5d. Nonlinear LS A. Colin Cameron Pravin K. Trivedi Copyright 2006

These slides were prepared in 1999.
They cover material similar to Sections 5.8-5.9 of our subsequent book

Microeconometrics: Methods and Applications, Cambridge University Press, 2005.

INTRODUCTION

The nonlinear regression model specifies

$$y_i = g(\mathbf{x}_i, \boldsymbol{\beta}_0) + u_i, \quad i = 1, ..., n,$$

• where y is a scalar dependent variable x is a vector of explanatory variables β is a $k \times 1$ vector of parameters $g(\cdot)$ is a specified function u is an error term.

- The nonlinear least squares (NLS) estimator $\hat{\beta}$ minimizes the sum of squared residuals.
- In the notation used here $\widehat{\beta}$ maximizes

$$Q_n(\boldsymbol{\beta}) = -\frac{1}{2n} S_n(\boldsymbol{\beta}) = -\frac{1}{2n} \sum_{i=1}^n (y_i - g(\mathbf{x}_i, \boldsymbol{\beta}))^2,$$

where $g(\cdot)$ is a specified regression function.

• The scale factor 1/2 cancels out in the first-order conditions, see below.

- It is nonlinearity in β that is considered. If nonlinearity is just in x can do OLS with transformed regressors.
- It is assumed that the errors are additive.

EXAMPLES

The exponential regression model

$$y = \exp(\mathbf{x'\beta}) + u.$$

Then E[y|x] is always positive, and effects of regressors are multiplicative rather than additive.

• Exponential regression f.o.c.

$$\frac{\partial}{\partial \boldsymbol{\beta}} \left(-\frac{1}{2n} \sum_{i=1}^{n} (y_i - \exp(\mathbf{x}_i' \boldsymbol{\beta}))^2 \right) = \mathbf{0}$$

$$\Rightarrow -\frac{1}{2n} \sum_{i=1}^{n} (-2) \left(\frac{\partial}{\partial \boldsymbol{\beta}} \exp(\mathbf{x}_i' \boldsymbol{\beta}) \right) \left(y_i - \exp(\mathbf{x}_i' \boldsymbol{\beta}) \right) = \mathbf{0}$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \exp(\mathbf{x}_i' \boldsymbol{\beta}) \left(y_i - \exp(\mathbf{x}_i' \boldsymbol{\beta}) \right) = \mathbf{0}.$$

• Nonlinear in β so no explicit solution.

Other Examples

Regressors raised to a power

$$y = \beta_1 x_1 + \beta_2 x_2^{\beta_3} + u$$

 Nonlinear functions from demand or production analysis, such as Cobb-Douglas production

$$y = \beta_1 x_1^{\beta_2} x_2^{\beta_3} + u.$$

Nonlinear restrictions on parameters

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u, \quad \beta_3 = -\beta_2 \beta_1.$$

- Error autoregressive of order one plus lagged depen-

dent variable

$$y_t = \beta_1 x_t + \beta_1 y_{t-1} + u_t, \quad u_t = \rho u_{t-1} + \varepsilon_t,$$

where ε_t is i.i.d. error, which implies $y_t = \rho y_{t-1} + \beta_1 x_t + \rho \beta_1 y_{t-1} + \varepsilon_t.$

MATRIX NOTATION

- It is often helpful to express the model in matrix notation.
- We have

$$egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix} = egin{bmatrix} g_1 \ dots \ g_n \end{bmatrix} + egin{bmatrix} u_1 \ dots \ u_n \end{bmatrix},$$

where $g_i = g(\mathbf{x}_i, \bar{\boldsymbol{\beta}})$.

• Or

$$y = g + u$$

where

y, g and u are $n \times 1$ vectors with i^{th} entries y_i , g_i and u_i .

• Then the NLS estimator minimizes

$$S_n(\boldsymbol{\beta}) = \mathbf{u}'\mathbf{u} = (\mathbf{y} - \mathbf{g})'(\mathbf{y} - \mathbf{g})$$

• For $Q_n(\beta) = -1/2n \times S_n(\beta)$ the first-order conditions are

$$\frac{\partial Q_n(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \mathbf{g'}}{\partial \boldsymbol{\beta}} (\mathbf{y} - \mathbf{g}),$$

where

$$egin{aligned} rac{\partial \mathbf{g'}}{\partial oldsymbol{eta}} &= egin{bmatrix} rac{\partial g_1}{\partial eta_1} & \cdots & rac{\partial g_n}{\partial eta_k} \ draw & draw \ rac{\partial g_1}{\partial eta_k} & \cdots & rac{\partial g_n}{\partial eta_k} \end{bmatrix} \end{aligned}$$

DISTRIBUTION OF NLS

- The theory of extremum estimators applies directly.
- Objective function

$$Q_n(\boldsymbol{\beta}) = -\frac{1}{2n} S_n(\boldsymbol{\beta}) = -\frac{1}{2n} \sum_{i=1}^n (y_i - g(\mathbf{x}_i, \boldsymbol{\beta}))^2.$$

• First-order conditions

$$\frac{\partial Q_n(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{1}{n} \sum_{i=1}^n \frac{\partial g(\mathbf{x}_i, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} (y_i - g(\mathbf{x}_i, \boldsymbol{\beta})) = \mathbf{0}.$$

• That is $\partial g(\mathbf{x}, \boldsymbol{\beta})/\partial \boldsymbol{\beta}$ is orthogonal to the error.

