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INTRODUCTION

e Thenonlinear regression model specifies
yi = 9(x;, Bp) +wg,  i=1,...,n,
e Where
y ISascalar dependent variable
x ISavector of explanatory variables
Bisak x 1 vector of parameters
g(-) IS agpecified function
w 1S an error term.



e The nonlinear least squares (NLS) estimator 8 mini-
mizes the sum of squared residuals.

o In the notation used he@maximizes
1 1 —
Qn(B) = —%Sn(ﬁ) = —— (yi —g9(x;,8)),
1=1
whereg(-) IS a spedied regression function.

e The scale facton/2 cancels out Iin thdirst-order
conditions, see below.



e Itisnonlinearity in 3 that Isconsidered. If nonlinearity
ISjust in x can do OL S with transformed regressors.

e It 1S assumed that the errors are additive.



EXAMPLES
e The exponential regression model

y = exp(x'B) + u.
Then E[y|x] Isaways positive, and effects of regressors
are multiplicative rather than additive.

o Exponential regression f.o.c.
% (_% i1 (Yi — eXP(Xéﬁ))Q) =0
= —on 2ie1(—2) (% exp(Xéﬁ)) (yi — exp(x;8)) = 0

= 5 i1 X exp(x8) (y; — exp(x8)) = 0.
o Nonlinear in 8 so no explicit solution.



o Other Examples

— Regressors raised to a power
y = G121+ Bozh? + u
— Nonlinear functions from demand or production
analysis, such as Cobb-Douglas production

y = 12’25’ + u.

— Nonlinear restrictions on parameters
y = b1x1 + Ooxg + O3x3 +u, O3 = —[F90;.

— Error autoregressive of order one plus lagged depen



dent variable

yt = B12¢ + Brye—1 T us,  ur = pup_1 + &,
where ¢ Isi.1.d. error, which implies

Yt = pYi—1 + Brxe + pB1ys—1 + &t



MATRIX NOTATION

o It Is often helpful to express the mode in matrix
notation.

o We have L
Y1 g1 (]
— —+ ,
Yn dn Un,
where g; = g(x;,8).
o Or
y=g+u



y, g and u aren x 1 vectors with ;t" entries y;, ¢; and w,.
e Thenthe NLS estimator minimizes
Sn(B) =u'u=(y—g)(y —g

o FOr Q,(8) = —1/2n x S,(B) the first-order conditons are
8@71(/3) - ag,

50 —%(Y—g),
where i _
Og1 .. 9gn
og |
B | og g
| 00, B,




DISTRIBUTION OF NL S
o Thetheory of extremum estimators applies directly.
o Objective function

e FIrst-order conditions

0Qn(B)  1~09(xiB),
s _ﬁ; 003 (yi — g9(x3,8)) = 0.

e Thatisog(x,3)/03 Is orthogonal to the error.
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CONSISTENCY

o If the modedl is correctly specified
vi = 9(x4, Bp) + ;.
e Then (y; — g(x;,80)) = u; SO

0Qu(8)/0815, = > 00i/ 0B, x us.
1=1

o Theinformal condition for consistency is that
E|0Qn(8)/081g,| = 0.
e Thisholdshereif E[(0g;/08)xu;] = 0, 1.€. If E[u;|X] = 0.
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e Thus consistency requires correct specification of the
mean and errors uncorrel ated with the regressors.
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ASYMPTOTIC NORMALITY

o By Taylor series

V(B — By) = -

_—1 0%5,(B)

2n  0B303'

/6+

1 -1

—1 95y(8)

V2n

o8

By

o Thiswill yield n(3 — 8y) % A(By) " timesN [0, B(8,)].
e Needto find A(3y) and B(3,).
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e Specializing
\/H(B — Bo)

By

_ _1 agz ag] i azgz .
8,3 o3’ (958,3/ 2 X
i B _

e FOr A(3,), the term (6°9;/0B083") dropsout if E [u;|X] = 0.
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e FOr B(3,) note that
1 n
NG Zz; (0gi/0B) ui| g,

e hasmean o If E[ui\X] _ 0 and finite variance matrix

1

n

>y

| 1=1 j=1

dg; ag]

0893

Cov |uj, ui|X]

By
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PROPOSITION

o Combining yields the following proposition is more
general than those presented in an introductory class.

o It permits errors to be heteroskedastic or serially
correlated.

e |t does not allow the errors to be correlated with
regressors (see NL2SL S in this case).
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Proposition: Distribution of NLS Estimator. Make the
assumptions.

