12m_2)                              |
| demploy3      | byte         | %8.0g          |             | Work 20-29 hrs/wk (employ_hrs_12m_3)                             |
| demploy4      | byte         | %8.0g          |             | Work 30+ hrs/wk (employ_hrs_12m_4)                               |

# Summary statistics: Outcome, treatment and individual controls

```
. global xlist dsmoke hhinc deduc2-deduc4 demploy2-demploy4
. summarize oop lottery $xlist
```

| Variable | Obs    | Mean     | Std. dev. | Min | Max      |
|----------|--------|----------|-----------|-----|----------|
| oop      | 22,679 | 269.0062 | 733.0821  | 0   | 9400     |
| lottery  | 22,679 | .4972001 | .5000032  | 0   | 1        |
| dsmoke   | 22,154 | 2.262661 | .9171565  | 1   | 3        |
| hhinc    | 20,478 | 76.97273 | 69.16905  | 0   | 461.6898 |
| deduc2   | 21,986 | .4982716 | .5000084  | 0   | 1        |
| <hr/>    |        |          |           |     |          |
| deduc3   | 21,986 | .2204585 | .4145653  | 0   | 1        |
| deduc4   | 21,986 | .1137997 | .317575   | 0   | 1        |
| demploy2 | 22,411 | .0912052 | .2879071  | 0   | 1        |
| demploy3 | 22,411 | .0999509 | .2999412  | 0   | 1        |
| demploy4 | 22,411 | .2638436 | .4407254  | 0   | 1        |

# Variables: Lottery controls

| Variable name | Storage type | Display format | Value label | Variable label                  |
|---------------|--------------|----------------|-------------|---------------------------------|
| dhhsiz2       | byte         | %8.0g          |             | 2 in hh (ddnumhh_li_2)          |
| dhhsiz3       | byte         | %8.0g          |             | 3 in hh (ddnumhh_li_3)          |
| dlotdraw2     | byte         | %8.0g          |             | draw_lottery==2 (llldraw_lot_2) |
| dlotdraw3     | byte         | %8.0g          |             | draw_lottery==3 (llldraw_lot_3) |
| dlotdraw4     | byte         | %8.0g          |             | draw_lottery==4 (llldraw_lot_4) |
| dlotdraw5     | byte         | %8.0g          |             | draw_lottery==5 (llldraw_lot_5) |
| dlotdraw6     | byte         | %8.0g          |             | draw_lottery==6 (llldraw_lot_6) |
| dlotdraw7     | byte         | %8.0g          |             | draw_lottery==7 (llldraw_lot_7) |
| dlotdraw8     | byte         | %8.0g          |             | draw_lottery==8 (llldraw_lot_8) |
| dsurvdraw2    | byte         | %8.0g          |             | draw_survey==2 (ddddraw_sur_2)  |
| dsurvdraw3    | byte         | %8.0g          |             | draw_survey==3 (ddddraw_sur_3)  |
| dsurvdraw4    | byte         | %8.0g          |             | draw_survey==4 (ddddraw_sur_4)  |
| dsurvdraw5    | byte         | %8.0g          |             | draw_survey==5 (ddddraw_sur_5)  |
| dsurvdraw6    | byte         | %8.0g          |             | draw_survey==6 (ddddraw_sur_6)  |
| dsurvdraw7    | byte         | %8.0g          |             | draw_survey==7 (ddddraw_sur_7)  |

# Summary statistics: : Lottery controls

```
. global zlist dhhsiz2 dhhsiz3 dlotdraw* dsurvdraw*
. summarize $zlist // Household size and lottery and survey draws
```

