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INTRODUCTION

� The nonlinear regression model speci¿es
+� ' }E �c�f� n ��c � ' �c ���c ?c

� where
+ is a scalar dependent variable
 is a vector of explanatory variables
� is a & � � vector of parameters
}E�� is a speci¿ed function
� is an error term.
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� The nonlinear least squares (NLS) estimator e� mini-
mizes the sum of squared residuals.

� In the notation used heree� maximizes

'?E�� ' � �

2?
7?E�� ' � �

2?

?[
�'�

E+� � }E �c���
2c

where}E�� is a speci¿ed regression function.

� The scale factor�*2 cancels out in the¿rst-order
conditions, see below.
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� It is nonlinearity in � that is considered. If nonlinearity
is just in  can do OLS with transformed regressors.

� It is assumed that the errors are additive.
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EXAMPLES
� The exponential regression model

+ ' i TE 3�� n ��

Then Ed+m o is always positive, and effects of regressors
are multiplicative rather than additive.

� Exponential regression f.o.c.
Y
Y�

�
� �

2?

S?
�'�E+� � i TE 3����2

�
' f

, � �
2?

S?
�'�E�2�

�
Y
Y� i TE 3���

� �
+� � i TE 3���

�
' f

, �
?

S?
�'�  � i TE 

3
���

�
+� � i TE 3���

�
' f�

� Nonlinear in � so no explicit solution.
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� Other Examples

– Regressors raised to a power
+ ' q�%� n q2%

q�
2 n �

– Nonlinear functions from demand or production
analysis, such as Cobb-Douglas production

+ ' q�%
q2
� %

q�
2 n ��

– Nonlinear restrictions on parameters
+ ' q�%� n q2%2 n q�%� n �c q� ' �q2q��

– Error autoregressive of order one plus lagged depen-

6



dent variable
+| ' q�%| n q�+|�� n �|c �| ' 4�|�� n 0|c

where 0| is i.i.d. error, which implies
+| ' 4+|�� n q�%| n 4q�+|�� n 0|�
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MATRIX NOTATION
� It is often helpful to express the model in matrix

notation.

� We have 5997 +�
...
+?

6::8 '

5997 }�
...
}?

6::8 n

5997 ��
...
�?

6::8 ,

where }� ' }E �c���

� Or
) ' } n �

where
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)c } and � are ?� � vectors with �|� entries +�c }� and ��.

� Then the NLS estimator minimizes
7?E�� ' �3� ' E) � }�3E)� }�

� For '?E�� ' ��*2?� 7?E�� the ¿rst-order conditons are
Y'?E��

Y�
'

Y}3
Y�

E) � }�c

where

Y}3
Y�

'

5997
Y}�
Yq�

� � � Y}?
Yq&

... ...
Y}�
Yq&

� � � Y}?
Yq&

6::8
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DISTRIBUTION OF NLS

� The theory of extremum estimators applies directly.

� Objective function

'?E�� ' � �

2?
7?E�� ' � �

2?

?[
�'�

E+� � }E �c���
2�

� First-order conditions
Y'?E��

Y�
'

�

?

?[
�'�

Y}E �c��

Y�
E+� � }E �c��� ' f�

� That isY}E c��*Y� is orthogonal to the error.
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CONSISTENCY

� If the model is correctly speci¿ed
+� ' }E �c�f� n ���

� Then E+� � }E �c�f�� ' �� so

Y'?E��*Y�m�f
'

�

?

?[
�'�

Y}�*Y�m�f
� ���

� The informal condition for consistency is that
(
k
Y'?E��*Y�m�f

l
' f�

� This holds here if ( dEY}�*Y�����o ' f, i.e. if ( d��mjo ' f.
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� Thus consistency requires correct speci¿cation of the
mean and errors uncorrelated with the regressors.
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ASYMPTOTIC NORMALITY

� By Taylor series

s
?Ee� � �f� ' �

57��

2?