(1) Themodd isy; = g(x;, Bg) + u;,

(1) In the dgp Eju|x] = 0 and Vjuu/|X] = Q, where

94 i = Wijs
(iii) The mean function ¢(-) satisfies g(x, 8\) = g(x, 8

(Iv) The followi ng matrix exists and is finite nonsingular
' n i 99 og’ 0 .
A(B) = lim zE [ng—%a—%ﬁ] —hmlE[ cg gﬁ]
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_ d .
(V) n 1/22?: (9gi/8ﬁ><ui\5 — N |0,

T 1 892893
B(/BO)_hmnE Zzljzl 8/68/6/ Z]

By

B(3,)] where

1 0g og
= lim—E | ==

n |08 0g |,

Then the NLS estimator 3y, s, defined to be a root of the
first-order conditionson~15,(3)/08 = 0, is consistent for

B, and

Vi(Buis — Bo) S N {07 A(By)'B(B)A(By)
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DISCUSSION
e The asymptotic distribution for By s is

N

o Recall OLS estimator in linear model wit
eroskedastic or correlated errors

/607

_Gg’ﬁg

KEEL

By |

1-1

/
GgSIO

0g

B

53

B

By

_Gg’ﬁg

KEEL

Bo]
N het-

Bovs N | By, (X'X) ™' X'QeX(X'X) |
e Thus replace in OLS variance formula bﬁg/@,@’}ﬁo.

e SONLS is OLS with regressorsreplaced byg/93|3 ,
l.e. byE?E[y]X]/E?,B]BO.
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EXAMPLE: EXPONENTIAL REGRESSION

o Consider regression with exponential mean
y = exp(x'B) + u.

e Then

0g(x'B)/9B =0 exp(x'B) /0B = exp(x'B)x
 The general result for heteroskedastic errorsis
. S (exp(xBg)) Pxix]
Bexp ~ N | By, x [Soi wii olexp(x}By))?x;x)]
X [ (exp(x)Bg) i)

e Thisdepends on wii. o =Vu;x;) Which IS unknown.
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VARIANCE MATRIX ESTIMATION

e Focus on variance matrix estimation when the errors
nave heteroskedasticity of form unknown, or only
partially known.

e Then it Is generally possible to adapt methods first
developed for OL S to obtain consistent estimators of
regression parameters and thelr variance matrix.

e Hence dtatistical inference is possible under weak
distributional assumptions.
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ROADMAP
NLS

o Specify a functional form for @ and consistently
estimate this. e.qg. specific form of heteroskedasticity.

e Do not gpecify afunctional form for ©. e.g. White.

Weighted NL S

e Feasible nonlinear GLS. Specify function for Q. Do
fully efficient estimation assuming thisis correct.

o Weighted NL S with working matrix. Thisis feasible
nonlinear GL S but inference robust to misspecified Q.
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SPECIFIED € = Q(v,)

e One approach is to assume a functional form for the
variance matrix €, of the error term.

o Let

QO — 9(70)7
where ~, Is afinite-dimensional parameter vector and
Q(-) IS an x n matrix function.

e Then get a consistent estimat®f ~,, form Q(), and
evaluate earlier asymptotic resultsas) andg.
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e For heteroskedasticity specify Viu;|x;] = exp(z.v), where
z; 1S composed of just afew key components of x;.
e Then
— NLS ofy ong(x, 8) givess and hence;.
— NLS of @ onexp(ziv) givess.
— FormQ(5) = Diaglexp(z/7)].
« Evaluate variance matrices@ty) ands.
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o For homoskedastic and uncorrelated errors get ssimple

Introductory text result.
e Then (= O'%I.

o Simplification occurs as B(8y) = ojA(By),

Bnis ~ N | By, o

o o iSconsstently estimatec

i 1 —1
og’ Og

0808 |g,| |

by 52 =n~Ly —&)(y — &).

