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Introduction

Introduction

Begin with an economics application of machine learning to straight
prediction.

Then focus on the microeconometrics literature where concerned
especially with

I causal inference for a treatment e¤ect
I with valid inference controlling for data mining.

These slides are a companion to my slides
I Machine Learning Overview Part 1: Basics - selection, shrinkage,
dimension reduction

I Machine Learning Overview Part 2: Flexible methods
I (and to the more abbreviated Machine Learning Overview)

A. Colin Cameron U.C.-Davis . Presented at University of California - Riverside ()Machine Learning in Economics April 24 2019 2 / 67



Introduction

Causal Inference with Machine Learning

Current microeconometric applications focus on causal estimation of
a key parameter, such as an average marginal e¤ect, after controlling
for confounding factors

I apply to models with selection on observables only

F good controls makes this assumption more reasonable

I and to IV with available instruments

F good few instruments avoids many instruments problem.

Machine learning methods determine good controls (or instruments)
I but valid statistical inference needs to control for this data mining
I currently extraordinarily active area of econometrics research.

Consider both homogeneous e¤ects and heterogeneous e¤ects.

This research area is currently exploding
I these slides may become dates quickly.
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Introduction

1 Prediction for economics
2 Machine learning for microeconometrics
3 Causal homogeneous e¤ects

1 Focus on LASSO methods

4 Causal heterogeneous e¤ects

1 LASSO for doubly-robust ATE
2 Random forests for conditional treatment e¤ects

5 Double/debiased machine learning
6 Some review articles of ML for Economics

A. Colin Cameron U.C.-Davis . Presented at University of California - Riverside ()Machine Learning in Economics April 24 2019 4 / 67



1. Prediction for Economics

1. Prediction for Economics

Microeconometrics focuses on estimation of β or of partial e¤ects.

But in some cases we are directly interested in predicting y
I probability of one-year survival following hip transplant operation

F if low then do not have the operation.

I probability of re-o¤ending

F if low then grant parole to prisoner.

Mullainathan and Spiess (2017)
I consider prediction of housing prices
I detail how to do this using machine learning methods
I and then summarize many recent economics ML applications.

So summarize Mullainathan and Spiess (2017).
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1. Prediction for Economics 1.1 Summary of Machine Learning Algorithms

1.1 Summary of Machine Learning Algorithms

A. Colin Cameron U.C.-Davis . Presented at University of California - Riverside ()Machine Learning in Economics April 24 2019 6 / 67



1. Prediction for Economics 1.1 Summary of Machine Learning Algorithms

Table 2 (continued)
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1. Prediction for Economics 1.2 Predict Housing Prices

1.2 Predict housing prices

y is log house price in U.S. 2011
I n = 51, 808 is sample size
I p = 150 is number of potential regressors.

Predict using
I OLS (using all regressors)
I regression tree
I LASSO
I random forest
I ensemble: an optimal weighted average of the above methods.

1. Train model on 10,000 observations using 8-fold CV.

2. Fit preferred model on these 10,000 observations.

3. Predict on remaining 41,808 observations
I and do 500 bootstraps to get 95% CI for R2.
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1. Prediction for Economics 1.2 Predict Housing Prices

Random forest (and subsequent ensemble) does best out of sample.
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1. Prediction for Economics 1.2 Predict Housing Prices

Further details

Downloadable appendix to the paper gives more details and R code.

1. Divide into training and hold-out sample.

2. On the training sample do 8-fold cross-validation to get tuning
parameter(s) such as λ.

I If e.g. two tuning parameters then do two-dimensional grid search.

3. The prediction function bf (x) is estimated using the entire sample
with optimal λ.

4. Now apply this bf (x) to the hold-out sample and can compute R2
and MSE.

5. A 95% CI for R2 can be obtained by bootstrapping hold-out
sample.

Ensemble weights are obtained by 8-fold CV in the training sample.
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1. Prediction for Economics 1.2 Predict Housing Prices

LASSO

LASSO does not pick the �correct� regressors
I it just gets the correct bf (x) especially when regressors are correlated
with each other.

Diagram on next slide shows which of the 150 variables are included
in separate models for 10 subsamples

I there are many variables that appear sometimes but not at other times

F appearing sometimes in white and sometimes in black.
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1. Prediction for Economics 1.2 Predict Housing Prices
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1. Prediction for Economics 1.3 Some Thoughts on Prediction

1.3 Some Thoughts on ML Prediction

Clearly there are many decisions to make in implementation
I how are features converted into x�s
I tuning parameter values
I which ML method to use
I even more with an ensemble forecast.

For commercial use this may not matter
I all that matters is that predict well enough.

But for published research we want reproducibility
I At the very least document exactly what you did
I provide all code (and data if it is publicly available)
I keep this in mind at the time you are doing the project.

For public policy we prefer some understanding of the black box
I this may be impossible.
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2. Machine Learning for Microeconometrics

2. Machine Learning for Microeconometrics

Empirical microeconometrics studies focus on estimating partial
e¤ects

I the e¤ect on y of a change in x1 controlling for x2.

A machine learner would calculate this as follows
I prediction function is by = bf (x1, x2)
I the partial e¤ect of a change of size ∆x1 is then

∆by = bf (x1 + ∆x1, x2)� bf (x1, x2).
This could be a very complicated as bf (�) may be very nonlinear in x1.
There is di¢ culty (impossibility?) in obtaining an asymptotic
distribution for inference.

And it requires a correct model bf (x1, x2)
I formally the model needs to be consistent
I i.e. probability that bf (�) is correct ! 1 as n! ∞.
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2. Machine Learning for Microeconometrics

Add Some Structure

A partially linear control function model speci�es

y = βx1 + g(x2) + u where g(�) is unknown.

I for simplicity consider only scalar x1.

