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Introduction

Introduction

@ Begin with an economics application of machine learning to straight

prediction.
@ Then focus on the microeconometrics literature where concerned
especially with
» causal inference for a treatment effect
» with valid inference controlling for data mining.
@ These slides are a companion to my slides

» Machine Learning Overview Part 1: Basics - selection, shrinkage,

dimension reduction
» Machine Learning Overview Part 2: Flexible methods
> (and to the more abbreviated Machine Learning Overview)
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Introduction

Causal Inference with Machine Learning

@ Current microeconometric applications focus on causal estimation of
a key parameter, such as an average marginal effect, after controlling
for confounding factors

> apply to models with selection on observables only
* good controls makes this assumption more reasonable
> and to IV with available instruments
* good few instruments avoids many instruments problem.
@ Machine learning methods determine good controls (or instruments)

» but valid statistical inference needs to control for this data mining
» currently extraordinarily active area of econometrics research.

@ Consider both homogeneous effects and heterogeneous effects.

@ This research area is currently exploding

> these slides may become dates quickly.
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Introduction

@ Prediction for economics
@ Machine learning for microeconometrics
© Causal homogeneous effects

@ Focus on LASSO methods

@ Causal heterogeneous effects

@ LASSO for doubly-robust ATE
® Random forests for conditional treatment effects

@ Double/debiased machine learning

@ Some review articles of ML for Economics
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1. Prediction for Economics

1. Prediction for Economics

@ Microeconometrics focuses on estimation of 8 or of partial effects.
@ But in some cases we are directly interested in predicting y
> probability of one-year survival following hip transplant operation
* if low then do not have the operation.
» probability of re-offending
* if low then grant parole to prisoner.
e Mullainathan and Spiess (2017)

» consider prediction of housing prices
» detail how to do this using machine learning methods
» and then summarize many recent economics ML applications.

@ So summarize Mullainathan and Spiess (2017).
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1.1 Summary of Machine Learning Algorithms
1.1 Summary of Machine Learning Algorithms

Table 2
Some Machine Learning Algorithms

Function class F (and its parametrization) Regularizer R([)

Global/parametric predictors
Linear 3'x (and generalizations) Subset selection||3]]y = Z’,’Ll L.0

LASSO [|Al1, = X411
Ridge [|3]1:? = Tk, 37

Elastic net of| 3], + (1 - ) ||3]]2*

Local /nonparametric predictors
Decision /regression trees Depth, number of nodes/leaves, minimal leaf
size, information gain at splits

Random forest (linear combination of Number of trees, number of variables used

trees) in each tree, size of bootstrap sample,
complexity of trees (see above)

Nearest neighbors Number of neighbors

Kernel regression Kernel bandwidth
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1. Prediction for Economics 1.1 Summary of Machine Learning Algorithms

Table 2 (continued)

Mixed predictors
Deep learning, neural nets, convolutional
neural networks

Splines

Number of levels, number of neurons per
level, connectivity between neurons

Number of knots, order

Combined predictors
Bagging: unweighted average of predictors
from bootstrap draws
Boosting: linear combination of
predictions of resicual

Ensemble: weighted combination of
different predictors

Number of draws, size of bootstrap samples
(and individual regularization parameters)
Learning rate, number of iterations (and

individual regularization parameters)

Ensemble weights (and individual
regularization parameters)
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1. Prediction for Economics 1.2 Predict Housing Prices

1.2 Predict housing prices

@ y is log house price in U.S. 2011

» n = 51,808 is sample size
» p = 150 is number of potential regressors.

@ Predict using

OLS (using all regressors)

regression tree

LASSO

random forest

ensemble: an optimal weighted average of the above methods.

vV vy VY VY Vv

@ 1. Train model on 10,000 observations using 8-fold CV.

o 2. Fit preferred model on these 10,000 observations.

@ 3. Predict on remaining 41,808 observations
» and do 500 bootstraps to get 95% Cl for R?.
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1. Prediction for Economics 1.2 Predict Housing Prices

e Random forest (and subsequent ensemble) does best out of sample.

Table 1

Performance of Different Algorithms in Predicting House Values

Prediction performance (R°)

Relative improvement over ordinary leasi
squares by quintile of house value

Training Hold-out
Method sample sample 1st 2nd Srd 4th 5th
Ordinary least 47.3% 41.7% - - - - -
squares [39.7%, 43.7%]
Regression tree 39.6% 34.5% -11.5% 10.8%  6.4% -14.6% -31.8%
tuned by depth [32.6%, 36.5%]
LASSO 46.0% 43.5% 1.3% 119% 131% 101% -19%
[41.5%, 45.2%]
Random forest 85.1% 45.5% 3.5% 23.6% 27.0% 17.8% —-05%
[43.6%, 47.5%)]
Ensemble 80.4% 45.9% 4.5% 16.0% 179% 142% 7.6%
[44.0%, 47.9%]
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1.2 Pl (leusing Piiees
Further details

Downloadable appendix to the paper gives more details and R code.

1. Divide into training and hold-out sample.

@ 2. On the training sample do 8-fold cross-validation to get tuning
parameter(s) such as A.

> If e.g. two tuning parameters then do two-dimensional grid search.
e 3. The prediction function f(x) is estimated using the entire sample
with optimal A.

4. Now apply this /f\(x) to the hold-out sample and can compute R?
and MSE.

5. A 95% Cl for R? can be obtained by bootstrapping hold-out
sample.

Ensemble weights are obtained by 8-fold CV in the training sample.
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1. Prediction for Economics 1.2 Predict Housing Prices

@ LASSO does not pick the “correct” regressors

> it just gets the correct ?(x) especially when regressors are correlated
with each other.