o Aside: NLS is then efficient among estimators using
only the first two moments.
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UNSPECIFIED Q

e IN practice the variance matrix of errors may be un-
Known.

o Forheteroskedasticity of unknown functional farthe
error variance matrix i€, = Diag[E[u?|x;]].

o Without further structure it is not possible to obtain a
consistent estimate of,, since the number of entries
In Q, equals the sample size Asn — o the number
of error variances to estimate also goes tmity.
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o White (1980a,b) gave conditions under which |

1(9g .1 og' | Og
2 lim =E —Q)——
1mn Zaﬂ 08,6/ 5

o8

3 993
for the obvious candidate
) Q = Diag[(y; — g(x;, 8))?],
where 3 is consistent for 3.
e Thisleads to White's heteroskedastic-consistent esti-
mate of the varlance matrix of the NLS estlmator

VBl = 0g og og' 0g og
NLS 8,6/ 8,6/

AN

o8

3 9805
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e This estimate works because It leads to a cons stent
estimate B(3,) of the ¢ x ¢ matrix B(3,).

o Notethat Q is clearly not consistent for the n x n matrix
Qq since (y; — g(x;, 8))? is not consistent for E[u?|x;]-

e Aside: Since 3 is consistent, (y; — g(x;, 3))? behaves
asymptoticaly as u? = (y; — g(x;, Bp))?, & random vari-
able, not as its medfu?|x;].
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EXAMPLE: EXPONENTIAL REGRESSION

o For themodel with exponential mean and heteroskedas-
tic errorswe already have obtained

~ > (exp(x]By)) xix!]

Bexp ~ N | By, x [Z?ﬂwz‘i(exp(xéﬁo)yxixﬂ )

x [0 (exp(xBp))Pxix]]

« A consistent estimate using White’s estimator replaces
8, by 8 andw;; by @2, wherea; = y; — exp(x/3).

—1
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FEASIBLE NONLINEAR GL S

o When the error variance matrix can be consistently
estimated, by specifying a functional form Q(~) and
consistently estimating 4, onewould actually go further
and implement feasible nonlinear GLS.

e The estimator By ¢ s Maximizes

0n(B) = —(y - 2/2F) 'y — ).

n

e It can be shown that provided Q = Qy(v)
N o og| 17
BrnLeLs ~ N \ﬁ(y _% BOQ(’YO)_1 a_;;, ] -
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WORKING MATRIX

e IN practice a chosen functional form Q(~) may be a
reasonabl e approximation for ©, certainly better than
the NLS implicit choice of ©j = o71.

o Start with a ssimple model for heteroskedasticity, such
as V[u;|x;] = exp(z,v) where z; Is composed of just afew
key components of x; and do weighted NL S.

e Such smple assumed specification for the variance
matrix is called a working matrix.

o Present results robust to misspecification of
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WEIGHTED NONLINEAR LEAST SQUARES

o The welghted nonlinear least squares (WNLYS) es-
timator By s With symmetric weighting matrisv/
minimizes

Qn(B) =y —8)V(y —g).

e HereV is the inverse of the working matrixy =
Q7).

e ASSumeV, = plim'V exists and is nonstochastic, in
addition to the usual assumptions for NLS.
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e Then

3 a
Bwnis ~ N

\

e Thisresult is essentially same as for linear WLS with
X replaced by ag’/aﬁ{ﬁo.
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o Aside; Recall linear WLS. By s estimator minimizes
(y - XB)V(y - XB),
where v isan n x n Symmetric weighting matrix.
Then By s = (X'VX)~IX'Vy
- (X'VX)"IX'V[X8,+u] ify=X3)+u
= By + (X'VX)~'X'Vu
SN By, (XI'VX)TIX'VOVX(X'VX) T
if u/X ~ 0,9
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o For heteroskedasticity of unknown form we use White
(1980b) result using u; = y; — g(x/Bnwis) to form
Q = Diag[a?] as estimate for Q.

o Note that we cannot go one step further and use

V = Q! where Q = Diag[a?]. Here plim Q = Diag[u?]
is stochastic and so to is V = plimQ !, leading to
Inconsistency.