CONSISTENCY

• If the model is correctly specified

$$y_i = g(\mathbf{x}_i, \boldsymbol{\beta}_0) + u_i.$$

• Then $(y_i - g(\mathbf{x}_i, \boldsymbol{\beta}_0)) = u_i$ so

$$|\partial Q_n(\boldsymbol{\beta})/\partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0} = \frac{1}{n} \sum_{i=1}^n |\partial g_i/\partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0} \times u_i.$$

• The informal condition for consistency is that

$$\mathsf{E}\left[\partial Q_n(\boldsymbol{\beta})/\partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0}\right] = \mathbf{0}.$$

• This holds here if $E[(\partial g_i/\partial \beta) \times u_i] = 0$, i.e. if $E[u_i|\mathbf{X}] = 0$.

• Thus consistency requires correct specification of the mean and errors uncorrelated with the regressors.

ASYMPTOTIC NORMALITY

By Taylor series

$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = -\left[\frac{-1}{2n} \frac{\partial^2 S_n(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}} \bigg|_{\boldsymbol{\beta}^+} \right]^{-1} \frac{-1}{\sqrt{2n}} \frac{\partial S_n(\boldsymbol{\beta})}{\partial \boldsymbol{\beta'}} \bigg|_{\boldsymbol{\beta}_0}$$

- This will yield $\sqrt{n}(\widehat{\boldsymbol{\beta}} \boldsymbol{\beta}_0) \stackrel{d}{\to} \mathbf{A}(\boldsymbol{\beta}_0)^{-1}$ times $N[0, \mathbf{B}(\boldsymbol{\beta}_0)]$.
- Need to find $A(\beta_0)$ and $B(\beta_0)$.

Specializing

$$\begin{split} &\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \\ &= -\left[\frac{-1}{n} \left(\sum_{i=1}^n \frac{\partial g_i}{\partial \boldsymbol{\beta}} \frac{\partial g_j}{\partial \boldsymbol{\beta'}} - \sum_{i=1}^n \frac{\partial^2 g_i}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}} (y_i - g_i) \bigg|_{\boldsymbol{\beta}^+} \right) \right]^{-1} \\ &\times \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\partial g_i}{\partial \boldsymbol{\beta'}} u_i \bigg|_{\boldsymbol{\beta}_0}. \end{split}$$

• For $A(\beta_0)$, the term $(\partial^2 g_i/\partial \beta \partial \beta')$ drops out if $E[u_i|\mathbf{X}] = 0$.

• For $\mathbf{B}(\boldsymbol{\beta}_0)$ note that

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\partial g_i / \partial \boldsymbol{\beta} \right) u_i |_{\boldsymbol{\beta}_0}$$

• has mean 0 if $E[u_i|\mathbf{X}] = 0$ and finite variance matrix

$$\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial g_{i}}{\partial \boldsymbol{\beta}} \frac{\partial g_{j}}{\partial \boldsymbol{\beta'}} \operatorname{Cov} \left[u_{i}, u_{j} | \mathbf{X} \right] \bigg|_{\boldsymbol{\beta}_{0}} \right].$$

PROPOSITION

- Combining yields the following proposition is more general than those presented in an introductory class.
- It permits errors to be heteroskedastic or serially correlated.
- It does not allow the errors to be correlated with regressors (see NL2SLS in this case).

Proposition: Distribution of NLS Estimator. Make the assumptions:

- (i) The model is $y_i = g(\mathbf{x}_i, \boldsymbol{\beta}_0) + u_i$;
- (ii) In the $dgp \ E[u|\mathbf{x}] = 0$ and $V[uu'|\mathbf{X}] = \Omega_0$, where

 $\Omega_{0,ij} = \omega_{ij};$ (iii) The mean function $g(\cdot)$ satisfies $g(\mathbf{x}, \boldsymbol{\beta}^{(1)}) = g(\mathbf{x}, \boldsymbol{\beta}^{(2)})$

iff $\beta^{(1)} = \beta^{(2)}$;

(iv) The following matrix exists and is finite nonsingular

$$\mathbf{A}(\boldsymbol{\beta}_0) = \lim \frac{1}{n} \mathsf{E} \left[\sum_{i=1}^n \frac{\partial g_i}{\partial \boldsymbol{\beta}} \frac{\partial g_j}{\partial \boldsymbol{\beta}'} \Big|_{\boldsymbol{\beta}_0} \right] = \lim \frac{1}{n} \mathsf{E} \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'} \Big|_{\boldsymbol{\beta}_0} \right];$$