The partial e¤ect of a change of size ∆x1 is then

∆by = β∆x1.

Consistent estimator requires E [y jx1, x2] = βx1 + g(x2).
I more plausible the better the choice of g(x2)
I though we still need linear in x1 and additivity.

The partially linear model was used initially in semiparametrics
I typically x1 and β were high dimension and x2 low dimension
I now for causal ML x1 and β are high dimension and x2 is high
dimension.
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2. Machine Learning for Microeconometrics

How to add the controls
Biostatistics includes regressors x2 as controls if p < 0.05

I imperfect selection and also leads to pre-test bias.

Economists use economics theory and previous studies to include
regressors

I these are included regardless of their statistical signi�cance
I to guard against omitted variables bias and to avoid pre-test bias.

Machine learning methods are used to get a good choice of g(x2)
I ideally in such a way and/or with assumptions so that standard
inference can be used for bβ

F so data mining has not a¤ected the distribution of bβ.
I The methods can extend to endogenous x1.

We focus on use of the LASSO to determine g(x2)
I due to Belloni, Chernozhukov and Hansen and coauthors
I assumptions including �sparsity�enable use of standard inference for bβ1
I use the lassopack Stata package of Ahrens, Hansen and Scha¤er
(2019).
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2. Machine Learning for Microeconometrics

Alternatively estimate average partial e¤ects

An alternative to the partially lienr model is to use less structure and
estimate average partial e¤ects.

The leading example is the heterogeneous e¤ects literature
I let x1 be a binary treatment taking values 0 or 1
I let ∆y/∆x1 vary across individuals in an unstructured way
I estimate the average partial e¤ect E [y jx1 = 1]� E [y jx1 = 0].

One method used is propensity score matching
I machine learning may give a better propensity score estimator.

Another method used is nearest-neighbors matching
I machine learning may give a better matching algorithm.

In fact better methods than matching methods are used.
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3. LASSO for causal homogeneous e¤ects

3. LASSO for causal homogeneous e¤ects

Belloni, Chernozhukov and Hansen and coauthors have many papers
I focus on the following three papers.

Belloni, Chernozhukov and Hansen (2014), �High-dimensional
methods and inference on structural and treatment e¤ects,� Journal
of Economic Perspectives, Spring, 29-50

I accessible paper with three applications.

Ahrens, Hansen and Scha¤er (2019), �lassopack: Model selection and
prediction with regularized regression in Stata,� arXiv:1901.05397

I more detail on LASSO methods as well as on Stata commands.

Belloni, Chernozhukov and Hansen (2011), �Inference Methods for
High-Dimensional Sparse Econometric Models,�Advances in
Economics and Econometrics, ES World Congress 2010, ArXiv 2011

I even more detail and summarizes several of their subsequently
published papers.
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3. LASSO for causal homogeneous e¤ects 3.1 Standard LASSO

3.1 Standard Lasso
Begin with basic LASSO before use for causal e¤ects.
Consider a variant of LASSO with variable weights

I useful for extension to heteroskedastic and clustered errors.

The LASSO estimator bβλ of β minimizes

Qλ(β) =
1
n ∑n

i=1(yi � x
0
iβ)

2 + λ
n ∑p

j=1 ψj jβj j
I where yi and xij are demeaned so ȳ = 0 and x̄j = 0
I and λ � 0 is a tuning parameter to be determined.

For homoskedastic errors ψj =
q

1
n ∑n

i=1 x
2
ij

I this is the same as �xed weight (ψj = 1) LASSO on standardized xij .

For heteroskedastic errors ψj =
q

1
n ∑n

i=1 x
2
ijbu2i ,0

I rlasso obtains bui ,0 from OLS of y on the �ve xj most correlated with y .
For errors clustered within t, ψj =

q
1
nT ∑n

i=1 bu2ij wherebuij = ∑T
t=1 xijtbu2it ,0.
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3. LASSO for causal homogeneous e¤ects 3.1 Standard LASSO

Determination of tuning parameter lambda

K -fold cross-validation
I cvlasso command in lassopack package.

Penalized goodness-of-�t (AIC, BIC, AICC, EBIC)
I lasso2 command in lassopack package.

User-speci�ed value �theory-driven�or �rigorous�
I rlasso command in lassopack package.

For rlasso the theory is asymptotic that gives appropriate rates but
entails speci�cation of two constants c and γ

I homoskedastic: λ = 2cσ
p
nΦ�1(1� γ/2p) where bσ2 = 1

n ∑ni=1 bu2i ,0.
I heteroskedastic: λ = 2c

p
nΦ�1(1� γ/2p)

I defaults are c = 1.1 and γ = 0.1/ log(n)
F these defaults can be changed.
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3. LASSO for causal homogeneous e¤ects 3.2 LASSO Example

3.2 Example

Example from Acemoglu, Johnson and Robinson (2001).

Relationship between
I y = logpgp95 (log GDP per capita in 1995 at PPP)
I x1 = avexpr (average protection against expropriation risk)

When avexpr is treated as endogenous use as instrument
I z = logem4 (log settler mortality)

Theory: better institutions (avexpr) lead to higher GDP
I but causation could be other way
I so instrument avexpr with log settler mortality (logem4)

F initial settlers would invest in institutions if they thought they�d survive.
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3. LASSO for causal homogeneous e¤ects 3.2 LASSO Example

n = 64 with p = 24 potential controls
I latitude, ethnicity, temperature, humidity, ...