| Variable   | Obs    | Mean     | Std. dev. | Min | Max |
|------------|--------|----------|-----------|-----|-----|
| dhhsiz2    | 22,679 | .2963094 | .4566392  | 0   | 1   |
| dhhsiz3    | 22,679 | .0025133 | .0500713  | 0   | 1   |
| dlotdraw2  | 22,679 | .1050311 | .3066002  | 0   | 1   |
| dlotdraw3  | 22,679 | .1028705 | .3037964  | 0   | 1   |
| dlotdraw4  | 22,679 | .1014595 | .3019429  | 0   | 1   |
| dlotdraw5  | 22,679 | .0970501 | .2960325  | 0   | 1   |
| dlotdraw6  | 22,679 | .1974955 | .3981181  | 0   | 1   |
| dlotdraw7  | 22,679 | .1934389 | .3950027  | 0   | 1   |
| dlotdraw8  | 22,679 | .0995194 | .2993647  | 0   | 1   |
| dsurvdraw2 | 22,679 | .1124829 | .3159666  | 0   | 1   |
| dsurvdraw3 | 22,679 | .1127034 | .3162368  | 0   | 1   |
| dsurvdraw4 | 22,679 | .1404383 | .3474488  | 0   | 1   |
| dsurvdraw5 | 22,679 | .1414084 | .34845    | 0   | 1   |
| dsurvdraw6 | 22,679 | .2043741 | .4032524  | 0   | 1   |
| dsurvdraw7 | 22,679 | .173244  | .3784664  | 0   | 1   |

## Results: Difference in means

- Throughout use standard errors that cluster on household.
- Simple differences in means is OLS with no controls.
- The ATE for out-of-pocket spending is -\$45
  - ▶ this is 17% of the sample mean of \$269
  - ▶ and is highly statistically significant ( $p = 0.000$ ).

```
. regress oop lottery, vce(cluster household_id) noheader
          (Std. err. adjusted for 20,148 clusters in household_id)
```

| oop     | Robust      |           |       |       |                      |           |
|---------|-------------|-----------|-------|-------|----------------------|-----------|
|         | Coefficient | std. err. | t     | P> t  | [95% conf. interval] |           |
| lottery | -44.66267   | 9.921594  | -4.50 | 0.000 | -64.1098             | -25.21553 |
| _cons   | 291.2125    | 7.120921  | 40.90 | 0.000 | 277.2549             | 305.1701  |

# Results: Control function

- Results change little with controls
  - ▶ Diff\_clu: no controls
  - ▶ zlist: Lottery controls
  - ▶ xlist: Individual controls
  - ▶ Both: Lottery controls and individual controls.

| Variable | Diff_clu           | zlist               | xlist               | Both                |
|----------|--------------------|---------------------|---------------------|---------------------|
| lottery  | -44.6627<br>9.9216 | -40.9243<br>10.1302 | -45.7420<br>10.6484 | -40.1693<br>10.8169 |
| N        | 22679              | 22679               | 19393               | 19393               |
| r2       | 0.0009             | 0.0018              | 0.0147              | 0.0154              |

Legend: b/se

# Results: Regression adjustment

- ATE is  $-\$40$  (compared to  $-\$45$  difference in means)

```
. * Regression-adjusted ATE using $zlist and $xlist
. teffects ra ($y $xlist $zlist ) (lottery), nolog vce(cluster household_id)
```

Treatment-effects estimation Number of obs = 19,393  
 Estimator : regression adjustment  
 Outcome model : linear  
 Treatment model: none  
 (Std. err. adjusted for 17,348 clusters in household\_id)

| oop                                         | Robust      |           |       |       |                      |           |
|---------------------------------------------|-------------|-----------|-------|-------|----------------------|-----------|
|                                             | Coefficient | std. err. | z     | P> z  | [95% conf. interval] |           |
| ATE                                         |             |           |       |       |                      |           |
| lottery<br>(Selected<br>vs<br>Not selected) | -40.44588   | 10.94579  | -3.70 | 0.000 | -61.89924            | -18.99252 |
| P0mean                                      |             |           |       |       |                      |           |
| lottery<br>Not selected                     | 292.1394    | 7.693716  | 37.97 | 0.000 | 277.06               | 307.2188  |

# Results: Inverse-probability weighting

- Separate analysis shows that the \$xlist are well balanced but the \$zlist are not
  - so use just the \$zlist variables as regressors for the propensity score.
- ATE is -\$40 (compared to -\$45 difference in means)

```
. * IPW ATE using $zlist
. teffects ipw ($y) (lottery $zlist), nolog vce(cluster household_id)
```