@ Diagram on next slide shows which of the 150 variables are included
in separate models for 10 subsamples
> there are many variables that appear sometimes but not at other times

* appearing sometimes in white and sometimes in black.
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1. Prediction for Economics 1.2 Predict Housing Prices

Estimate
O Zero
m Nonzero

Parameter in the linear model

Fold of the sample
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1.8 Sorie Viensis on Py Gt
1.3 Some Thoughts on ML Prediction

Clearly there are many decisions to make in implementation

» how are features converted into x's

> tuning parameter values

» which ML method to use

> even more with an ensemble forecast.

@ For commercial use this may not matter

> all that matters is that predict well enough.

But for published research we want reproducibility

> At the very least document exactly what you did
> provide all code (and data if it is publicly available)
> keep this in mind at the time you are doing the project.

@ For public policy we prefer some understanding of the black box

> this may be impossible.
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2. Machine Learning for Microeconometrics

@ Empirical microeconometrics studies focus on estimating partial
effects
> the effect on y of a change in x; controlling for x;.
@ A machine learner would calculate this as follows
» prediction function is J = f(x1,xp)
» the partial effect of a change of size Axj is then

Ay = ?(Xl + Axq, X2) —?(Xl, X2).

This could be a very complicated as ?() may be very nonlinear in x;.

@ There is difficulty (impossibility?) in obtaining an asymptotic
distribution for inference.
e And it requires a correct model f(xi, x;)

» formally the model needs to be consistent
> i.e. probability that f(-) is correct — 1 as n — oo.
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Add Some Structure

@ A partially linear control function model specifies
y = Bx1 + g(x2) + u where g(+) is unknown.
» for simplicity consider only scalar x;.
@ The partial effect of a change of size Ax; is then
Ay = BAxq.

o Consistent estimator requires E[y|xi, x2] = Bxi + g(x2).

» more plausible the better the choice of g(x2)
> though we still need linear in x; and additivity.

@ The partially linear model was used initially in semiparametrics

> typically x; and B were high dimension and x» low dimension
> now for causal ML x; and B are high dimension and x; is high
dimension.
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2. Machine Learning for Microeconometrics

How to add the controls

@ Biostatistics includes regressors x, as controls if p < 0.05
» imperfect selection and also leads to pre-test bias.

@ Economists use economics theory and previous studies to include
regressors

> these are included regardless of their statistical significance

> to guard against omitted variables bias and to avoid pre-test bias.
@ Machine learning methods are used to get a good choice of g(xz)

> ideally in such a way and/or with assumptions so that standard

~

inference can be used for

* so data mining has not affected the distribution of B
» The methods can extend to endogenous X .
@ We focus on use of the LASSO to determine g(x»)
» due to Belloni, Chernozhukov and Hansen and coauthors

» assumptions including “sparsity” enable use of standard inference for El

> use the lassopack Stata package of Ahrens, Hansen and Schaffer
(2019).
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2. Machine Learning for Microeconometrics

Alternatively estimate average partial effects

@ An alternative to the partially lienr model is to use less structure and

estimate average partial effects.
@ The leading example is the heterogeneous effects literature

> let x; be a binary treatment taking values 0 or 1
> let Ay/Axq vary across individuals in an unstructured way
> estimate the average partial effect E[y|x; = 1] — E[y|x; = 0].

@ One method used is propensity score matching

» machine learning may give a better propensity score estimator.
@ Another method used is nearest-neighbors matching

» machine learning may give a better matching algorithm.

@ In fact better methods than matching methods are used.
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3. LASSO for causal homogeneous effects

@ Belloni, Chernozhukov and Hansen and coauthors have many papers

» focus on the following three papers.

@ Belloni, Chernozhukov and Hansen (2014), “High-dimensional
methods and inference on structural and treatment effects,” Journal
of Economic Perspectives, Spring, 29-50

> accessible paper with three applications.

@ Ahrens, Hansen and Schaffer (2019), “lassopack: Model selection and
prediction with regularized regression in Stata,” arXiv:1901.05397
» more detail on LASSO methods as well as on Stata commands.

@ Belloni, Chernozhukov and Hansen (2011), “Inference Methods for

High-Dimensional Sparse Econometric Models,” Advances in
Economics and Econometrics, ES World Congress 2010, ArXiv 2011

» even more detail and summarizes several of their subsequently
published papers.
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3. LASSO for causal homogeneous effects BEBESIENEILNFCE0)

3.1 Standard Lasso

Begin with basic LASSO before use for causal effects.
Consider a variant of LASSO with variable weights
» useful for extension to heteroskedastic and clustered errors.

The LASSO estimator B/\ of B minimizes
QB) =LY (i—xB)’+2Y " vl

> where y; and x;; are demeaned so y =0 and X; =0
» and A > 0 is a tuning parameter to be determined.

1 2
n

For homoskedastic errors i, = =1 X
> this is the same as fixed weight (lpj = 1) LASSO on standardized x;;.

@ For heteroskedastic errors ¢, = %21—1 X,2 ulzO

> rlasso obtains U o from OLS of y on the five x; most correlated with y.

o For errors clustered within t, ¢, = ,/#27:1 ﬁ,?j where

~ T L2
Ujj = Yp—1 Xijt U o-
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3. LASSO for causal homogeneous effects BEBESIENEILNFCE0)

Determination of tuning parameter lambda

@ K-fold cross-validation
» cvlasso command in lassopack package.

@ Penalized goodness-of-fit (AIC, BIC, AICC, EBIC)
» lasso2 command in lassopack package.