These slides
I �rst straight LASSO to predict logpgp95
I then control function with exogenous avexpr and LASSO to get
controls

I then endogenous avexpr with instrument logem4.
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3. LASSO for causal homogeneous e¤ects 3.2 LASSO Example

Scatterplot of y on x1

6
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95

4 6 8 10
average protection against expropriation risk

log PPP GDP pc in 1995, World Bank Fitted values
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3. LASSO for causal homogeneous e¤ects 3.2 LASSO Example

oilres  float   %9.0g
zinc  float   %9.0g
silv  float   %9.0g
iron  float   %9.0g
goldm  float   %9.0g first of five mineral indicators
landlock  float   %9.0g =1 if landlocked
drywint  float   %9.0g
drystep  float   %9.0g
desmid  float   %9.0g
stepmid  float   %9.0g
deslow  float   %9.0g
steplow  float   %9.0g first of six soil indicators
humid4  float   %9.0g
humid3  float   %9.0g
humid2  float   %9.0g
humid1  float   %9.0g first of four humidity indicators
temp5  float   %9.0g
temp4  float   %9.0g
temp3  float   %9.0g
temp2  float   %9.0g
temp1  float   %9.0g first of 5 temperature indicators
avelf  float   %9.0g ethno fract avg 5indic east_lev
edes1975  float   %9.0g % of European descent in 1975
lat_abst  float   %9.0g Abs(latitude of capital)/90
logem4  float   %9.0g log settler mortality

expropriation risk
avexpr  float   %9.0g average protection against
logpgp95  float   %9.0g log PPP GDP pc in 1995, World Bank

variable name   type    format     label      variable label
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3. LASSO for causal homogeneous e¤ects 3.2 LASSO Example

      oilres          64    105852.2    394573.8          0    3040000
        zinc          64      .96875     3.03926          0         15
        silv          64     .859375    3.017763          0         13
        iron          64    .6265625    2.393393          0         16
       goldm          64    1.046875    6.027529          0         47
    landlock          64      .09375    .2937848          0          1
     drywint          64     .015625        .125          0          1
     drystep          64      .09375    .2937848          0          1
      desmid          64     .015625        .125          0          1
     stepmid          64      .03125    .1753681          0          1
      deslow          64      .21875    .4166667          0          1
     steplow          64      .28125    .4531635          0          1
      humid4          64    70.65625    9.229385         41         92
      humid3          64      50.375    16.75358         10         78
      humid2          64    87.20313    8.138054         54         98
      humid1          64    72.14063    17.89818         18         97
       temp5          64    15.64063    6.338011          1         24
       temp4          64     6.46875    10.28941        ­37         20
       temp3          64    37.96875    5.371792         24         48
       temp2          64    29.26563    5.237963         12         40
       temp1          64    22.85938    5.206428          4         29
       avelf          64    .4100421    .3148905          0   .8902469
    edes1975          64    18.06719    29.62672          0        100
    lat_abst          64    .1811028    .1326669          0   .6666667
      logem4          64    4.657031    1.257984   2.145931   7.986165
      avexpr          64    6.515625    1.468647        3.5         10
    logpgp95          64    8.062237    1.043359   6.109248   10.21574

    Variable         Obs        Mean    Std. Dev.       Min        Max
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3. LASSO for causal homogeneous e¤ects 3.2 LASSO Example

LASSO of y on x1 and x2
Here just LASSO of y on all x 0s

I Post-LASSO is from OLS on the three selected variables.

rlasso results

*Not penalized

            _cons *      6.3657022      5.7999650
            avelf      ­0.4630296     ­1.0130167
         edes1975       0.0057595      0.0087536
           avexpr       0.2735483      0.3866856

         Selected            Lasso   Post­est OLS

. rlasso logpgp95 avexpr $x2list

. // Picks three regressors ­ aveexpr edes1975 avelf

. // Straight lasso using rlasso with default c and gamma

cvlasso with 5 folds and seed(10101) picks four regressors
I avexpr edes1975 avelf humid3

lasso2 with AIC penalty picks nine regressors
I preceding four + temp5 steplow deslow goldm silv
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3. LASSO for causal homogeneous e¤ects 3.2 LASSO Example

Theory

Belloni, Chernozhukov and Hansen (2011)

Data generating process
I yi = f (xi ) + ui where ui � N(0, σ2)
I i.i.d. normal error for simplicity.

Model for the conditional mean
I f (xi ) = w0i β0 + ri where wi is p � 1
I the w0i s are (demeaned) transformations of xi .

1. Large p: There are many w0i s.
2. Sparsity: β0 has at most s non-zero terms with s << n.

3. Approximation error ri declines with n

I
q
E [r2ij ] � kσ

p
s/n for some �xed k.
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3. LASSO for causal homogeneous e¤ects 3.3 Control function and exogenous regressor

3.3 Control function and exogenous regressor

Belloni, Chernozhukov and Hansen, REStud (2014).

Estimate β and choose controls in partially linear model
I y = β0x1 + g(x2) + u, E [ujx1, x2 ] = 0
I x1 = m(x2) + v , E [v jx2 ] = 0.

Approximate by (where w is rich transformations of x2)
I y = β0x1 +w

0δ0 + rg + u
I x1 = w0π0 + rm + v .

Assume that
I sparsity: δ0 and π0 have at most s = sn << n non-zero entries

F and s2 log2fmin(p, n)g/n � δn ! 0
F (if correct variables were known we need s2/n ! 0)

I Approximation error ri declines with n

F
q
Ē [r 2gi ] � c

p
s/n and

q
Ē [r 2mi ] � c

p
s/n some constant c .
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3. LASSO for causal homogeneous e¤ects 3.3 Control function and exogenous regressor

Control function and exogenous regressor (continued)
The reduced forms (subbing out x1 in the y1 equation are)

I y = w0δ0 + r̄g + ū
I x1 = w0π0 + rm + v

Double selection method
I LASSO selects controls separately in the y and x1 reduced forms
I do OLS of y on x1 and the union of selected controls

F double selection reduces the chance of omitted variables bias
F and can use standard inference (given the assumptions made).