o For estimation as efficient as GL S without specifying
0, See semi-paramteric regression.
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EXAMPLE: EXPONENTIAL REGRESSION

o For model with exponential mean specify a working
model of heteroskedasticity.

o Specify V(u;|x;] = exp(ziv) where z; IS a specified
function of x; such as selected subcomponents of x;.

e Then
— First estimates by NLS regression of; on exx/g3).
— Then estimatg by NLS regression ofy; — g(x;, 3))

ONexp(z/7y).
— Finally calculatey;; = exp(z/7).
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e Since V = Diaglw;] the objective function
On(B) = (y — g)'V(y — g) Smplifies and the weighted
NL S estimator Byexp €stimator minimizes

" (y: — ex X, 2

exp(z; 7)
e Thiscan clearly be mirlimized by usual NLS estimation

In the transformed regression of
yi/ exp(z7)'/? ON exp(x]B)/ exp(zA) /.

e Then letting w;; o =Vu;|x;] denote the true (unknown)
variance and w;; = exp(z;,~) denote the assumed (work-
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Ing) error variance
—1
S1 1 2 (exp(x)Bg) x|
Bwexp ~ N | By, x |20, %%Wiz’,()(eXP(XéBO))ZXz'X;} ,
< [ S0y (e By) it |
« The variance matrix of Bwexp IS estimated by re|:_)l acing
Bo bY Bwexp, wii = exp(z;,7), and wy; o by @2, where @; =
yi — exp(xX;Bwexp)-
o Thisestimator isrobust to misspecification of w;;.
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e If oneis prepared to do inference assuming that w;; o =
exp(z,~) IS correctly specified then the estimator Is In

fact the feasible nonlinear GL S estimator.
e The preced ng result ssimplifies (because w;; = w;;

3 a
Bwexp ~ N

/607

n

2

7 expz'y

)

5(exp(x (x!B0))*xix

o) to
—_ _1_

e This estimator of the variance matrix Is general ly not
used as it Is not robust to misspecification of w;;.
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COEFFICIENT INTERPRETATION

o We are particularly interested in 0E[y|x] /0.
o For general regression function ¢(x, 3) It IS customary
to present one of the following estimates.
— The response of the individual with average charac-
teristics: 9E[y|x|/0x|x.
— The average response of all individuals in the sample
> ie1 OB[y;]x;]/0%;.
— The response of a representative individual with
characteristick = x*: 9E[y|x]/dx|,.. €.g. a female
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with twelve years of schooling etc.

e Inthelinear regression model, Ejy|x] = x'3 = 0E[y|x]/0x =03
0 these three measures are dl the same.

o For nonlinear regression models, however, these three
measures differ.
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SINGLE-INDEX MODEL
o For generd ¢4(x, 3) the coefficients 3 are difficult to
Interpret.
e Interpretation possible for single-index model
Ely[x] = g(x'B).
e Then nonlinearity is of the mild form that the mean

IS a nonlinear function of a linear combination of the
regressors and parameters.
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e FOr single-index model
OEI] _ D9(XB)
0a:j (9,3 J7
o Therelative effectof changes in regressors are given
by the ratio of the codicients since
8E[y\x]/8a:j B &

OEly|x|/0x;, By
o And for ¢(-) monotonic it follows that theignsof the

coeficients give the signs of the effects.

e Single index models are particularly advantageous due
to their simple interpretation.
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EXAMPLE: EXPONENTIAL REGRESSION

e Then E[y|x] = exp(x'3).

e Thisisasingle-index model.

e Thus if, say3; = 0.4 andg,, = 0.8 the impact orkfy|x] of
a one unit change in the” regressor is twice that of a
one-unit change in thg” regressor.

o FUrthermoreEk[y|x]/ox =exp(x’'3) x B = E[y|x] x B.
e S0 the parameters can be interpreted as semi-elasticitie

° ThusBj — 0.4 implies that a one unit increase in tfie
regressor leads to a 40% increase|ix].