@ User-specified value “theory-driven” or “rigorous”
» rlasso command in lassopack package.

@ For rlasso the theory is asymptotic that gives appropriate rates but
entails specification of two constants ¢ and 7y

» homoskedastic: A = 2co/n® 1(1 — /2p) where 6% = L Lyn @2 0-

> heteroskedastic: A = 2¢/n®~1(1 —v/2p)
> defaults are ¢ = 1.1 and v = 0.1/ log(n)

* these defaults can be changed.
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3. LASSO for causal homogeneous effects IRIPANNION=ET,14][
3.2 Example

e Example from Acemoglu, Johnson and Robinson (2001).
@ Relationship between

> y = logpgp95 (log GDP per capita in 1995 at PPP)
» x; = avexpr (average protection against expropriation risk)

@ When avexpr is treated as endogenous use as instrument
» z = logem4 (log settler mortality)
@ Theory: better institutions (avexpr) lead to higher GDP

> but causation could be other way
> so instrument avexpr with log settler mortality (Logem4)

* initial settlers would invest in institutions if they thought they'd survive.
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3. LASSO for causal homogeneous effects IRIPANNION=ET,14][

@ n = 64 with p = 24 potential controls
> latitude, ethnicity, temperature, humidity, ...

@ These slides

» first straight LASSO to predict logpgp95

» then control function with exogenous avexpr and LASSO to get
controls

> then endogenous avexpr with instrument logem4.
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3. LASSO for causal homogeneous effects

Scatterplot of y on x1

9 10
| |

lo 95
g%gp

8
averag e protection against expropriation risk

® log PPP GDP pc in 1995, World Bank — Fitted values
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3. LASSO for causal homogeneous effects IRIPANNION=ET,14][

variableOnamennOtypenodoformatioonoOlabeloonooovariablenlabel
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3. LASSO for causal homogeneous effects IRIPANNION=ET,14][

gooovariable

000000000bs00000000Meand000Std. ODev.0000000Min00000000Max

0oo0ologpgp95s
nooooDavexpr
0ooooologemé
pooolat_abst
0oo0edes1975
pooooooavelf
0ooooootempl
Jooooootemp2
gooooootemp3
Jooooootempd
gooooootemp5s
0ooo0o0humidl
0o0000humid2
0ooo000humid3
0oo0oo0Chumid4
poooosteplow
pooooodesTow
goooostepmid
pooooodesmid
goooodrystep
goooodrywint
pooolandlock
goooooogoldm
0ooooooodiron
0ooooooosilv
gooooooozine
0ooooodoilres

0000000006400008.06223700001.0433590006.10924800010.21574
0000000006400006.51562500001.468647000000003.500000000010
0000000006400004.65703100001.2579840002.1459310007.986165
000000000640000.18110280000.132666900000000000000.6666667
00000000064000018.06719000029.626720000000000000000000100
000000000640000.41004210000.314890500000000000000.8902469
00000000064000022.8593800005.2064280000000000400000000029
00000000064000029.2656300005.2379630000000001200000000040
00000000064000037.9687500005.3717920000000002400000000048
00000000064000006.46875000010.289410000000003700000000020
00000000064000015.6406300006.3380110000000000100000000024
00000000064000072.14063000017.898180000000001800000000097
00000000064000087.2031300008.1380540000000005400000000098
0000000006400000050.375000016.753580000000001000000000078
00000000064000070.6562500009.2293850000000004100000000092
00000000064000000.281250000.45316350000000000000000000001
00000000064000000.218750000.41666670000000000000000000001
00000000064000000.031250000.17536810000000000000000000001
0000000006400000.01562500000000.1250000000000000000000001
00000000064000000.093750000.29378480000000000000000000001
0000000006400000.01562500000000.1250000000000000000000001
00000000064000000.093750000.29378480000000000000000000001
0000000006400001.04687500006.0275290000000000000000000047
000000000640000.626562500002.3933930000000000000000000016
0000000006400000.85937500003.0177630000000000000000000013
00000000064000000.96875000003.039260000000000000000000015
000000000640000105852.20000394573.80000000000000003040000
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3. LASSO for causal homogeneous effects IRIPANNION=ET,14][

LASSO of y on x1 and x2

@ Here just LASSO of y on all x's
» Post-LASSO is from OLS on the three selected variables.

@ rlasso results

.0//0straightolassofusingdrlassodwithidefaulticiandigamma
.0//0PicksOthreedregressorsiilaveexpriedes19750avelf
.0rlasso0logpgp950avexpri$x21ist

noooooonoSelected |0D0D00000000OLasso000PostOestOOLS

0oooooooo00avexpr | 0000000.27354830000000.3866856
000000000edes1975 0000000.00575950000000.0087536
0joonooooooooavelf | 0000000.46302960000001.0130167
000000000000_cons |[*0000006.36570220000005.7999650

*NotOpenalized
@ cvlasso with 5 folds and seed(10101) picks four regressors
> avexpr edes1975 avelf humid3

@ lasso2 with AIC penalty picks nine regressors
> preceding four + temp5 steplow deslow goldm silv
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3. LASSO for causal homogeneous effects IRIPANNION=ET,14][
Theory

@ Belloni, Chernozhukov and Hansen (2011)
o Data generating process

> yi = f(x;) + uj where u; ~ N(0,0?)
> i.i.d. normal error for simplicity.

@ Model for the conditional mean

> f(xj) = w'By + r; where w; is p x 1
> the w/s are (demeaned) transformations of x;.

e 1. Large p: There are many w's.

@ 2. Sparsity: B, has at most s non-zero terms with s << n.

@ 3. Approximation error r; declines with n

- /E[rijz] < kov/s/ n for some fixed k.