We obtain
I 1. LASSO of y on w

F selected edes1975 avelf

I 2. LASSO of x1 on w
F selected edes1975 zinc

Post Lasso OLS of y on x1 with controls those in union of 1. and 2.
I edes1975 avelf zinc
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3. LASSO for causal homogeneous e¤ects 3.3 Control function and exogenous regressor

First half of output

Unpenalized controls (1):              _cons
Selected controls (3):                 edes1975 avelf zinc
                                       oilres
                                       drywint landlock goldm iron silv zinc
                                       steplow deslow stepmid desmid drystep
                                       temp4 temp5 humid1 humid2 humid3 humid4
High­dim controls (24):                lat_abst edes1975 avelf temp1 temp2 temp3
Exogenous (1):                         avexpr
Number of observations: 64
Penalty loadings: homoskedastic
Regularization method: lasso
Specification:

Estimation results:

Selected: edes1975 zinc
2.  (PDS/CHS) Selecting HD controls for exog regressor avexpr...
Selected: edes1975 avelf
1.  (PDS/CHS) Selecting HD controls for dep var logpgp95...
. pdslasso logpgp95 avexpr ($x2list)
. // as using same defaults and rlasso included aveexpr
. // Expect same result as rlasso above
. // Basic usage: select from high­dim controls. OLS control function.
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3. LASSO for causal homogeneous e¤ects 3.3 Control function and exogenous regressor

Second half of output
OLS was bβ = 0.372 and se(bβ) = 0.064.
Note: inference only valid on bβPostlasso

    avexpr
Standard errors and test statistics valid for the following variables only:

       _cons    5.764133   .3773706    15.27   0.000     5.024501    6.503766
        zinc   ­.0079226   .0280604    ­0.28   0.778    ­.0629201    .0470748
       avelf   ­.9974943   .2474453    ­4.03   0.000    ­1.482478   ­.5125104
    edes1975    .0091289    .003184     2.87   0.004     .0028883    .0153694
      avexpr    .3913455   .0561862     6.97   0.000     .2812225    .5014684

    logpgp95       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

OLS with PDS­selected variables and full regressor set

      avexpr     .391257   .0574894     6.81   0.000     .2785799     .503934

    logpgp95       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

OLS using CHS post­lasso­orthogonalized vars

      avexpr    .4262511   .0540552     7.89   0.000     .3203049    .5321974

    logpgp95       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

OLS using CHS lasso­orthogonalized vars

Structural equation:
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3. LASSO for causal homogeneous e¤ects 3.3 Control function and exogenous regressor

JEP (2014) Application

E¤ect of abortion policy on crime (Donohue and Levitt)
I yst = crime rate (Violent, property or murder)
I dst = abortion rate for state i at time t (n = 50, T = 12)
I yst = βdst + x0stδ+ δs + γt + εst

Analyze �rst-di¤erences with state FE�s model
∆yst = β∆dst + ∆x0stδ+ γs + ust
∆dst = ∆x0stπ + λs + vst

I p = 284 possible variables in x due to interactions (see paper)

Find s = 10 with chosen controls being
I lagged prisoners, lagged police�t, initial income di¤erence, initial
income di¤erence�t, initial beer consumption di¤erence�t, average
income, average income�t, initial abortion rate.

Find similar bα to Donohue-Levitt who have many more controls
I but post-Lasso OLS standard errors are one-third the size!
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3. LASSO for causal homogeneous e¤ects 3.4 Endogenous regressor

3.4 Endogenous regressor

Consider IV estimation with many instruments of the model
I y = βx1 + x02δ+ u where x1 (scalar for simplicity) is endogenous.

In theory we should use all instruments
I as the asymptotic e¢ ciency of IV improves with more instruments.

But asymptotic theory works poorly if include too many
instruments.

I �nite sample bias of IV may not disappear even in large samples
I and standard hypothesis tests have the wrong size.

Use the LASSO to pick just a few of the potential instruments
I assume sparsity: only a few of the potential instruments are valid.

A. Colin Cameron U.C.-Davis . Presented at University of California - Riverside ()Machine Learning in Economics April 24 2019 33 / 67



3. LASSO for causal homogeneous e¤ects 3.4 Endogenous regressor

How can we have many instruments?

Case 1: there are naturally many instruments
I often due to economic theory such as a no arbitrage condition.

Case 2: there is a single instrument z
I but the optimal instrument need not be z
I in the i.i.d. case the optimal instrument for x1 is
E [x1 jexogenous variables]

I so additional instruments such as powers and interactions may be
better.

Case 3: y = βx1 + g(x2) + u
I we don�t know g(x2)
I so we use g(x2) = w0δ as in the exogenous x1 case
I so z and all w may be considered as instruments for x1.
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3. LASSO for causal homogeneous e¤ects 3.4 Endogenous regressor

First part of output

7.  (CHS) Creating orthogonalized endogenous regressor avexpr...
Selected: lat_abst edes1975 temp3 humid2 humid3
> ssor avexpr...
6b. (CHS) Selecting post­lasso HD controls and creating optimal IV for endog regre
Selected: lat_abst edes1975 temp3 humid2 humid3
> avexpr...
6a. (CHS) Selecting lasso HD controls and creating optimal IV for endog regressor
Also inc: logem4
Selected:
5.  (CHS) Selecting HD controls and IVs for endog regressor avexpr...
Selected: avelf temp2 temp5 humid2
4.  (PDS) Selecting HD controls for IV logem4...
Selected: lat_abst edes1975 temp3 humid1 humid2 humid3 humid4 iron zinc
3.  (PDS) Selecting HD controls for endog regressor avexpr...
Selected: lat_abst edes1975 temp3 humid2 humid3
1.  (PDS/CHS) Selecting HD controls for dep var logpgp95...
. ivlasso logpgp95 (avexpr=logem4) ($x2list), partial(logem4)
. //   to be partialled out.
. // Select controls; specify that logem4 is an unpenalized instrument ///
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3. LASSO for causal homogeneous e¤ects 3.4 Endogenous regressor

