4-7 THIS QUESTION HAD SEVERAL ERRORS (notable (d)-(f)). USE THE FOLLOWING REVISED QUESTION INSTEAD.
(Adapted from Nelson and Startz, 1990). Consider the three equation model, $y=\beta x+u$; $x=\lambda u+\varepsilon ; z=\gamma \varepsilon+v$, where the mutually independent errors u, ε and v are iid normal with mean 0 and variances, respectively, $\sigma_{u}^{2}, \sigma_{\varepsilon}^{2}$ and σ_{v}^{2}.
(a) Show that $\operatorname{plim}\left(\widehat{\beta}_{\mathrm{OLS}}-\beta\right)=\lambda \sigma_{u}^{2} /\left(\lambda^{2} \sigma_{u}^{2}+\sigma_{\varepsilon}^{2}\right)$.
(b) Show that $\rho_{X Z}^{2}=\left[\gamma \sigma_{\varepsilon}^{2}\right]^{2} /\left[\left(\lambda^{2} \sigma_{u}^{2}+\sigma_{\varepsilon}^{2}\right)\left(\gamma^{2} \sigma_{\varepsilon}^{2}+\sigma_{v}^{2}\right)\right]$.
(c) Show that $\widehat{\beta}_{\mathrm{IV}}-\beta=m_{z u} /\left(\lambda m_{z u}+m_{z \varepsilon}\right) \xrightarrow{p} 0$, where, for example, $m_{z u}=N^{-1} \sum_{i} z_{i} u_{i}$.
(d) Show that $\widehat{\beta}_{\text {IV }}-\beta$ is not defined if $m_{z u}=-m_{z \varepsilon} / \lambda$. Nelson and Startz (1990) argue that this region is visited often enough that the mean of $\widehat{\beta}_{\text {IV }}$ does not exist.
(e) Show that $\widehat{\beta}_{\text {IV }}-\beta=1 /\left(\lambda+m_{z \varepsilon} / m_{z u}\right)$ equals $1 / \lambda$ if $m_{z u}$ is large relative to $m_{z \varepsilon} / \lambda$. Nelson and Startz (1990) conclude that if $m_{z u}$ is large relative to $m_{z \varepsilon} / \lambda$ then $\widehat{\beta}_{\text {IV }}-\beta$ is concentrated around $1 / \lambda$, rather than the probability limit of zero from part (c).
(f) Nelson and $\operatorname{Startz}(1990)$ argue that $\widehat{\beta}_{\text {IV }}-\beta$ concentrates on $1 / \lambda$ more rapidly the smaller is γ, the smaller is σ_{ε}^{2}, and the larger is λ. Given your answer in part (c), what do you conclude about the small sample distribution of $\widehat{\beta}_{\mathrm{IV}}$ when $\rho_{X Z}^{2}$ is small?