A. Colin Cameron U.C.-Davis . Presented af Machine Learning in Economics April 24 2019 27 / 67



KN WSS OR TR NI T -t TERS{Ia 8 3.3 Control function and exogenous regressor

3.3 Control function and exogenous regressor

Belloni, Chernozhukov and Hansen, REStud (2014).

Estimate B and choose controls in partially linear model

>y =PBox1 +8(x2) +u, Elulx1,x] =0
» x1 = m(xp) + v, E[v|xs] = 0.

Approximate by (where w is rich transformations of x;)

> y:ﬁoxl—f—w’Jo—f—rg—i—u
> x1 =wmg+rm+v.

@ Assume that
» sparsity: dg and 7ty have at most s = s, << n non-zero entries

* and s?log?{min(p,n)}/n <8, — 0
* (if correct variables were known we need s%/n — 0)

» Approximation error r; declines with n
* 1/E[r;-] < cv/s/nand /E[r?.] < c\/s/n some constant c.
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KN WSS OR TR NI T -t TERS{Ia 8 3.3 Control function and exogenous regressor

Control function and exogenous regressor (continued)

@ The reduced forms (subbing out x; in the y; equation are)
»y=woy+r+10
> x1=wWmg+rmt+v

@ Double selection method

» LASSO selects controls separately in the y and x; reduced forms
» do OLS of y on x; and the union of selected controls

* double selection reduces the chance of omitted variables bias
* and can use standard inference (given the assumptions made).

@ We obtain

» 1. LASSO of y on w
* selected edes1975 avelf

» 2. LASSO of x; on w

* selected edes1975 zinc

@ Post Lasso OLS of y on x; with controls those in union of 1. and 2.

> edesl1975 avelf zinc
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KN WSS OR TR NI T -t TERS{Ia 8 3.3 Control function and exogenous regressor
First half of output

.0//0BasicOusage:Oselectifrombhighidimicontrols.OoLSOcontroldfunction.
.0//0Expectisamelresultiasirlassolabove
.0//0as0using0sameddefaultsiandirlassodincludediaveexpr
.Opdslasso0logpgp950avexpri($x21ist)
1.00(PDS/CHS)OSelectingiHDOcontrolsioforodepiovariologpgp9s. ..

Selected: edesl9750avelf
2.00(PDS/CHS)OSelectingOHDOcontrolsOforiexogliregressoriavexpr. ..
Selected: edesl19750zinc

EstimationOresults:

Specification:

RegularizationOmethod: lasso
pPenaltydloadings: homoskedastic
Numberdofiobservations: 64

Exogenous0(1):0000000000000000000000000avexpr
HighodimOcontrols0(24):0000000000000000Tat_abstledes19750avelfitempliotemp2itemp3
000000000000000000000000000000000000000temp40tempS0humidlohumid20humid3thumid4
000000000000000000000000000000000000000stepTlowddesTowlstepmididesmididrystep
000000000000000000000000000000000000000drywintOTandlockigoldmiirondsilvizinc
00000000000000000000000000000000000000001Tres
Selectedicontrolsi(3):00000000000000000edes19750avelfizinc
Unpenalizeddcontrols0(1):00000000000000_cons
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KN WSS OR TR NI T -t TERS{Ia 8 3.3 Control function and exogenous regressor

Second half of output
o OLS was B = 0.372 and se(B)Az 0.064.
@ Note: inference only valid on Bp_;/.cc0

Structuraliequation:

OLSOusingOCHSOTassolorthogonalizedivars

0000Togpgp95 |000000Coef.000Std. DErr.000000Z0000P>|2z|00000[95%0Conf.0Interval]

Ooooodavexpr |000.4262511000.0540552000007.890000.00000000.32030490000.5321974

oLSOusingOCHSOpostOlassolorthogonalizedivars

0000Togpgp95 |000D00Coef.000Std. DErr.000000Z0000P>|Z|00000[95%0Conf. 0Interval]

gooopoavexpr |0000.391257000.0574894000006.810000.00000000.278579900000.503934

oLsowithoppsiselectedivariablesdandifulliregressoriset

0000Togpgp95 |000000Coef.000Std. DErr.00000020000P>|2z|00000[95%0Conf.0Interval]

Oooooooavexpr |000.3913455000.0561862000006.970000.00000000.28122250000.5014684
0000edes1975 |000.00912890000.003184000002.870000.00400000.00288830000.0153694
ooooooDavelf |000.9974943000.2474453000004.030000.000000001.4824780000.5125104
00000000zine | 000.0079226000.0280604000000.280000.77800000.06292010000.0470748
0000000_cons |0005.764133000.3773706000015.270000.000000005.02450100006.503766

StandardCerrorsianditestistatisticsivalidoforithelfollowingOvariablesOonly:
ooodavexpr
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3.3 Control function and exogenous regressor
JEP (2014) Application

e Effect of abortion policy on crime (Donohue and Levitt)

> ys+ = crime rate (Violent, property or murder)
> dst = abortion rate for state i at time t (n =50, T = 12)

> yst = Bdst + X5 8 + 05 + v + st
@ Analyze first-differences with state FE's model
Ayst = BAdse + AxL 6 + v, + ust
Adss = AXL 7T + As + vt
> p = 284 possible variables in x due to interactions (see paper)
@ Find s = 10 with chosen controls being

> lagged prisoners, lagged policex t, initial income difference, initial
income differencex t, initial beer consumption difference x t, average
income, average incomeX t, initial abortion rate.