Last part of output

Exogenous case had bβavexpr = 0.39 with se = 0.056.

    avexpr
Standard errors and test statistics valid for the following variables only:

       _cons    2.157911    2.00102     1.08   0.281    ­1.764016    6.079839
        zinc    .0531055   .0584786     0.91   0.364    ­.0615104    .1677214
        iron   ­.1437898   .0835631    ­1.72   0.085    ­.3075705    .0199909
      humid4    ­.043253   .0205977    ­2.10   0.036    ­.0836239   ­.0028822
      humid3    .0458411   .0170148     2.69   0.007     .0124928    .0791895
      humid2    .0651965   .0290922     2.24   0.025     .0081767    .1222162
      humid1   ­.0432292   .0184622    ­2.34   0.019    ­.0794144    ­.007044
       temp5   ­.0183963   .0227653    ­0.81   0.419    ­.0630154    .0262228
       temp3     .021731    .026079     0.83   0.405    ­.0293829     .072845
       temp2   ­.0249502   .0326909    ­0.76   0.445    ­.0890232    .0391229
       avelf   ­1.131221    .337874    ­3.35   0.001    ­1.793442   ­.4690002
    edes1975    .0019131   .0049826     0.38   0.701    ­.0078525    .0116788
    lat_abst   ­1.348873   1.369259    ­0.99   0.325    ­4.032571    1.334824
      avexpr     .765767   .2020636     3.79   0.000     .3697296    1.161804

    logpgp95       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

IV with PDS­selected variables and full regressor set
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3. LASSO for causal homogeneous e¤ects 3.4 Endogenous regressor

JEP (2014) Application

E¤ect of endogenous court decisions on house prices
I yct = home price index within court circuit c at time t
I dct = # of takings appellate decisions that rule that a taking was
unlawful

I yct = αc + αt + αc t + βdct +w0ctδ+ εct

Frisch-Waugh partial out �xed e¤ects, time trends and wct
I eyct = α+ βedct + error
I p = 183 possible instruments (due to interactions)

Find s = 1 (JEP survey paper) or s = 2 (Econometrica paper)
I the JEP instrument is the square of the number of panels with one or
more members with JD from a public university.
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3. LASSO for causal homogeneous e¤ects 3.5 Caution

3.5 Caution

The LASSO methods are easy to estimate using the lassopack
program

I they�ll be (blindly) used a lot.

However in any application
I is the underlying assumption of sparsity reasonable?
I has the asymptotic theory kicked in?
I are the default values of c and γ reasonable?
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4. ATE with Heterogeneous E¤ects

4. ATE with heterogeneous e¤ects

Consider the e¤ect of treatment d on an outcome y
I where individuals may self-select into treatment.

The preceding control function approach assumes that E [ujd , x2] in
the model

y = βd + x02δ+ u

I an untestable unconfoundedness assumption
I or if d is still endogenous that we can do IV.

For binary treatment the heterogeneous e¤ects model is more �exible
I and hence more plausible in controlling for self-selection.
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4. ATE with Heterogeneous E¤ects 4.1 Heterogeneous e¤ects model

4.1 Heterogeneous e¤ects model

Consider a binary treatment d 2 f0, 1g
I for some individuals we observe y only when d = 1 (treated)
I for others we observe y only when d = 0 (untreated or control)
I some methods generalize to multi-valued treatment d 2 f0, 1, ..., Jg.

Denote potential outcomes y (1) if d = 1 and y (0) if d = 0

I for a given individual we observe only one of y (1)i and y (0)i .

The goal is to estimate the average treatment e¤ect

I ATE= E [y (1)i � y (0)i ]

Or the conditional treatment e¤ect given x

I τ(x) = E [y (1)i � y (0)i jx]
The key assumption is the conditional independence assumption

I di ? fy
(0)
i , y (1)i gjxi .

I conditional on x, treatment is independent of the potential outcome.
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4. ATE with Heterogeneous E¤ects 4.2 ATE Estimated using regression adjustment

4.2 ATE estimated using regression adjustment

De�ne the conditional means
I µ1(x) = E [y

(1)jx] for treated
I µ0(x) = E [y

(0)jx] for control
I so τ(x) = µ1(x)� µ0(x).

Use machine learning methods such as LASSO to get bµ1(x) and bµ0(x)
I dATE = 1

n ∑ni=1 bµ1(xi )� 1
n ∑ni=1 bµ0(xi ).

Problem: this does not take into account any correlation of regressors
with the treatment variable di .
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4. ATE with Heterogeneous E¤ects 4.3 ATE Estimated using Propensity Scores

4.3 ATE estimated using propensity scores
De�ne the propensity score p(x) = Pr[d = 1jx].
Under the conditional independence assumption

I µ1(x) = E [y
(1)jx] = E [ dp(x)y jx]

I µ0(x) = E [y
(0)jx] = E [ 1�d1�p(x)y jx]

I τ(x) = E [y (1) � y (0)jx] = E
h�

d
p(x) �

1�d
1�p(x)

�
y jx
i

So use dATE = 1
n ∑n

i=1
dibpi (x)yi � 1

n ∑n
i=1

1�di
1�bp(xi )yi

I and use e.g. LASSO for bpi (x).
The conditional independence assumption is more plausible the more
x0s considered.
Aside:
Ed ,y

h
d
p(x)y jx

i
= Ed ,y

h
dy1
p(x) jx

i
= Ed

h
d
p(x) jx

i
� Ey [y1jx] = Ey [y1jx]

I second last equality uses conditional independence
I last equality uses Ed [d jx] = Pr[d = 1jx] = p(x).
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4. ATE with Heterogeneous E¤ects 4.4 ATE estimated using doubly-robust method

4.4 ATE estimated using doubly-robust method
Max Farrell (2015), �Robust Estimation of Average Treatment E¤ect
with Possibly more Covariates than Observations,� Journal of
Econometrics, 189, 1-23.