Treatment-effects estimation Number of obs = 22,679  
 Estimator : inverse-probability weights  
 Outcome model : weighted mean  
 Treatment model: logit  
 (Std. err. adjusted for 20,148 clusters in household\_id)

| oop                                                | Robust      |           |       |       |                      |
|----------------------------------------------------|-------------|-----------|-------|-------|----------------------|
|                                                    | Coefficient | std. err. | z     | P> z  | [95% conf. interval] |
| ATE<br>lottery<br>(Selected<br>vs<br>Not selected) | -39.56951   | 10.12338  | -3.91 | 0.000 | -59.41098 -19.72804  |

# Results: Doubly-robust augmented IPW

- ATE is -\$39 (compared to -\$45 difference in means)

```
. * Doubly-robust augmented IPW
. teffects aipw ($y $xlist) (lottery $zlist), aequations nolog ///
> vce(cluster household_id)
```

Treatment-effects estimation Number of obs = 19,393  
 Estimator : augmented IPW  
 Outcome model : linear by ML  
 Treatment model: logit  
 (Std. err. adjusted for 17,348 clusters in household\_id)

| oop                                                | Robust      |           |       |       |           | [95% conf. interval] |
|----------------------------------------------------|-------------|-----------|-------|-------|-----------|----------------------|
|                                                    | Coefficient | std. err. | z     | P> z  |           |                      |
| ATE<br>lottery<br>(Selected<br>vs<br>Not selected) | -38.66964   | 10.79616  | -3.58 | 0.000 | -59.82973 | -17.50956            |

# Results: Propensity score matching

- ATE is -\$49 (compared to -\$45 difference in means)

```
. * Propensity score matching usign $zlist
. teffects psmatch ($y) (lottery $zlist)
```

Treatment-effects estimation  
 Estimator : propensity-score matching  
 Outcome model : matching  
 Treatment model: logit

|  | Number of obs      | = | 22,679 |
|--|--------------------|---|--------|
|  | Matches: requested | = | 1      |
|  | min                | = | 1      |
|  | max                | = | 1018   |

| oop                                                | AI robust   |           |       |       |           | [95% conf. interval] |
|----------------------------------------------------|-------------|-----------|-------|-------|-----------|----------------------|
|                                                    | Coefficient | std. err. | z     | P> z  |           |                      |
| ATE<br>lottery<br>(Selected<br>vs<br>Not selected) | -48.935     | 14.08062  | -3.48 | 0.001 | -76.53251 | -21.33749            |

# Results: Nearest-neighbor matching

- ATE is  $-\$49$  (compared to  $-\$45$  difference in means)

- \* Nearest neighbor matching
- \* Exact match on household size either 1 or  $> 1$
- \* Match on mahalanobis distance for the remaining variables
- generate dhhbig = dhhsiz2 + dhhsiz3
- teffects nnmatch (\$y \$wave) (lottery), ematch(dhhbig) metric(mahalanobis)

Treatment-effects estimation  
 Estimator : nearest-neighbor matching  
 Outcome model : matching  
 Distance metric: Mahalanobis

|                 | Number of obs      | = | 22,679 |
|-----------------|--------------------|---|--------|
| Estimator       | Matches: requested | = | 1      |
| Outcome model   | min                | = | 5      |
| Distance metric | max                | = | 1018   |

| oop                                         | AI robust   |           |       |       |           | [95% conf. interval] |
|---------------------------------------------|-------------|-----------|-------|-------|-----------|----------------------|
|                                             | Coefficient | std. err. | z     | P> z  |           |                      |
| ATE                                         |             |           |       |       |           |                      |
| lottery<br>(Selected<br>vs<br>Not selected) | -48.68898   | 13.83561  | -3.52 | 0.000 | -75.80629 | -21.57168            |

## Check: Regressor balance

- The number of weighted and unweighted observations are similar.

```
. qui teffects ipw ($y) (lottery $zlist), nolog vce(cluster household_id)  
. tebalance summarize
```

Covariate balance summary

|                 | Raw    | Weighted |
|-----------------|--------|----------|
| Number of obs = | 22,679 | 22,679.0 |
| Treated obs =   | 11,276 | 11,151.4 |
| Control obs =   | 11,403 | 11,527.6 |

- More statistics are given on the next slide
- Aside: if we add \$xlist it shows that the raw data are already well balanced, so no need to include them in the propensity score model.