@ Find similar @ to Donohue-Levitt who have many more controls
> but post-Lasso OLS standard errors are one-third the size!
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KRN WSS O (T ETTEET W T T T TA N IRt 3l 3.4 Endogenous regressor

3.4 Endogenous regressor

@ Consider IV estimation with many instruments of the model

> y = Bx1 + x50 + u where x; (scalar for simplicity) is endogenous.

@ In theory we should use all instruments
> as the asymptotic efficiency of IV improves with more instruments.
o But asymptotic theory works poorly if include too many
instruments.
» finite sample bias of IV may not disappear even in large samples
» and standard hypothesis tests have the wrong size.
@ Use the LASSO to pick just a few of the potential instruments

> assume sparsity: only a few of the potential instruments are valid.
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3. LASSO for causal homogeneous effects 3.4 Endogenous regressor

How can we have many instruments?

o Case 1: there are naturally many instruments

» often due to economic theory such as a no arbitrage condition.

o Case 2: there is a single instrument z

> but the optimal instrument need not be z

> in the i.i.d. case the optimal instrument for xq is
E [x1 |exogenous variables]

» so additional instruments such as powers and interactions may be
better.

o Case 3: y = PBxi +g(x2) +u

> we don't know g(x2)
» so we use g(xp) = w'J as in the exogenous x; case
» so z and all w may be considered as instruments for xj.
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First part of output

.0//0Selectlcontrols;Ospecifyithatilogem4nisiandunpenalizeddinstrumentd///
.0//000to0bedpartiallediout.
.0ivlassollogpgp950(avexpr=Togem4)0($x21ist),0partial(logemd)
1.00(PDS/CHS)OSelectingiHDOcontrolsiforodepivarilogpgp9s. . .

Selected: lat_abstOedes19750temp30humid20humid3
3.00(PDS)OSelectingOHDOcontrolsOforiendogiregressoriavexpr. ..

Selected: Tlat_abstOedes19750temp30humidlihumid20humid30humid40ironizinc
4.00(PDS)0SelectingiHDOcontrolsiforiIvilogem4. ..

Selected: avelfOtemp20temp50humid2
5.00(CHS)0SelectingOHDOcontrolsOandiIVsiforiendogiregressoriavexpr. . .

Selected:

AlsoOinc: Tlogem4
6a.0(CHS)0SelectingilassoOHDOcontrolsOandicreatingioptimaliIviforiendogliregressor
>Javexpr. ..

Selected: Tlat_abstOedes19750temp30humid20humid3
6b.0(CHS)OSelectingipostilassolHDOcontrolsiandicreatingloptimaliIvoforiendogliregre
>0ssorfavexpr. ..

Selected: Tlat_abstOedes19750temp30humid20humid3
7.00(CHS)OCreatinglorthogonalizediendogenousiregressoriavexpr. ..
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Last part of output

o Exogenous case had /ﬁ\

3. LASSO for causal homogeneous effects 3.4 Endogenous regressor

= 0.39 with se = 0.056.

avexpr

IvOowithopDSOselecteddvariablesiandiofulliregressoriset

0000Togpgp95 |000000Coef.000Std.DErr.000000Z0000P>|Zz|00000[95%0Conf.0Intervall
gooo00avexpr |0000.765767000.2020636000003.790000.00000000.369729600001.161804
pooolat_abst |0001.3488730001.369259000000.990000.325000004.03257100001.334824
0000edes1975 |000.0019131000.0049826000000.380000.70100000.00785250000.0116788
poonoooavelf |0001.1312210000.337874000003.350000.001000001.7934420000.4690002
0oo0oo0temp2 |000.0249502000.0326909000000.760000.44500000.08902320000.0391229
Jooooootemp3 |0000.0217310000.026079000000.830000.40500000.029382900000.072845
JooooootempS (000.0183963000.0227653000000.810000.41900000.06301540000.0262228
000000humidl |000.0432292000.0184622000002.340000.01900000.079414400000.007044
000000humid2 |000.0651965000.0290922000002.240000.02500000.00817670000.1222162
0ooo0o0humid3 |000.0458411000.0170148000002.690000.00700000.01249280000.0791895
0ooo0oChumid4 |0000.043253000.0205977000002.100000.03600000.08362390000.0028822
Joooooooiron |000.1437898000.0835631000001.720000.08500000.30757050000.0199909
00000000zine |000.0531055000.0584786000000.910000.36400000.06151040000.1677214
0o00000_cons |0002.15791100002.00102000001.080000.281000001.76401600006.079839

StandardierrorsianditestOstatisticsOvalidiforothedfollowingOvariablesionly:

oooDavexpr
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3. LASSO for causal homogeneous effects 3.4 Endogenous regressor

JEP (2014) Application

o Effect of endogenous court decisions on house prices

> vyt = home price index within court circuit ¢ at time t

> dct = # of takings appellate decisions that rule that a taking was
unlawful

> Vet = 0c+ 0t +act + Bder + W+ et
@ Frisch-Waugh partial out fixed effects, time trends and w;
> Vet = a+ ﬁ?lct + error
» p = 183 possible instruments (due to interactions)
e Find s =1 (JEP survey paper) or s = 2 (Econometrica paper)

» the JEP instrument is the square of the number of panels with one or
more members with JD from a public university.

A. Colin Cameron U.C.-Davis . Presented af

Machine Learning in Economics

April 24 2019 37 /67



3. LASSO for causal homogeneous effects HNEENTIN)]

3.5 Caution

@ The LASSO methods are easy to estimate using the lassopack
program

> they'll be (blindly) used a lot.

@ However in any application

> is the underlying assumption of sparsity reasonable?
» has the asymptotic theory kicked in?
> are the default values of ¢ and 7 reasonable?
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4. ATE with heterogeneous effects

@ Consider the effect of treatment d on an outcome y

» where individuals may self-select into treatment.