(v)
$$n^{-1/2} \sum_{i=1}^{n} \partial g_i / \partial \boldsymbol{\beta} \times u_i |_{\beta_0} \xrightarrow{d} N[0, \mathbf{B}(\boldsymbol{\beta}_0)]$$
 where

$$\mathbf{B}(\boldsymbol{\beta}_0) = \lim \frac{1}{n} \mathsf{E} \left[\sum_{i=1}^n \sum_{j=1}^n \frac{\partial g_i}{\partial \boldsymbol{\beta}} \frac{\partial g_j}{\partial \boldsymbol{\beta'}} \omega_{ij} \bigg|_{\boldsymbol{\beta}_0} \right] = \lim \frac{1}{n} \mathsf{E} \left[\frac{\partial \mathbf{g'}}{\partial \boldsymbol{\beta}} \boldsymbol{\Omega}_0 \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta'}} \bigg|_{\boldsymbol{\beta}_0} \right].$$

Then the NLS estimator $\widehat{\beta}_{NLS}$, defined to be a root of the first-order conditions $\partial n^{-1}S_n(\beta)/\partial \beta = 0$, is consistent for β_0 and

$$\sqrt{n}(\widehat{\boldsymbol{\beta}}_{\mathsf{NLS}} - \boldsymbol{\beta}_0) \overset{d}{\to} \mathsf{N}\left[0, \mathbf{A}(\boldsymbol{\beta}_0)^{-1}\mathbf{B}(\boldsymbol{\beta}_0)\mathbf{A}(\boldsymbol{\beta}_0)^{-1}\right].$$

DISCUSSION

• The asymptotic distribution for $\widehat{\beta}_{NLS}$ is

$$\mathsf{N}\left[\boldsymbol{\beta}_{0}, \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'}\Big|_{\boldsymbol{\beta}_{0}}\right]^{-1} \frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \boldsymbol{\Omega}_{0} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'}\Big|_{\boldsymbol{\beta}_{0}} \left|_{\boldsymbol{\beta}_{0}} \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'}\Big|_{\boldsymbol{\beta}_{0}}\right]^{-1}\right].$$

• Recall OLS estimator in linear model with heteroskedastic or correlated errors

$$\widehat{\boldsymbol{\beta}}_{\text{OLS}} \overset{a}{\sim} \text{N} \left[\boldsymbol{\beta}_0, (\mathbf{X'X})^{-1} \mathbf{X'} \boldsymbol{\Omega}_0 \mathbf{X} (\mathbf{X'X})^{-1} \right],$$

- Thus replace X in OLS variance formula by $\partial \mathbf{g}/\partial \boldsymbol{\beta}'|_{\boldsymbol{\beta}_0}$.
- So NLS is OLS with regressors x replaced by $\partial g/\partial \beta|_{\beta_0}$, i.e. by $\partial E[y|\mathbf{x}]/\partial \beta|_{\beta_0}$.

EXAMPLE: EXPONENTIAL REGRESSION

Consider regression with exponential mean

$$y = \exp(\mathbf{x'\beta}) + u.$$

Then

$$\partial g(\mathbf{x}'\boldsymbol{\beta})/\partial \boldsymbol{\beta} = \partial \exp(\mathbf{x}'\boldsymbol{\beta})/\partial \boldsymbol{\beta} = \exp(\mathbf{x}'\boldsymbol{\beta})\mathbf{x}$$

• The general result for heteroskedastic errors is

$$\widehat{\boldsymbol{\beta}}_{\mathsf{EXP}} \stackrel{a}{\sim} \mathsf{N} \begin{bmatrix} \sum_{i=1}^{n} (\exp(\mathbf{x}_{i}'\boldsymbol{\beta}_{0}))^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \end{bmatrix}^{-1} \\ \boldsymbol{\beta}_{0}, \times \left[\sum_{i=1}^{n} \omega_{ii,0} (\exp(\mathbf{x}_{i}'\boldsymbol{\beta}_{0}))^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \right] \\ \times \left[\sum_{i=1}^{n} (\exp(\mathbf{x}_{i}'\boldsymbol{\beta}_{0}))^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \right]^{-1} \end{bmatrix}.$$

• This depends on $\omega_{ii,0} = V[u_i|\mathbf{x}_i]$ which is unknown.

VARIANCE MATRIX ESTIMATION

- Focus on variance matrix estimation when the errors have heteroskedasticity of form unknown, or only partially known.
- Then it is generally possible to adapt methods first developed for OLS to obtain consistent estimators of regression parameters and their variance matrix.
- Hence statistical inference is possible under weak distributional assumptions.

ROADMAP

NLS

- Specify a functional form for Ω and consistently estimate this. e.g. specific form of heteroskedasticity.
- Do not specify a functional form for Ω . e.g. White.

Weighted NLS

- Feasible nonlinear GLS. Specify function for Ω . Do fully efficient estimation assuming this is correct.
- Weighted NLS with working matrix. This is feasible nonlinear GLS but inference robust to misspecified Ω .

SPECIFIED $\Omega_0 = \Omega(\gamma_0)$

- One approach is to assume a functional form for the variance matrix Ω_0 of the error term.
- Let

$$\mathbf{\Omega}_0 = \mathbf{\Omega}(\mathbf{\gamma}_0),$$

where γ_0 is a finite-dimensional parameter vector and $\Omega(\cdot)$ is a $n \times n$ matrix function.