Y27?E��

Y�Y�3

�����
�n

68��

��s
2?

Y7?E��

Y�3
����
�f

� This will yield
s
?Ee� � �f�

_$ �E�f�
�� times 1 dfc�E�f�o.

� Need to ¿nd �E�f� and �E�f�.
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� Specializings
?Ee� � �f�

' �

597��

?

3EC ?[
�'�

Y}�
Y�

Y}�

Y�3 �
?[
�'�

Y2}�
Y�Y�3E+� � }��

������
�n

4FD
6:8
��

� �s
?

?[
�'�

Y}�
Y�3��

����
�f

�

� For �E�f�, the term
�
Y2}�*Y�Y�

3� drops out if ( d��mjo ' f.
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� For �E�f� note that
�s
?

?[
�'�

EY}�*Y����m�f

� has mean f if (d��mjo ' f and ¿nite variance matrix

�

?

57 ?[
�'�

?[
�'�

Y}�
Y�

Y}�

Y�3&RY
�
��c ��mj

�����
�f

68 �
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PROPOSITION

� Combining yields the following proposition is more
general than those presented in an introductory class.

� It permits errors to be heteroskedastic or serially
correlated.

� It does not allow the errors to be correlated with
regressors (see NL2SLS in this case).
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Proposition: Distribution of NLS Estimator. Make the
assumptions:
(i) The model is +� ' }E �c�f� n ���
(ii) In the dgp (d�m o ' f and Vd��3mjo ' lf, where
lfc�� ' /���
(iii) The mean function }E�� satis¿es }E c�E��� ' }E c�E2��

iff �E�� ' �E2��
(iv) The following matrix exists and is ¿nite nonsingular

�E�f� ' *�4 �
?(

�S?
�'�

Y}�
Y�

Y}�
Y�3

���
�f

�
' *�4 �

?(

�
Y}3
Y�

Y}
Y�3

���
�f

�
(
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(v) ?��*2S?
�'� Y}�*Y����mqf

_$ 1 dfc�E�f�o where

�E�f� ' *�4
�

?
(

57 ?[
�'�

?[
�'�

Y}�
Y�

Y}�

Y�3/��
����
�f

68 ' *�4
�

?
(

%
Y}3
Y�

lf
Y}

Y�3
����
�f

&
�

Then the NLS estimator e�1/6, de¿ned to be a root of the
¿rst-order conditionsY?��7?E��*Y� ' f, is consistent for
�f ands

?Ee�1/6 � �f�
_$ 1

k
fc�E�f�

���E�f��E�f�
��

l
�
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DISCUSSION

� The asymptotic distribution for e�1/6 is

1

57�fc

%
Y}3
Y�

Y}

Y�3
����
�f

&��
Y}3
Y�

lf
Y}

Y�3
����
�f

�����
�f

%
Y}3
Y�

Y}

Y�3
����
�f

&��
68 �

� Recall OLS estimator in linear model with het-
eroskedastic or correlated errorse�2/6

@� 1
k
�fc Ej

3j���j3lfjEj3j���
l
c

� Thus replacej in OLS variance formula byY}*Y�3��
�f

�

� SoNLS is OLS with regressors replaced byY}*Y�m�f
,

i.e. byY(d+m o*Y�m�f
.
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EXAMPLE: EXPONENTIAL REGRESSION

� Consider regression with exponential mean
+ ' i TE 3�� n ��

� Then
Y}E 3��*Y� 'Y i TE 3��*Y� 'i TE 3�� 

� The general result for heteroskedastic errors is

e�(;3
@� 1

5997�fc

�S?
�'�Ei TE 

3
��f��

2 � 
3
�

���

� �S?
�'� /��cfEi TE 

3
��f��

2 � 
3
�

�
� �S?

�'�Ei TE 
3
��f��

2 � 
3
�

���

6::8 �

� This depends on /��cf 'Vd��m �o which is unknown.
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VARIANCE MATRIX ESTIMATION

� Focus on variance matrix estimation when the errors
have heteroskedasticity of form unknown, or only
partially known.