I considers multivalued treatment but I present binary d case.

As before µ1(x) = E [y
(1)jx], µ0(x) = E [y

(0)jx] and
p(x) = Pr[d = 1jx].
Farrell uses the doubly-robust method

I dATE = bµ1 � bµ0 where µ1 = E [y
(1)] and µ0 = E [y

(0)]

I bµj = 1
n ∑ni=1

�
1[di=j ](yi�bµj (xi ))bpj (xi ) + bµj (xi )� for j = 0, 1

F where bp1(xi ) = bp(xi ) and bp0(xi ) = 1� bp1(xi )
I doubly-robust as estimator remains consistent if either

F the propensity score model p(x) or
F the regression imputation model µj (x) is misspeci�ed.

The LASSO is used to obtain bp(x) and bµ1(x) and bµ2(x).
I simulation and apply to Dehejia-Wahba data.
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4. ATE with Heterogeneous E¤ects 4.5 LATE and local quantile treatment e¤ects

4.5 LATE and local quantile treatment e¤ects

Belloni, Chernozhukov, Fernandez-Val and Hansen (2015), �Program
Evaluation with High-Dimensional Data�.

Binary treatment and heterogeneous e¤ects with endogenous
treatment and valid instruments

I allow for estimation of functions

F such as local quantile treatment e¤ects over a range of quantiles

I The paper is very high level as it uses functionals
I uses LASSO along the way.

Key is to use an orthogonalization moment condition
I allows inference to be una¤ected by �rst-stage estimation.
I more on this in section on double/debiased machine learning.
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4. ATE with Heterogeneous E¤ects 4.6 Heterogeneous E¤ects using Random Forests

4.6 Heterogeneous E¤ects using Random Forests

Random forests predict very well
I Susan Athey�s research emphasizes random forests.

Stefan Wager and Susan Athey (2018), �Estimation and Inference of
Heterogeneous Treatment E¤ects using Random Forests,� JASA,
1228-1242.

Standard binary treatment and heterogeneous e¤ects with
unconfoundness assumption

I use random forests to determine the controls.
I proves asymptotic normality and gives point-wise con�dence intervals

F This is a big theoretical contribution.
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4. ATE with Heterogeneous E¤ects 4.6 Heterogeneous E¤ects using Random Forests

Heterogeneous E¤ects using Random Forests (continued)
Let L denote a speci�c leaf in tree b.
τ(x) = E [y (1) � y (0)jx] in a single regression tree b is estimated bybτb(x) = 1

#fi :di=1,xi2Lg ∑i :di=1,xi2L yi �
1

#fi :di=0,xi2Lg ∑i :di=0,xi2L yi
= ȳ1 in leaf L� ȳ0 in leaf L.

Then a random forest with sub-sample size s gives B trees withbτb(x) = 1
B ∑B

b=1 bτb(x)dVar [bτb(x)] = n�1
n

� n
n�2

�2
∑n
i=1 Cov(bτb(x), dib)

I where dib = 1 if i th observation in tree b and 0 otherwise
I and the covariance is taken over all B trees.

Key is that a tree is honest.
A tree is honest if for each training observation i it only uses yi to

I either estimate bτ(x)within leaf
I or to decide where to place the splits
I but not both.
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4. ATE with Heterogeneous E¤ects 4.7 Treatment E¤ects using Deep Neural Networks

4.7 Treatment E¤ects using Deep Neural Networks

Max Farrell, Tengyuan Liang and Sanjog Misra (2018), �Deep Neural
Networks for Estimation and Inference: Application to Causal E¤ects
and Other Semiparametric Estimands,� arXiv:1809.09953v2.

Obtains nonasymptotic bounds and convergence rates for
nonparametric estimation using deep neural networks.

Then obtain asymptotic normal results for inference on
�nite-dimensional parameters following �rst-step estimation using
deep neural nets.
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5. Double or Debiased Machine Learning

5. Double or Debiased Machine Learning

Chernozhukov, Chetverikov, Demirer, Du�o, Hansen, Newey and
Robins (2018), �Double/debiased machine learning for treatment and
structural parameters,�The Econometrics Journal.

Interest lies in estimation of key parameter(s) controlling for
high-dimensional nuisance parameters.

Two components to double ML or debiased ML and subsequent
inference

I Work with orthogonalized moment conditions to allow consistent
estimation of parameter(s) of interest.

I Use sample splitting (cross �tting) to remove bias induced by
over�tting.
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5. Double or Debiased Machine Learning

Double or Debiased Machine Learning (continued)

Then get asymptotic normal con�dence intervals for parameters of
interest

I where a variety of ML methods can be used

F random forests, lasso, ridge, deep neural nets, boosted trees, ensembles

I that don�t necessarily need sparsity
I and theory does not require Donsker properties

Can apply to
I partial linear model (with exogenous or endogenous regressor)

F orthogonality conditions are presented below

I ATE and ATET under unconfoundedness

F orthogonality conditions are presented below for ATE

I LATE in an IV setting.
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5. Double or Debiased Machine Learning 5.1 Partially linear model

5.1 Partially linear model
Consider partially linear model

y = βx1 + g(x2) + u
x1 = m(x2) + v

Naive approach is
I use ML method such as LASSO to get bβx1 + bg(x2) in a training sample
I then compute eβ from regress y on x1 and bg(x2) in a di¤erent sample
I but can show that the bias in bg(x2) leads to bias in eβ.