• Then get a consistent estimate $\widehat{\gamma}$ of γ_0 , form $\Omega(\widehat{\gamma})$, and evaluate earlier asymptotic results at $\Omega(\widehat{\gamma})$ and $\widehat{\beta}$.

- For heteroskedasticity specify $V[u_i|\mathbf{x}_i] = \exp(\mathbf{z}_i'\boldsymbol{\gamma})$, where \mathbf{z}_i is composed of just a few key components of \mathbf{x}_i .
- Then
 - NLS of y on $g(\mathbf{x}, \boldsymbol{\beta})$ gives $\widehat{\boldsymbol{\beta}}$ and hence \widehat{u}_i .
 - NLS of \widehat{u}_i^2 on $\exp(\mathbf{z}_i'\boldsymbol{\gamma})$ gives $\widehat{\boldsymbol{\gamma}}$.
 - Form $\Omega(\widehat{\gamma}) = \mathsf{Diag}[\exp(\mathbf{z}_i'\widehat{\gamma})].$
- Evaluate variance matrices at $\Omega(\widehat{\gamma})$ and $\widehat{\beta}$.

- For homoskedastic and uncorrelated errors get simple introductory text result.
- Then $\Omega_0 = \sigma_0^2 \mathbf{I}$.
- Simplification occurs as $\mathbf{B}(\boldsymbol{\beta}_0) = \sigma_0^2 \mathbf{A}(\boldsymbol{\beta}_0)$,

$$\widehat{\boldsymbol{\beta}}_{\text{NLS}} \stackrel{a}{\sim} \mathbf{N} \left[\boldsymbol{\beta}_0, \sigma_0^2 \left[\frac{\partial \mathbf{g'}}{\partial \boldsymbol{\beta}} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta'}} \Big|_{\boldsymbol{\beta}_0} \right]^{-1} \right],$$

- σ_0^2 is consistently estimated by $s^2 = n^{-1}(\mathbf{y} \widehat{\mathbf{g}})'(\mathbf{y} \widehat{\mathbf{g}})$.
- Aside: NLS is then efficient among estimators using only the first two moments.

UNSPECIFIED Ω_0

- In practice the variance matrix of errors may be unknown.
- For heteroskedasticity of unknown functional form, the error variance matrix is $\Omega_0 = \text{Diag}[\mathsf{E}[u_i^2|\mathbf{x}_i]]$.
- Without further structure it is not possible to obtain a consistent estimate of Ω_0 , since the number of entries in Ω_0 equals the sample size n. As $n \to \infty$ the number of error variances to estimate also goes to infinity.

• White (1980a,b) gave conditions under which

$$\left[\frac{1}{n}\frac{\partial \mathbf{g'}}{\partial \boldsymbol{\beta}}\bigg|_{\widehat{\boldsymbol{\beta}}}\widehat{\boldsymbol{\Omega}}\frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta'}}\bigg|_{\widehat{\boldsymbol{\beta}}}\right] \xrightarrow{p} \lim \frac{1}{n} \mathsf{E} \left[\sum_{i=1}^{n} \frac{\partial \mathbf{g'}}{\partial \boldsymbol{\beta}} \boldsymbol{\Omega}_{0} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta'}}\bigg|_{\boldsymbol{\beta}_{0}}\right],$$

for the obvious candidate

$$\widehat{\Omega} = \mathsf{Diag}[(y_i - g(\mathbf{x}_i, \widehat{\boldsymbol{\beta}}))^2],$$

where $\widehat{\beta}$ is consistent for β_0 .

• This leads to White's heteroskedastic-consistent estimate of the variance matrix of the NLS estimator

$$\widehat{\mathbf{V}}[\widehat{\boldsymbol{\beta}}_{\mathsf{NLS}}] = \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \Big|_{\widehat{\boldsymbol{\beta}}} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'} \Big|_{\widehat{\boldsymbol{\beta}}} \right]^{-1} \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \Big|_{\widehat{\boldsymbol{\beta}}} \widehat{\boldsymbol{\Omega}} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'} \Big|_{\widehat{\boldsymbol{\beta}}} \right] \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \Big|_{\widehat{\boldsymbol{\beta}}} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'} \Big|_{\widehat{\boldsymbol{\beta}}} \right]^{-1}.$$

- This estimate works because it leads to a consistent estimate $\widehat{\mathbf{B}}(\boldsymbol{\beta}_0)$ of the $q \times q$ matrix $\mathbf{B}(\boldsymbol{\beta}_0)$.
- Note that $\widehat{\Omega}$ is clearly not consistent for the $n \times n$ matrix Ω_0 since $(y_i g(\mathbf{x}_i, \widehat{\boldsymbol{\beta}}))^2$ is not consistent for $\mathsf{E}[u_i^2 | \mathbf{x}_i]$.
- Aside: Since $\widehat{\beta}$ is consistent, $(y_i g(\mathbf{x}_i, \widehat{\beta}))^2$ behaves asymptotically as $u_i^2 = (y_i g(\mathbf{x}_i, \beta_0))^2$, a random variable, not as its mean $\mathsf{E}[u_i^2|\mathbf{x}_i]$.