DATA EXAMPLE: EXPONENTIAL REGRESSION

y ~ exponential (exp(a + Bz + v2))
z, z correlated normal
R-squared= .2 for regression

Point and interval estimates.
Misspectied variables.
Omitted variables.
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TIME SERIES

e Preceding cross-section results can be adapted to
nonlinear time series

yr =gz, B)+tu, t=1,..T.
e There are several ways to proceed depending on
whether or not

— regressors; include lagged values @f such as;;_;
— u IS serially correlated.
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o If u; ISserialy correlated use ARMA error model
Ut = PUt—] T+ PplUt—p T Et T Q1€ + ++ + T QgEt—q,
where ¢; isiid with mean 0 and variance +-.
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TIME SERIESMETHODS

o 1. Include in the regressors sufficient lags of y that the
error is serially uncorrelated.
Do NLSwith.1.d. errors.
Simplest NLS resultsfor i1d error apply.

o 2. Specify ARMA model for correlated errors. Regres-
sors that may or may not include lags,of
Do nonlinear GLS.
In simplest case of AR errors can estimatandp by
using Cochrane-Orcutt transformation to obtain model
with I.1.d. error, and estimate this transformed model
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by nonlinear GLS.

e 3. Do not include lags of y as regressors and let error
ne serially correlated.

Do NLS even though the error iIs serially correlated.
~et adjusted standard errors that are correct in presence
of seria correlation. Thisisthe analog of White.

o Aside: A fourth possible approach gives inconsistent
estimates. Include lags of y and do NLS with error
that is seriadly correlated. Then x; and «; are correlated
violating the assumption that Eju|x] = 0.
|nstead the second approach needs to be taken.
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TIME SERIES: UNSPECIFIED ©

o White and Domowitz (1984) considered heteroskedas-
ticity and serial correlation of unknown functional
form.

o Restrict serial correlation to at most lag lenggieriods.
Also allow heteroskedasticity.

Then
Q) st = Elugug) s —t] <1

= () s —t| > L.
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e Then one can use the genera result for NLS with ©

that has st entry
Qo = Uty |s —t| <1
=0 |s—t|>1,
where u; = y; — g(Xt,B) ISthe NLS residual.

o Then V[3y¢] isthat given earlier where the consistent
estimate of B(BO) IS

B(3)) = L

Z

dgt Ogy

/S 86’

/\

n

5>

=1 t=7+1

0g:0gt—r| - .

8,6 8/6/ . Uttt —r | -
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o Again this estimates works because it |eads to a con-
sistent estimate of thex ¢ matrix B(3,), even though
Q is not consistent for the x » matrix .

e This general result specializes to results for het-
eroskedasticity and for serial correlation.
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EXAMPLE: EXPONENTIAL REGRESSION

o Dgp Isan exponential density with exponential mean.
yilx; ~ exponential (exp(8; + Baxa; + B3w3;))
(294, z3;) ~ N[0.1,0.1;0.1%,0.1%, 0.005]
(B1, B, B3) = (—2,2,2).
i=1,...,200.

e For the joint norma the means, variances and co-

variance are respectively given. The implied squared

correlation between, andzs IS 0.25.
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o For the particular sample of 200 observations drawn
here

— sample mean aofis 0.21
— sample standard deviationpis 0.22.
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o For the exponential the conditional mean and variance

are

o |t fOllOwst

— OLS wit
— NLS wit

Ely|x|] = exp(81 + Bozo + B3x3)
Vlylx] = (Ely/x])”.
nat
N mears, + Boxg + Bsx3 IS INnConsistent.

N meanexp(5; + Boxo + PBaxs) IS consistent

but Is Ineficient with standard errors that should be
adjusted for heteroskedasticity.

— MLE is consistent and &€ient.
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Variable

OLS

ONE 0.14
(10.3)

xl 0.48
(3.2)

T2 0.20
(1.5)

R’ 08

E stimator
NLS

—1.84
(—15.0)

2.00
(2.6)
0.60
(0.9)
.09

MLE
—2.68
(—19.9)

3.23
(3.1)
1.27
(1.3)
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e The coefficients are relatively imprecisely estimated
for this sample with R? ~ 0.09.

e INn particular the slope parameters for NLS and MLE
are generally different from their theoretical values of
2.0.

o Though thisdifference is not statistically significant at
5% (t-ratios are given).
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