� Then it is generally possible to adapt methods ¿rst
developed for OLS to obtain consistent estimators of
regression parameters and their variance matrix.

� Hence statistical inference is possible under weak
distributional assumptions.

21



ROADMAP
NLS

� Specify a functional form for l and consistently
estimate this. e.g. speci¿c form of heteroskedasticity.

� Do not specify a functional form for l. e.g. White.

Weighted NLS

� Feasible nonlinear GLS. Specify function for l. Do
fully ef¿cient estimation assuming this is correct.

� Weighted NLS with working matrix. This is feasible
nonlinear GLS but inference robust to misspeci¿ed l.
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SPECIFIED lf ' lE�f�

� One approach is to assume a functional form for the
variance matrix lf of the error term.

� Let
lf ' lE�f�c

where �f is a ¿nite-dimensional parameter vector and
lE�� is a?� ? matrix function.

� Then get a consistent estimatee� of �f, formlEe��, and
evaluate earlier asymptotic results atlEe�� ande�.
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� For heteroskedasticity specify 9d��m �o ' i TE33���, where
3� is composed of just a few key components of  �.

� Then

– NLS of + on }E c�� givese� and hencee��.
– NLS of e�2� on i TE33��� givese�.

– FormlEe�� ' 'LDJdi TE33�e��o�
� Evaluate variance matrices atlEe�� ande�.
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� For homoskedastic and uncorrelated errors get simple
introductory text result.

� Then lf ' j2fW.

� Simpli¿cation occurs as �E�f� ' j2f�E�f�,

e�1/6
@� 1

57�fc j
2
f

%
Y}3
Y�

Y}

Y�3
����
�f

&��
68 c

� j2f is consistently estimated by r2 ' ?��E) � e}�3E) � e}��
� Aside: NLS is then ef¿cient among estimators using

only the ¿rst two moments.
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UNSPECIFIED lf

� In practice the variance matrix of errors may be un-
known.

� Forheteroskedasticity of unknown functional form, the
error variance matrix islf ' 'LDJd(d�2� m �oo.

� Without further structure it is not possible to obtain a
consistent estimate oflf, since the number of entries
in lf equals the sample size?. As ? $ 4 the number
of error variances to estimate also goes to in¿nity.
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� White (1980a,b) gave conditions under which%
�

?

Y}3
Y�

����e� el Y}

Y�3
����e�
&

R$ *�4
�

?
(

57 ?[
�'�

Y}3
Y�

lf
Y}

Y�3
����
�f

68 c

for the obvious candidateel ' 'LDJdE+� � }E �c e���2oc
where e� is consistent for �f.

� This leads to White’s heteroskedastic-consistent esti-
mate of the variance matrix of the NLS estimatore9de�1/6o '

%
Y}3
Y�

����e� Y}

Y�3
����e�
&�� %

Y}3
Y�

����e� el Y}

Y�3
����e�
&%

Y}3
Y�

����e� Y}

Y�3
����e�
&��

�
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� This estimate works because it leads to a consistent
estimate e�E�f� of the ^ � ^ matrix �E�f�.

� Note that el is clearly not consistent for the ?�? matrix
lf since E+� � }E �c e���2 is not consistent for (d�2� m �o.

� Aside: Since e� is consistent, E+� � }E �c e���2 behaves
asymptotically as �2� ' E+� � }E �c�f��

2, a random vari-
able, not as its meanEd�2� m �o�
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EXAMPLE: EXPONENTIAL REGRESSION

� For the model with exponential mean and heteroskedas-
tic errorswe already have obtained

e�(;3
@� 1

5997�fc

�S?
�'�Ei TE 

3
��f��

2 � 
3
�

���
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��f��
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3
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3
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6::8 c

� A consistent estimate using White’s estimator replaces
�f by e� and/�� by e�2� , wheree�� ' +� � i TE 3�e��.
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FEASIBLE NONLINEAR GLS

� When the error variance matrix can be consistently
estimated, by specifying a functional form lE�� and
consistently estimating e�c one would actually go further
and implement feasible nonlinear GLS.