EXAMPLE: EXPONENTIAL REGRESSION

 For the model with exponential mean and heteroskedastic errors we already have obtained

$$\widehat{\boldsymbol{\beta}}_{\mathsf{EXP}} \stackrel{a}{\sim} \mathsf{N} \begin{bmatrix} \sum_{i=1}^{n} (\exp(\mathbf{x}_i'\boldsymbol{\beta}_0))^2 \mathbf{x}_i \mathbf{x}_i' \end{bmatrix}^{-1} \\ \times \left[\sum_{i=1}^{n} \omega_{ii} (\exp(\mathbf{x}_i'\boldsymbol{\beta}_0))^2 \mathbf{x}_i \mathbf{x}_i' \right] \\ \times \left[\sum_{i=1}^{n} (\exp(\mathbf{x}_i'\boldsymbol{\beta}_0))^2 \mathbf{x}_i \mathbf{x}_i' \right]^{-1} \end{bmatrix},$$

• A consistent estimate using White's estimator replaces β_0 by $\widehat{\beta}$ and ω_{ii} by \widehat{u}_i^2 , where $\widehat{u}_i = y_i - \exp(\mathbf{x}_i'\widehat{\beta})$.

FEASIBLE NONLINEAR GLS

- When the error variance matrix can be consistently estimated, by specifying a functional form $\Omega(\gamma)$ and consistently estimating $\widehat{\gamma}$, one would actually go further and implement feasible nonlinear GLS.
- The estimator $\widehat{\beta}_{FNLGLS}$ maximizes

$$Q_n(\boldsymbol{\beta}) = -\frac{1}{n} (\mathbf{y} - \mathbf{g})' \mathbf{\Omega}(\widehat{\boldsymbol{\gamma}})^{-1} (\mathbf{y} - \mathbf{g}).$$

• It can be shown that provided $\Omega = \Omega_0(\gamma)$

$$\widehat{\boldsymbol{\beta}}_{\mathsf{FNLGLS}} \overset{a}{\sim} \mathsf{N} \left(\boldsymbol{\beta}_0, \left[\frac{\partial \mathbf{g'}}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta}_0} \boldsymbol{\Omega}(\boldsymbol{\gamma}_0)^{-1} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta'}} \Big|_{\widehat{\mathbf{v}}} \right]^{-1} \right).$$

WORKING MATRIX

- In practice a chosen functional form $\Omega(\gamma)$ may be a reasonable approximation for Ω_0 , certainly better than the NLS implicit choice of $\Omega_0 = \sigma_0^2 I$.
- Start with a simple model for heteroskedasticity, such as $V[u_i|\mathbf{x}_i] = \exp(\mathbf{z}_i'\boldsymbol{\gamma})$ where \mathbf{z}_i is composed of just a few key components of \mathbf{x}_i and do weighted NLS.
- Such simple assumed specification for the variance matrix is called a working matrix.
- Present results robust to misspecification of Ω_0

WEIGHTED NONLINEAR LEAST SQUARES

• The weighted nonlinear least squares (WNLS) estimator $\hat{\beta}_{WNLS}$ with symmetric weighting matrix $\hat{\mathbf{V}}$ minimizes

$$Q_n(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{g})' \widehat{\mathbf{V}} (\mathbf{y} - \mathbf{g}).$$

- Here $\widehat{\mathbf{V}}$ is the inverse of the working matrix: $\widehat{\mathbf{V}} = \mathbf{\Omega}(\widehat{\boldsymbol{\gamma}})^{-1}$.
- Assume $V_0 = p \lim \widehat{V}$ exists and is nonstochastic, in addition to the usual assumptions for NLS.

Then

$$\widehat{\boldsymbol{\beta}}_{\text{WNLS}} \overset{a}{\sim} \text{N} \left(\boldsymbol{\beta}_{0}, \ \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta}_{0}} \mathbf{V}_{0} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'} \Big|_{\boldsymbol{\beta}_{0}} \right]^{-1} \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta}_{0}} \mathbf{V}_{0} \boldsymbol{\Omega}_{0} \mathbf{V}_{0} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'} \Big|_{\boldsymbol{\beta}_{0}} \right] \right) \left[\frac{\partial \mathbf{g}'}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta}_{0}} \mathbf{V}_{0} \frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}'} \Big|_{\boldsymbol{\beta}_{0}} \right]^{-1} .$$

• This result is essentially same as for linear WLS with X replaced by $\partial \mathbf{g}'/\partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0}$.

• Aside: Recall linear WLS. $\widehat{\boldsymbol{\beta}}_{WLS}$ estimator minimizes $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'\mathbf{V}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}),$

where V is an $n \times n$ symmetric weighting matrix.

