4-7 THIS QUESTION HAD SEVERAL ERRORS (notable (d)-(f)). USE THE FOLLOWING REVISED QUESTION INSTEAD.

(Adapted from Nelson and Startz, 1990). Consider the three equation model, $y = \beta x + u$; $x = \lambda u + \varepsilon$; $z = \gamma \varepsilon + v$, where the mutually independent errors u, ε and v are iid normal with mean 0 and variances, respectively, σ_u^2 , σ_{ε}^2 and σ_v^2 .

(a) Show that $\operatorname{plim}(\widehat{\beta}_{OLS} - \beta) = \lambda \sigma_u^2 / (\lambda^2 \sigma_u^2 + \sigma_\varepsilon^2).$

(b) Show that $\rho_{XZ}^2 = [\gamma \sigma_{\varepsilon}^2]^2 / [(\lambda^2 \sigma_u^2 + \sigma_{\varepsilon}^2)(\gamma^2 \sigma_{\varepsilon}^2 + \sigma_v^2)].$

(c) Show that $\widehat{\beta}_{IV} - \beta = m_{zu} / (\lambda m_{zu} + m_{z\varepsilon}) \xrightarrow{p} 0$, where, for example, $m_{zu} = N^{-1} \sum_{i} z_i u_i$.

(d) Show that $\hat{\beta}_{IV} - \beta$ is not defined if $m_{zu} = -m_{z\varepsilon}/\lambda$. Nelson and Startz (1990) argue that this region is visited often enough that the mean of $\hat{\beta}_{IV}$ does not exist.

(e) Show that $\hat{\beta}_{IV} - \beta = 1/(\lambda + m_{z\varepsilon}/m_{zu})$ equals $1/\lambda$ if m_{zu} is large relative to $m_{z\varepsilon}/\lambda$. Nelson and Startz (1990) conclude that if m_{zu} is large relative to $m_{z\varepsilon}/\lambda$ then $\hat{\beta}_{IV} - \beta$ is concentrated around $1/\lambda$, rather than the probability limit of zero from part (c).

(f) Nelson and Startz (1990) argue that $\hat{\beta}_{IV} - \beta$ concentrates on $1/\lambda$ more rapidly the smaller is γ , the smaller is σ_{ε}^2 , and the larger is λ . Given your answer in part (c), what do you conclude about the small sample distribution of $\hat{\beta}_{IV}$ when ρ_{XZ}^2 is small?