Instead partial out the e¤ect of x2 on x1 (an example of
orthogonalization)

I use ML method for regress x1 on x2 and form bm(x2) in the training
sample

I then eβ is coe¢ cient in OLS of (y � bg(x2)) on (x1 � bm(x2)) in a
di¤erent sample

I the distribution of
p
n(eβ� β) involves a multiple of

1p
n ∑ni=1(bm(x2)�m(x2))(bg(x2)� g(x2)) that disappears

I the ML errors disappear as they appear as a product.
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5. Double or Debiased Machine Learning 5.2 Orthogonalization de�ned

5.2 Orthogonalization de�ned
De�ne β as parameters of interest and η as nuisance parameters.
Estimate bβ is obtained following �rst step estimate bη of η

I First stage: bη solves ∑ni=1 ω(wi , η) = 0
I Second stage: bβ solves ∑ni=1 ψ(wi , β,bη) = 0.

The distribution of bβ is usually a¤ected by the noise due to
estimating η

I e.g. Heckman�s two-step estimator in selection models.

But this is not always the case
I e.g. the asymptotic distribution of feasible GLS is not a¤ected by
�rst-stage estimation of variance model parameters to get bΩ.

Result: The distribution of bβ is una¤ected by �rst-step estimation of
η if the function g(�) satis�es

I E [∂ψ(wi , β, η)/∂η] = 0; see next slide.

So choose functions ψ(�) that satisfy the orthogonalization condition
E [∂ψ(wi , β, η)/∂η] = 0.
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5. Double or Debiased Machine Learning 5.2 Orthogonalization de�ned

Orthogonalization (continued)

Why does this work?

1p
n

n
∑
i=1

ψ(wi , bβ,bη)
=

1p
n

n
∑
i=1

ψ(wi , β0, η0) +
1
n

n
∑
i=1

∂ψ(wi , β, η)
∂β0

����
β0,η0

�
p
n(bβ� β0)

+
1
n

n
∑
i=1

∂ψ(wi , β, η)
∂η0

����
β0,η0

�
p
n(bη� η0)

By a law of large numbers 1n ∑n
i=1

∂ψ(wi ,β,η)
∂η

���
β0,η0

converges to its

expected value which is zero if E [∂ψ(wi , β, η)/∂η] = 0.
So the term involving bη drops out.
For more detail see Cameron and Trivedi (2005, p.201).
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5. Double or Debiased Machine Learning 5.3 Orthogonalization in partially linear model

5.3 Orthogonalization in partially linear model: method 1

Consider the partially linear model and manipulate

y = βx1 + g(x2) + u where E [ujx1, x2] = 0
) E [y jx2] = βE [x1jx2] + g(x2) + u as E [ujx2] = 0

y � E [y jx2] = β(x1 � E [x1jx2]) + u subtracting

Robinson (1988) di¤erencing estimator

I use kernel methods to get bE [y jx2 ] and bE [x1 jx2 ]
I bβ from OLS regress (y � bE [y jx2 ]) on (x1 � bE [x1 jx2 ])

Instead here use machine learning methods for bE [y jx2] and bE [x1jx2].
Recall that OLS of y on x has f.o.c. ∑i xiui = 0

I so is sample analog of population moment condition E [xu] = 0.

Robinson estimator therefore solves population moment condition
I E [(x1 � E [x1 jx2 ])fy � E [y jx2 ]� (x1 � E [x1 jx2 ])βg] = 0.
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5. Double or Debiased Machine Learning 5.3 Orthogonalization in partially linear model

Orthogonalization in partially linear model (continued)

Robinson estimator solves population moment condition E [ψ(�)] = 0
where

I ψ(�) = (x1 � E [x1 jx2 ])fy � E [y jx2 ]� (x1 � E [x1 jx2 ])βg.

De�ne η1 = E [x1jx2] and η2 = E [y jx2] , so
I ψ(w , β, η) = (x1 � η1))fy � η2 � (x1 � η1)βg

This satis�es the orthogonalization condition
I E [∂ψ(w, β, η)/∂η1 ] = E [2(x1 � η1)β] = 0 as η1 = E [x1 jx2 ]
I E [∂ψ(w, β, η)/∂η2 ] = E [�(x1 � η1)] = 0 as η1 = E [x1 jx2 ].
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5. Double or Debiased Machine Learning 5.3 Orthogonalization in partially linear model

Orthogonalization in partially linear model: method 2
Again y = βx1 + g(x2) + u and x1 = m(x2) + v .
An alternative asymptotically equivalent method given earlier

I eβ is coe¢ cient in OLS of (y � bg(x2)) on (x1 � bm(x2)).
This estimator solves population moment condition

I E [ψ(�)] = E [(x1 �m(x2))fy � g(x2)� (x1 �m(x2)βg] = 0.
De�ne η1 = m(x2) = and η2 = g(x2) , so

I ψ(w , β, η) = (x1 � η1))fy � η2 � (x1 � η1)βg
This satis�es the orthogonalization condition

I E [∂ψ(w, β, η)/∂η1 ] = E [2(x1 � η1)β] = 0 as η1 = E [x1 jx2 ]
I E [∂ψ(w, β, η)/∂η2 ] = E [�(x1 � η1)] = 0 as η1 = E [x1 jx2 ].

Aside: method 1 equals method 2 asymptotically as
I E [y jx2 ] = E [x1 jx2 ]β+ g(x2) and manipulate.

Method 2 is derived in the paper using a general result on how to
obtain a moment condition that satis�es the orthogonalization
condition.
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5. Double or Debiased Machine Learning 5.4 Orthogonalization for doubly robust ATE

5.4 Orthogonalization for doubly robust ATE

We used dATE = bτ = bµ1 � bµ0 wherebµj = 1
n ∑n

i=1

n
1[di=j ](yi�bµj (xi ))bpj (xi ) + bµj (xi )o .