Then
$$\widehat{\boldsymbol{\beta}}_{\text{WLS}} = (\mathbf{X}'\mathbf{V}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}\mathbf{y}$$

$$= (\mathbf{X}'\mathbf{V}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}[\mathbf{X}\boldsymbol{\beta}_0 + \mathbf{u}] \quad \text{if } \mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \mathbf{u}.$$

$$= \boldsymbol{\beta}_0 + (\mathbf{X}'\mathbf{V}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}\mathbf{u}$$

$$\stackrel{a}{\sim} \mathsf{N} \left[\boldsymbol{\beta}_0, (\mathbf{X}'\mathbf{V}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}\boldsymbol{\Omega}_0\mathbf{V}\mathbf{X}(\mathbf{X}'\mathbf{V}\mathbf{X})^{-1}\right].$$
if $\mathbf{u}|\mathbf{X} \sim [\mathbf{0}, \boldsymbol{\Omega}_0].$

- For heteroskedasticity of unknown form we use White (1980b) result using $u_i = y_i g(\mathbf{x}_i'\widehat{\boldsymbol{\beta}}_{\text{NWLS}})$ to form $\widehat{\boldsymbol{\Omega}} = \text{Diag}[\widehat{u}_i^2]$ as estimate for Ω_0 .
- Note that we cannot go one step further and use $\widehat{\mathbf{V}} = \widehat{\Omega}^{-1}$ where $\widehat{\Omega} = \operatorname{Diag}[\widehat{u}_i^2]$. Here $\operatorname{plim} \widehat{\Omega} = \operatorname{Diag}[u_i^2]$ is stochastic and so to is $\mathbf{V}_0 = \operatorname{plim} \widehat{\Omega}^{-1}$, leading to inconsistency.
- For estimation as efficient as GLS without specifying Ω_0 see semi-paramteric regression.

EXAMPLE: EXPONENTIAL REGRESSION

- For model with exponential mean specify a working model of heteroskedasticity.
- Specify $V[u_i|\mathbf{x}_i] = \exp(\mathbf{z}_i'\boldsymbol{\gamma})$ where \mathbf{z}_i is a specified function of \mathbf{x}_i such as selected subcomponents of \mathbf{x}_i .
- Then
 - First estimate $\widehat{\beta}$ by NLS regression of y_i on $\exp(\mathbf{x}_i'\boldsymbol{\beta})$.
 - Then estimate $\widehat{\gamma}$ by NLS regression of $(y_i g(\mathbf{x}_i, \widehat{\boldsymbol{\beta}}))^2$ on $\exp(\mathbf{z}_i' \boldsymbol{\gamma})$.
 - Finally calculate $\widetilde{\omega}_{ii} = \exp(\mathbf{z}_i'\widetilde{\boldsymbol{\gamma}})$.

• Since $\widehat{\mathbf{V}} = \mathsf{Diag}[\widetilde{\omega}_{ii}]$ the objective function $Q_n(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{g})' \widehat{\mathbf{V}} (\mathbf{y} - \mathbf{g})$ simplifies and the weighted NLS estimator $\widehat{\boldsymbol{\beta}}_{\mathsf{WEXP}}$ estimator minimizes

$$Q_n(y, \boldsymbol{\beta}) = \sum_{i=1}^n \frac{(y_i - \exp(\mathbf{x}_i'\boldsymbol{\beta}))^2}{\exp(\mathbf{z}_i'\widetilde{\boldsymbol{\gamma}})}.$$
• This can clearly be minimized by usual NLS estimation

- This can clearly be minimized by usual NLS estimation in the transformed regression of $y_i/\exp(\mathbf{z}_i'\widetilde{\boldsymbol{\gamma}})^{1/2}$ on $\exp(\mathbf{x}_i'\boldsymbol{\beta})/\exp(\mathbf{z}_i'\widetilde{\boldsymbol{\gamma}})^{1/2}$.
- Then letting $\omega_{ii,0} = V[u_i|\mathbf{x}_i]$ denote the true (unknown) variance and $\omega_{ii} = \exp(\mathbf{z}_i, \boldsymbol{\gamma})$ denote the assumed (work-

ing) error variance

$$\widehat{\boldsymbol{\beta}}_{\mathsf{WEXP}} \stackrel{a}{\sim} \mathsf{N} \begin{bmatrix} \left[\sum_{i=1}^{n} \frac{1}{\omega_{ii}} (\exp(\mathbf{x}_{i}'\boldsymbol{\beta}_{0}))^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \right]^{-1} \\ \boldsymbol{\beta}_{0}, \times \left[\sum_{i=1}^{n} \frac{1}{\omega_{ii}} \omega_{ii,0} (\exp(\mathbf{x}_{i}'\boldsymbol{\beta}_{0}))^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \right] \\ \times \left[\sum_{i=1}^{n} \frac{1}{\omega_{ii}} (\exp(\mathbf{x}_{i}'\boldsymbol{\beta}_{0}))^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \right]^{-1} \end{bmatrix},$$

- The variance matrix of $\widehat{\boldsymbol{\beta}}_{\mathsf{WEXP}}$ is estimated by replacing $\boldsymbol{\beta}_0$ by $\widehat{\boldsymbol{\beta}}_{\mathsf{WEXP}}$, $\omega_{ii} = \exp(\mathbf{z}_i, \widetilde{\boldsymbol{\gamma}})$, and $\omega_{ii,0}$ by \widehat{u}_i^2 , where $\widehat{u}_i = y_i \exp(\mathbf{x}_i' \widehat{\boldsymbol{\beta}}_{\mathsf{WEXP}})$.
- This estimator is robust to misspecification of ω_{ii} .