@ The preceding control function approach assumes that E[u|d, x;] in

the model
y=Bd+x55+u

> an untestable unconfoundedness assumption
» or if d is still endogenous that we can do IV.
@ For binary treatment the heterogeneous effects model is more flexible

» and hence more plausible in controlling for self-selection.
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4.1 Heterogeneous effects model

e Consider a binary treatment d € {0,1}
> for some individuals we observe y only when d = 1 (treated)
> for others we observe y only when d = 0 (untreated or control)
> some methods generalize to multi-valued treatment d € {0,1, ..., J}.
o Denote potential outcomes y(1) if d =1 and y(® if d =0
» for a given individual we observe only one of y,.(l) and yi(o).
@ The goal is to estimate the average treatment effect
» ATE—= E[yi(l) _ y,-(o)]
@ Or the conditional treatment effect given x
> 7(x) = Ely =V
@ The key assumption is the conditional independence assumption

0 1
> d; L {Y,-( ),Y,-( )}|Xi-
» conditional on x, treatment is independent of the potential outcome.
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4.2 ATE estimated using regression adjustment

@ Define the conditional means
» 1y (x) = E[yM]|x] for treated
> 1o(x) = E[y(©|x] for control
> 50 T(x) = py(x) = po(x).
@ Use machine learning methods such as LASSO to get 7i; (x) and 7iy(x)

» ATE= LY 7y (%) — 220 g (%))

@ Problem: this does not take into account any correlation of regressors
with the treatment variable d;.
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4.3 ATE Estimated using Propensity Scores
4.3 ATE estimated using propensity scores

Define the propensity score p(x) = Pr[d = 1|x].

Under the conditional independence assumption
> p(x) = Ely 1|X]:E[d x|
> io(x) = E[y Qx| = E[{1585vIx]
> 7(x) = EyV —yOx] = {(ﬁ—l%)nx}

oSouse/-\TE—% 71,,())’1_% -1 50 p( )Y

» and use e.g. LASSO for p;(x).

The conditional independence assumption is more plausible the more
x's considered.
Aside:
Eay [585vIx] = Eay [251X] = E [5451%] X B [nlx] = £ [l
» second last equality uses conditional independence
> last equality uses E4 [d|x] = Pr[d = 1|x] = p(x).
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4.4 ATE estimated using doubly-robust method

e Max Farrell (2015), “Robust Estimation of Average Treatment Effect
with Possibly more Covariates than Observations,” Journal of
Econometrics, 189, 1-23.

» considers multivalued treatment but | present binary d case.

o As before 1, (x) = E[y(V|x], py(x) = E[y'?|x] and
p(x) = Pr[d = 1]x].

@ Farrell uses the doubly-robust method

—

» ATE = i, — i where i, = E[y(Y)] and py = E[y(?]

~ n 1d,: ,'—A- X ~ .
- =trn {W +u,-(x,->} for j=0,1

* where Py (x;) = P(x;) and Po(x;) = 1 — p1(x;)
» doubly-robust as estimator remains consistent if either

* the propensity score model p(x) or
* the regression imputation model ,uj(x) is misspecified.

@ The LASSO is used to obtain p(x) and ji; (x) and 7i,(x).
» simulation and apply to Dehejia-Wahba data.
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4.5 LATE and local quantile treatment effects
4.5 LATE and local quantile treatment effects

@ Belloni, Chernozhukov, Fernandez-Val and Hansen (2015), “Program
Evaluation with High-Dimensional Data"”.

@ Binary treatment and heterogeneous effects with endogenous
treatment and valid instruments

» allow for estimation of functions

* such as local quantile treatment effects over a range of quantiles

» The paper is very high level as it uses functionals
> uses LASSO along the way.

@ Key is to use an orthogonalization moment condition

» allows inference to be unaffected by first-stage estimation.
> more on this in section on double/debiased machine learning.
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4.6 Heterogeneous Effects using Random Forests

@ Random forests predict very well
» Susan Athey's research emphasizes random forests.
o Stefan Wager and Susan Athey (2018), “Estimation and Inference of

Heterogeneous Treatment Effects using Random Forests,” JASA,
1228-1242.

@ Standard binary treatment and heterogeneous effects with
unconfoundness assumption

> use random forests to determine the controls.
> proves asymptotic normality and gives point-wise confidence intervals

* This is a big theoretical contribution.
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Heterogeneous Effects using Random Forests (continued)
@ Let L denote a specific leaf in tree b.

o 7(x) = E[y() — y(O|x] in a single regression tree b is estimated by
_ 1 1
Th(x) = F{id=1x€eL} Lidi=1,x€L Yi F{id=0xeL} Lirdi=0,x;eL Vi
=y in leaf L — ¥y in leaf L.
@ Then a random forest with sub-sample size s gives B trees with
~ B -
Tp(x) = % Yp—1Th(x)
T _ 2 ~
Var[Tp(x)] = 21 (-2%5)" iy Cov(Th(x), dip)
» where dj, = 1 if ith observation in tree b and 0 otherwise
» and the covariance is taken over all B trees.
o Key is that a tree is honest.

@ A tree is honest if for each training observation i/ it only uses y; to
> either estimate T(x)within leaf

> or to decide where to place the splits
> but not both.
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4.7 Treatment Effects using Deep Neural Networks
4.7 Treatment Effects using Deep Neural Networks

e Max Farrell, Tengyuan Liang and Sanjog Misra (2018), “Deep Neural
Networks for Estimation and Inference: Application to Causal Effects
and Other Semiparametric Estimands,” arXiv:1809.09953v2.