# Regressor balance (continued)

- The weighted data are well balanced
  - ▶ whereas the unweighted data were not.

|            | Standardized differences |           | Variance ratio |          |
|------------|--------------------------|-----------|----------------|----------|
|            | Raw                      | Weighted  | Raw            | Weighted |
| dhhsiz2    | .1939117                 | .0060577  | 1.19006        | 1.005543 |
| dhhsiz3    | .0797051                 | .0021402  | 8.56137        | 1.04358  |
| dlotdraw2  | .0331758                 | .0015502  | 1.089294       | 1.004479 |
| dlotdraw3  | .0365961                 | .0046157  | 1.100489       | 1.013669 |
| dlotdraw4  | -.0257401                | -.0069954 | .9342648       | .9817981 |
| dlotdraw5  | .0003948                 | -.0069064 | 1.001076       | .9816374 |
| dlotdraw6  | -.0083996                | -.0028377 | .9873158       | .9960122 |
| dlotdraw7  | -.0192988                | .0054252  | .970481        | 1.007623 |
| dlotdraw8  | -.0254451                | .0079989  | .9341439       | 1.020275 |
| dsurvdraw2 | .2260162                 | -.0055742 | 1.772475       | .9868448 |
| dsurvdraw3 | .2397501                 | -.0094081 | 1.838261       | .9780227 |
| dsurvdraw4 | -.0404115                | .0106734  | .9196795       | 1.022566 |
| dsurvdraw5 | -.0458372                | .0091592  | .9098577       | 1.019404 |
| dsurvdraw6 | -.1878871                | .0052308  | .7566851       | 1.007905 |
| dsurvdraw7 | -.290524                 | -.0054474 | .5950349       | .9903239 |

## Further details

- More complete analysis of the preceding methods is given in chapter 25 of A. Colin Cameron and Pravin K. Trivedi (2022), *Microeconometrics using Stata: Volume 2, Second Edition*.
  - ▶ This includes checks for covariate balance and propensity score overlap.

## References for treatment effects

- These econometrics books are given in approximate order of increasing difficulty.
- A. Colin Cameron (2022), *Analysis of Economic Data: An Introduction to Econometrics*, chapter 17.5.
- Cunningham, Scott (2021), *Causal Inference: The MixTape*, Yale University Press, chapters 5-6.
- A. Colin Cameron and Pravin K. Trivedi (2022), *Microeconometrics using Stata*: Volume 2, Second Edition, Stata Press, chapter 24.
- A. Colin Cameron and Pravin K. Trivedi (2005), *Microeconometrics: Methods and Applications*, Cambridge University Press, chapters 25.1-25.4.
- Wooldridge, Jeffrey M. (2010), *Econometric Analysis of Cross Section and Panel Data*, Second Edition, MIT Press, especially chapters 21.1-21.3.
- Guido W. Imbens and Donald B. Rubin (2015), "Causal Inference in Statistics, Social, and Biomedical Sciences," Cambridge University Press, chapters 1-3, 12-24.

# References by non-economists

- Stephen L. Morgan and Christopher Winship (2015), *Counterfactuals and Causal Inference: Methods and Principles for Social Research*, Second edition, Cambridge University Press, chapters 1-7.
- Richard J. Murnane and John B. Willett (2010), *Methods Matter: Improving Causal Inference in Educational and Social Science Research*, Oxford University Press, chapters 4, 12.
- Andrew Gelman, Jennifer Hill and Aki Vehtari (2022), *Regression and Other Stories*, Cambridge University Press, especially chapters 19–20.