- If one is prepared to do inference assuming that $\omega_{ii,0} = \exp(\mathbf{z}_i'\boldsymbol{\gamma})$ is correctly specified then the estimator is in fact the feasible nonlinear GLS estimator.
- The preceding result simplifies (because $\omega_{ii} = \omega_{ii,0}$) to

$$\widehat{\boldsymbol{\beta}}_{\mathsf{WEXP}} \overset{a}{\sim} \mathsf{N} \left[\boldsymbol{\beta}_0, \left[\sum_{i=1}^n \frac{1}{(\exp(\mathbf{z}_i'\boldsymbol{\gamma}))^2} (\exp(\mathbf{x}_i'\boldsymbol{\beta}_0))^2 \mathbf{x}_i \mathbf{x}_i' \right]^{-1} \right].$$

• This estimator of the variance matrix is generally not used as it is not robust to misspecification of ω_{ii} .

COEFFICIENT INTERPRETATION

- We are particularly interested in $\partial E[y|x]/\partial x$.
- For general regression function $g(\mathbf{x}, \boldsymbol{\beta})$ it is customary to present one of the following estimates.
 - The response of the individual with average characteristics: $\partial E[y|\mathbf{x}]/\partial \mathbf{x}|_{\bar{\mathbf{x}}}$.
 - The average response of all individuals in the sample: $\sum_{i=1}^{n} \partial E[y_i|\mathbf{x}_i]/\partial \mathbf{x}_i.$
 - The response of a representative individual with characteristics $\mathbf{x} = \mathbf{x}^*$: $\partial \mathsf{E}[y|\mathbf{x}]/\partial \mathbf{x}|_{\mathbf{x}^*}$. e.g. a female

with twelve years of schooling etc.

- In the linear regression model, $E[y|\mathbf{x}] = \mathbf{x}'\boldsymbol{\beta} \Rightarrow \partial E[y|\mathbf{x}]/\partial \mathbf{x} = \boldsymbol{\beta}$ so these three measures are all the same.
- For nonlinear regression models, however, these three measures differ.

SINGLE-INDEX MODEL

- For general $g(\mathbf{x}, \boldsymbol{\beta})$ the coefficients $\boldsymbol{\beta}$ are difficult to interpret.
- Interpretation possible for single-index model $E[y|\mathbf{x}] = g(\mathbf{x}'\boldsymbol{\beta}).$
- Then nonlinearity is of the mild form that the mean is a nonlinear function of a linear combination of the regressors and parameters.

• For single-index model

$$\frac{\partial \mathsf{E}[y|\mathbf{x}]}{\partial x_j} = \frac{\partial g(\mathbf{x}'\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \boldsymbol{\beta}_j,$$

• The relative effects of changes in regressors are given by the ratio of the coefficients since

$$\frac{\partial \mathsf{E}[y|\mathbf{x}]/\partial x_j}{\partial \mathsf{E}[y|\mathbf{x}]/\partial x_k} = \frac{\beta_j}{\beta_k}.$$

- And for $g(\cdot)$ monotonic it follows that the signs of the coefficients give the signs of the effects.
- Single index models are particularly advantageous due to their simple interpretation.

EXAMPLE: EXPONENTIAL REGRESSION

- Then $E[y|\mathbf{x}] = \exp(\mathbf{x}'\boldsymbol{\beta})$.
- This is a single-index model.
- Thus if, say, $\widehat{\beta}_j = 0.4$ and $\widehat{\beta}_k = 0.8$ the impact on $E[y|\mathbf{x}]$ of a one unit change in the k^{th} regressor is twice that of a one-unit change in the j^{th} regressor.
- Furthermore $\partial E[y|\mathbf{x}]/\partial \mathbf{x} = \exp(\mathbf{x}'\boldsymbol{\beta}) \times \boldsymbol{\beta} = \mathbf{E}[y|\mathbf{x}] \times \boldsymbol{\beta}$.
- So the parameters can be interpreted as semi-elasticities.
- Thus $\widehat{\beta}_j = 0.4$ implies that a one unit increase in the j^{th} regressor leads to a 40% increase in $E[y|\mathbf{x}]$.

DATA EXAMPLE: EXPONENTIAL REGRESSION

 $y \sim \text{exponential}(\exp(\alpha + \beta x + \gamma z))$

x, z correlated normal

R-squared = .2 for regression

Point and interval estimates.

Misspecified variables.

Omitted variables.

TIME SERIES

• Preceding cross-section results can be adapted to nonlinear time series

$$y_t = g(x_t, \beta) + u_t, \quad t = 1, ..., T.$$

- There are several ways to proceed depending on whether or not
 - regressors x_t include lagged values of y, such as y_{t-1}
 - $-u_t$ is serially correlated.

• If u_t is serially correlated use ARMA error model $u_t = \rho_1 u_{t-1} + \cdots + \rho_p u_{t-p} + \varepsilon_t + \alpha_1 \varepsilon_{t-1} + \cdots + \alpha_q \varepsilon_{t-q}$, where ε_t is iid with mean 0 and variance σ^2 .