@ Obtains nonasymptotic bounds and convergence rates for
nonparametric estimation using deep neural networks.

@ Then obtain asymptotic normal results for inference on
finite-dimensional parameters following first-step estimation using
deep neural nets.
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5. Double or Debiased Machine Learning

5. Double or Debiased Machine Learning

@ Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and
Robins (2018), “Double/debiased machine learning for treatment and
structural parameters,” The Econometrics Journal.

@ Interest lies in estimation of key parameter(s) controlling for
high-dimensional nuisance parameters.

@ Two components to double ML or debiased ML and subsequent
inference

» Work with orthogonalized moment conditions to allow consistent
estimation of parameter(s) of interest.

> Use sample splitting (cross fitting) to remove bias induced by
overfitting.
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5. Double or Debiased Machine Learning

Double or Debiased Machine Learning (continued)

@ Then get asymptotic normal confidence intervals for parameters of
interest

> where a variety of ML methods can be used
* random forests, lasso, ridge, deep neural nets, boosted trees, ensembles

> that don’t necessarily need sparsity
» and theory does not require Donsker properties

o Can apply to

> partial linear model (with exogenous or endogenous regressor)

* orthogonality conditions are presented below
» ATE and ATET under unconfoundedness
* orthogonality conditions are presented below for ATE

» LATE in an IV setting.
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5.1 Partially linear model

o Consider partially linear model

y = Pxi+g(xe)+u
X1 = m(x2)+v

@ Naive approach is
» use ML method such as LASSO to get Bx; + Z(x2) in a training sample
> then compute B from regress y on x; and g(x2) in a different sample
» but can show that the bias in g(x) leads to bias in .

@ Instead partial out the effect of x, on x; (an example of
orthogonalization)

» use ML method for regress x; on xp and form m(xy) in the training
sample

> then B is coefficient in OLS of (y — g(x2)) on (x; — m(x2)) in a
different sample B

> the distribution of \/n(B — B) involves a multiple of
ﬁ Y (m(x2) — m(x2))(g(x2) — g(x2)) that disappears

» the ML errors disappear as they appear as a product.
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5.2 Orthogonalization defined

Define B as parameters of interest and # as nuisance parameters.
Estimate B is obtained following first step estimate 7 of %

> First stage: 7 solves Y. ; w(wj,7) =0

» Second stage: B solves Y7, ¥(wj, B.7j) = 0.
@ The distribution ofB is usually affected by the noise due to
estimating %

» e.g. Heckman's two-step estimator in selection models.

@ But this is not always the case

> e.g. the asymptotic distribution of feasible GLS is not affected by
first-stage estimation of variance model parameters to get ().

Result: The distribution ofB is unaffected by first-step estimation of
1 if the function g(-) satisfies

> E[oy(w;, B,1)/0n] = 0; see next slide.
@ So choose functions (-) that satisfy the orthogonalization condition

Eloy(w;, B,17)/0y] = 0.
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Orthogonalization (continued)

@ Why does this work?

1 n
er
NG L B.7)
1o Ip(wi, B. 1) 3
= Z w;, , —|— Z X ﬁ —
NG /:11'0( Bo. o) n = B b (B—Bo)
1 o 9w, 1) -
yly Wb G
n= a”/ '30'110 (1] 110)
@ By a law of large numbers %27:1 W‘ converges to its

070
expected value which is zero if E[dy(w;, B,1)/0y] = 0.
@ So the term involving 7 drops out.
@ For more detail see Cameron and Trivedi (2005, p.201).
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5.3 Orthogonalization in partially linear model: method 1
@ Consider the partially linear model and manipulate

y=pBxa+gx)+u where Efu|xi,x2] =0
= Elylx] = BE[xi[x] +g(x2) +u  as Eulx;] =0
y — E[y|x2] = B(x1 — E[x1|x2]) + u subtracting

Robinson (1988) differencing estimator

» use kernel methods to get E[y|x2] and E[xq|xo]
» B from OLS regress (y — E[y|x2]) on (x1 — E[x1|x2])

Instead here use machine learning methods for E[y|x2] and E[x; |x,].
Recall that OLS of y on x has f.o.c. }; xjui =0

> so is sample analog of population moment condition E[xu] = 0.

@ Robinson estimator therefore solves population moment condition
» E[(a — Elxalx]){y — Ely[x2] — (x1 — E[xi[x2])B}] = 0.
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5.3 Orthogonalization in partially linear model
Orthogonalization in partially linear model (continued)

@ Robinson estimator solves population moment condition E[(-)] =0
where

> 9() = (a — Ebalx2]){y — Elylxe] — (a1 — Elx1[x2]) B}
o Define 17; = E[x1|x2] and 17, = E[y|x2], so

> P(w, Boy) = G =)y =112 — a = 1)}
@ This satisfies the orthogonalization condition

> E[op(w, B,17)/9n;] = E[2(xy — 1)) = 0 as i1 = Elxt[x;]
> E[op(w, B,11)/9n,] = E[=(x1 —1y)] = 0 as 17y = E[x[xa].
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Orthogonalization in partially linear model: method 2
e Again y = Bx1 + g(x2) + v and x; = m(xp) + v.
@ An alternative asymptotically equivalent method given earlier
» B is coefficient in OLS of (y —g(x2)) on (x1 — m(x2)).
@ This estimator solves population moment condition
» E[y(-)] = E[(a — m(x2)){y — g(x2) — (1 — m(x2)B}] = 0.
@ Define 17, = m(xy) = and 17, = g(x2) , so
> p(w, Boy) = o =)y =12 — (e —11) B}
@ This satisfies the orthogonalization condition

> E[op(w, B, n)/dn,] = E[2(x1 —11)B] = 0 as iy = E[x1|x]
» E[op(w, B, 5)/91n,] = E[—(x1 —1,)] =0as n; = Elxi|xa].