The ATE solves the population moment condition

E
h
1[d=1](y�µ1(x))

p(x) � µ1(x)�
1[d=0](y�µo (xi ))

1�p(x) + µ0(x) + τ
i
= 0.

The parameter of interest is τ (β in above notation)

De�ne the nuisance parameters
I η1 = µ1(x) = E [y1 jx], η2 = µ0(x) = E [y0 jx] and η3 = p(x).

Then E [ψ(w , τ, η)] = 0 for

I ψ(w , τ, η) = 1[d=1](y�η1)
η3

+ η1 �
1[d=0](y�η2)

1�η3
� η2 + τ.
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5. Double or Debiased Machine Learning 5.4 Orthogonalization for doubly robust ATE

Orthogonalization for doubly robust ATE (continued)

We have ψ(w , τ, η) = 1[d=1](y�η1)
η3

+ η1 �
1[d=0](y�η2)

1�η3
� η2 + τ.

This satis�es the orthogonalization condition

I E [∂ψ(w, τ, η)/∂η1 ] = E [�
1[d=1])

η3
+ 1] = 0

F as E [1[d = 1]] = p(x) = η3

I E [∂ψ(w, τ, η)/∂η2 ] = E [
1[d=0])
1�η3

� 1] = 0
F as E [1[d = 0]] = 1� p(x) = 1� η3

I E [∂ψ(w, τ, η)/∂η2 ] = E [�
1[d=1](y�η1)

η23
� 1[d=0](y�η2)

(1�η3)
2 ] = 0� 0 = 0

F as E [1[d = 1](y � η1)] = E [y1 jx]� η1 = 0
F and E [1[d = 0](y � η0)] = E [y0 jx]� η0 = 0.

A. Colin Cameron U.C.-Davis . Presented at University of California - Riverside ()Machine Learning in Economics April 24 2019 57 / 67



5. Double or Debiased Machine Learning 5.4 Orthogonalization for doubly robust ATE

Sample Splitting

For the kth of K partitions formed by K -fold splitting (e.g. K = 10)
I use ML to get bηk using data in (K � 1) folds (most of the data)
I then obtain bβk that solves E [g(wi , β,bηk )] = 0 using remaining data in
the kth fold

I and form bβ = 1
K ∑Kk=1 bβk .

So most data is used to obtain bηk .
We then get K separate bβ0k s

I these are obtained using K distinct (independent) samples
I so there is little loss in e¢ ciency due to breaking into K pieces,

Asymptotically this has a normal distribution with usual
Var [bβ] = A�1BA�1

I where A = ∂E [g(wi , β, η)]/∂β and B = E [g(wi , β, η)g(wi , β, η)0].
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5. Double or Debiased Machine Learning 5.4 Orthogonalization for doubly robust ATE

Sample Splitting (continued)

The sample-splitting adds noise.

To control for this
I S times repeat the sample splitting method (e.g. S = 500)
I each time get a bβs (from averaging the K bβ0ks ) and bσ2s = Var [bβs ]

Then bβ = 1
S ∑S

s=1
bβs

And Var [bβ] = 1
S ∑S

s=1 bσ2s + 1
S ∑S

s=1(bβs � bβ)2.
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6. Some review articles of ML for Economics 6.1 Hal Varian

6.1 Hal Varian
Hal Varian (2014), �Big Data: New Tricks for Econometrics,� JEP,
Spring, 3-28.
Surveys tools for handling big data

I �le system for �les split into large blocks across computers
F Google �le system (Google), Hadoop �le system

I database management system to handle large amounts of data across
many computers

F Bigtable (Google), Cassandra
I accessing and manipulating big data sets across many computers

F MapReduce (Google), Hadoop.
I language for Mapreduce / Hadoop

F Sawzall (Google), Pig
I Computer language for parallel processing

F Go (Google - open source)
I simpli�ed structured query language (SQL) for data enquiries

F Dremel, Big Query (Google), Hive, Drill, Impala.
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6. Some review articles of ML for Economics 6.1 Hal Varian

Hal Varian (continued)

Surveys methods
I article discusses k-fold CV, trees, lasso, ....
I small discussion of causality and prediction
I (note that a classic fail is Google �u trends)
I for references mentions ESL and ISL.
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6. Some review articles of ML for Economics 6.2 Susan Athey

6.2 Susan Athey

Susan Athey�s website has several wider-audience papers on machine
learning in economics.

Susan Athey (2017), �Beyond Prediction: Using Big Data for Policy
Problems,�Science 355, 483-485.

I O¤-the shelf prediction methods assume a stable environment

F includes Kleinberg et al (2015) AER hip replacement.

I Economics considers causal prediction by

F adjust for confounders e.g. Belloni et al., Athey et al.
F designed experiments e.g. Blake et al.
F excellent references.
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6. Some review articles of ML for Economics 6.2 Susan Athey

Susan Athey (continued)
Susan Athey (2018), �The Impact of Machine Learning on
Economics"
Lengthy wide-ranging survey paper with no equations.
Machine learning methods can

I provide variables to be used in economic analysis (e.g. from images or
text)

I lead to better model selection through e.g. cross-validation
I provide much quicker computation using stochastic gradient descent

F use gradient at a single data point to approximate average over
observations of the gradient

I lead to better causal estimates
F fundamental identi�cation issues are not solved
F but perhaps make assumptions more credible e.g. unconfoundedness

I be used whenever semiparametric methods might have been used.

Paper surveys recent work on ML for causal inference
I double machine learning (Chernozhukov et al 2018) and
orthogonalization are especially promising.

Paper concludes with broad predictions for economics
I e.g. teach coding.
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6. Some review articles of ML for Economics 6.2 Susan Athey

Susan Athey and Guido Imbens

Susan Athey and Guido Imbens (2019), �Machine Learning Methods
Economists Should Know About.�

This paper provides great detail on the current literature with many
references.
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