TIME SERIES METHODS

• 1. Include in the regressors sufficient lags of y that the error is serially uncorrelated.

Do NLS with i.i.d. errors.

Simplest NLS results for iid error apply.

• 2. Specify ARMA model for correlated errors. Regressors that may or may not include lags of y.

Do nonlinear GLS.

In simplest case of AR errors can estimate β and ρ by using Cochrane-Orcutt transformation to obtain model with i.i.d. error, and estimate this transformed model

- by nonlinear GLS.
- 3. Do not include lags of y as regressors and let error be serially correlated.
 - Do NLS even though the error is serially correlated. Fet adjusted standard errors that are correct in presence of serial correlation. This is the analog of White.
- Aside: A fourth possible approach gives inconsistent estimates. Include lags of y and do NLS with error that is serially correlated. Then \mathbf{x}_t and u_t are correlated violating the assumption that $\mathsf{E}[u|\mathbf{x}] = 0$.
 - Instead the second approach needs to be taken.

TIME SERIES: UNSPECIFIED Ω

- White and Domowitz (1984) considered heteroskedasticity and serial correlation of unknown functional form.
- Restrict serial correlation to at most lag length l periods.
 Also allow heteroskedasticity.
 Then

$$\Omega_{0,st} = \mathsf{E}[u_t u_s] \qquad |s - t| \le l$$

$$= 0 \qquad |s - t| > l.$$

• Then one can use the general result for NLS with $\widehat{\Omega}$ that has st^{th} entry

$$\widehat{\Omega}_{st} = \widehat{u}_s \widehat{u}_t |s - t| \le l$$

$$= 0 |s - t| > l,$$

where $\widehat{u}_t = y_t - g(\mathbf{x}_t, \widehat{\boldsymbol{\beta}})$ is the NLS residual.

• Then $\widehat{V}[\widehat{\beta}_{NLS}]$ is that given earlier where the consistent estimate of $\mathbf{B}(\beta_0)$ is

$$\widehat{\mathbf{B}}(\boldsymbol{\beta}_0) = \frac{1}{n} \left[\sum_{t=1}^n \frac{\partial g_t}{\partial \boldsymbol{\beta}} \frac{\partial g_t}{\partial \boldsymbol{\beta'}} \Big|_{\widehat{\boldsymbol{\beta}}} \widehat{u}_t^2 + \sum_{\tau=1}^l \sum_{t=\tau+1}^n \frac{\partial g_t}{\partial \boldsymbol{\beta}} \frac{\partial g_{t-\tau}}{\partial \boldsymbol{\beta'}} \Big|_{\widehat{\boldsymbol{\beta}}} \widehat{u}_t \widehat{u}_{t-\tau} \right].$$

- Again this estimates works because it leads to a consistent estimate of the $q \times q$ matrix $\mathbf{B}(\boldsymbol{\beta}_0)$, even though $\widehat{\Omega}$ is not consistent for the $n \times n$ matrix Ω_0 .
- This general result specializes to results for heteroskedasticity and for serial correlation.

EXAMPLE: EXPONENTIAL REGRESSION

• Dgp is an exponential density with exponential mean.

$$y_i | \mathbf{x}_i \sim \text{exponential}(\exp(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i}))$$

 $(x_{2i}, x_{3i}) \sim \mathsf{N}[0.1, 0.1; 0.1^2, 0.1^2, 0.005]$
 $(\beta_1, \beta_2, \beta_3) = (-2, 2, 2).$
 $i = 1, ..., 200.$

• For the joint normal the means, variances and covariance are respectively given. The implied squared correlation between x_2 and x_3 is 0.25.

- For the particular sample of 200 observations drawn here
 - sample mean of y is 0.21
 - sample standard deviation of y is 0.22.

 For the exponential the conditional mean and variance are

$$E[y|\mathbf{x}] = \exp(\beta_1 + \beta_2 x_2 + \beta_3 x_3)$$

$$V[y|\mathbf{x}] = (E[y|\mathbf{x}])^2.$$

- It follows that
 - OLS with mean $\beta_1 + \beta_2 x_2 + \beta_3 x_3$ is inconsistent.
 - NLS with mean $\exp(\beta_1 + \beta_2 x_2 + \beta_3 x_3)$ is consistent but is inefficient with standard errors that should be adjusted for heteroskedasticity.
 - MLE is consistent and efficient.

$$Variable \ Stimator \ OLS \ NLS \ MLE \ ONE \ 0.14 \ -1.84 \ -2.68 \ (10.3) \ (-15.0) \ (-19.9) \ x1 \ 0.48 \ 2.00 \ 3.23 \ (3.2) \ (2.6) \ (3.1) \ x2 \ 0.20 \ 0.60 \ 1.27 \ (1.5) \ (0.9) \ (1.3) \ R^2 \ .08 \ .09$$

- The coefficients are relatively imprecisely estimated for this sample with $R^2 \simeq 0.09$.
- In particular the slope parameters for NLS and MLE are generally different from their theoretical values of 2.0.
- Though this difference is not statistically significant at 5% (t-ratios are given).