@ Aside: method 1 equals method 2 asymptotically as
» E[y|x2] = E[x1|x2]B + g(x2) and manipulate.

@ Method 2 is derived in the paper using a general result on how to
obtain a moment condition that satisfies the orthogonalization
condition.
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5.4 Orthogonalization for doubly robust ATE
5.4 Orthogonalization for doubly robust ATE

o We used ATE = % = fi; — i, where
- n [ U= () |~
H; = % i=1 { J,A,jy(x,)y + P‘j(xi)} :

The ATE solves the population moment condition

E [1[d=1](yfﬂl(x)) — g (x) — 1[d=0](y —p, (xi)) + Vo(x) + T} 0.

p(x) 1-p(x)

The parameter of interest is T (B in above notation)

Define the nuisance parameters

» 17y = py(x) = Elnilx], 75 = po(x) = E[yo[x] and 175 = p(x).

e Then E[¢(w,T,7)] =0 for
- plw gy = W) MO0
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5.4 Orthogonalization for doubly robust ATE
Orthogonalization for doubly robust ATE (continued)

e We havelp(w,r,q):W—I—Wl—%_’h"‘t

@ This satisfies the orthogonalization condition
> Efoyp(w, 7.5)/3n,] = E[-H5H 4 1] =0

* as E[1[d = 1]] = p(x) = 13

Elow(w,7,7)/9n,] = E[EE 1] =0

* as E[1[d =0]] =1 —p(x) =1 —15

Elow(w,T,17) /5] = E[- iy - Ao} — o -0 =
* as E[1[d = 1](y —#1)] = En|x]— 7, =0
* and E[1{d = 0](y — 110)] = E[yolx]— 7o = 0.
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Sample Splitting

@ For the kth of K partitions formed by K-fold splitting (e.g. K = 10)

» use ML to get 7, using data in (K — 1) folds (most of the data)

> then obtain B, that solves E[g(w;, B,7,)] = 0 using remaining data in
the kth fold

> and form p = % YR Bk.
@ So most data is used to obtain 7, .

@ We then get K separate B;s

> these are obtained using K distinct (independent) samples
> so there is little loss in efficiency due to breaking into K pieces,

e Asymptotically this has a normal distribution with usual
Var[B] = A"1BA™!

> where A= 0dE[g(w;, B,77)]/0p and B = E[g(w;, B, 11)g(w;, B, 17)'].
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54 Ouitagerelizetion G denfily vetbusi: ATE
Sample Splitting (continued)

@ The sample-splitting adds noise.
@ To control for this

> S times repeat the sample splitting method (e.g. S = 500)
> each time get a B, (from averaging the K B;G) and 62 = Var[B,]

=~

o Then B= £ Y3 B,
o And Var[B] = %Z;g:l o2+ % Z;g:l(ﬁs - B2
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6. Some review articles of ML for Economics RMZEIRVEIZEY]

6.1 Hal Varian

e Hal Varian (2014), “Big Data: New Tricks for Econometrics,” JEP,
Spring, 3-28.
@ Surveys tools for handling big data
» file system for files split into large blocks across computers
* Google file system (Google), Hadoop file system

» database management system to handle large amounts of data across
many computers

* Bigtable (Google), Cassandra
» accessing and manipulating big data sets across many computers
* MapReduce (Google), Hadoop.
> language for Mapreduce / Hadoop
* Sawzall (Google), Pig
» Computer language for parallel processing
* Go (Google - open source)

v

simplified structured query language (SQL) for data enquiries
* Dremel, Big Query (Google), Hive, Drill, Impala.
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6. Some review articles of ML for Economics RMZEIRVEIZEY]

Hal Varian (continued)

@ Surveys methods

article discusses k-fold CV, trees, lasso, ....
small discussion of causality and prediction
(note that a classic fail is Google flu trends)
for references mentions ESL and ISL.

v v vy
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6.2 Susan Athey

@ Susan Athey's website has several wider-audience papers on machine
learning in economics.

@ Susan Athey (2017), “Beyond Prediction: Using Big Data for Policy
Problems,” Science 355, 483-485.

» Off-the shelf prediction methods assume a stable environment
* includes Kleinberg et al (2015) AER hip replacement.

» Economics considers causal prediction by

* adjust for confounders e.g. Belloni et al., Athey et al.
* designed experiments e.g. Blake et al.
* excellent references.
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6. Some review articles of ML for Economics SGVASTEENWAISY

Susan Athey (continued)

@ Susan Athey (2018), “The Impact of Machine Learning on
Economics"
@ Lengthy wide-ranging survey paper with no equations.
@ Machine learning methods can
> provide variables to be used in economic analysis (e.g. from images or
text)
> lead to better model selection through e.g. cross-validation
» provide much quicker computation using stochastic gradient descent

* use gradient at a single data point to approximate average over
observations of the gradient

> |lead to better causal estimates

* fundamental identification issues are not solved
* but perhaps make assumptions more credible e.g. unconfoundedness

> be used whenever semiparametric methods might have been used.

@ Paper surveys recent work on ML for causal inference

» double machine learning (Chernozhukov et al 2018) and
orthogonalization are especially promising.
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Susan Athey and Guido Imbens

@ Susan Athey and Guido Imbens (2019), “Machine Learning Methods
Economists Should Know About.”

@ This paper provides great detail on the current literature with many
references.
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