� The estimator e�)1/*/6 maximizes
'?E�� ' ��

?
E) � }�3lEe����E)� }��

� It can be shown that provided l ' lfE��

e�)1/*/6
@� 1

3C�fc

%
Y}3
Y�

����
�f

lE�f�
�� Y}

Y�3
����e�
&��

4D �
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WORKING MATRIX

� In practice a chosen functional form lE�� may be a
reasonable approximation for lf, certainly better than
the NLS implicit choice of lf ' j2fW.

� Start with a simple model for heteroskedasticity, such
as 9d��m �o ' i TE33��� where 3� is composed of just a few
key components of  � and do weighted NLS.

� Such simple assumed speci¿cation for the variance
matrix is called a working matrix.

� Present results robust to misspeci¿cation of lf
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WEIGHTED NONLINEAR LEAST SQUARES

� The weighted nonlinear least squares (WNLS) es-
timator e�:1/6 with symmetric weighting matrixeV
minimizes

'?E�� ' E) � }�3 eVE) � }��

� Here eV is the inverse of the working matrix:eV '

lEe����.

� AssumeVf ' T*�4 eV exists and is nonstochastic, in
addition to the usual assumptions for NLS.
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� Then

e�:1/6
@� 1

3EEEC�fc

�
Y}3
Y�

���
�f

Vf
Y}
Y�3

���
�f

��� �
Y}3
Y�

���
�f

VflfVf
Y}
Y�3

���
�f

�
�
Y}3
Y�

���
�f

Vf
Y}
Y�3

���
�f

���

�

4FFFD
� This result is essentially same as for linear WLS with
j replaced by Y}3*Y�

��
�f

.
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� Aside: Recall linear WLS. e�:/6 estimator minimizes
E)�j��3VE) �j��c

where V is an ?� ? symmetric weighting matrix.
Then e�:/6 ' Ej3Vj���j3V)

' Ej3Vj���j3Vdj�f n �o if ) ' j�f n ��

' �f n Ej3Vj���j3V�
@� 1

k
�fc Ej

3Vj���j3VlfVjEj3Vj���
l
�

if �mj � dfclfo.
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� For heteroskedasticity of unknown form we use White
(1980b) result using �� ' +� � }E 3�e�1:/6� to formel ' 'LDJde�2� o as estimate for lf.

� Note that we cannot go one step further and useeV ' el�� where el ' 'LDJde�2� o. Here T*�4 el ' 'LDJd�2� o

is stochastic and so to is Vf ' T*�4 el��, leading to
inconsistency.

� For estimation as ef¿cient as GLS without specifying
lf see semi-paramteric regression.
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EXAMPLE: EXPONENTIAL REGRESSION

� For model with exponential mean specify a working
model of heteroskedasticity.

� Specify Vd��m �o ' i TE33��� where 3� is a speci¿ed
function of  � such as selected subcomponents of  �.

� Then

– First estimatee� by NLS regression of+� on expE 3���.
– Then estimatee� by NLS regression ofE+� � }E �c e���2

on i TE33���.
– Finally calculateh/�� ' i TE33�h��.
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� Since eV ' 'LDJdh/��o the objective function
'?E�� ' E) � }�3 eVE) � }� simpli¿es and the weighted
NLS estimator e�:(;3 estimator minimizes

'?E+c�� '
?[
�'�

E+� � i TE 3����2
i TE33�h�� �

� This can clearly be minimized by usual NLS estimation
in the transformed regression of
+�* i TE3

3
�h���*2 on i TE 3���* i TE33�h���*2.

� Then letting /��cf 'Vd��m �o denote the true (unknown)
variance and /�� ' i TE3�c�� denote the assumed (work-
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ing) error variance

e�:(;3
@� 1

599997�fc

kS?
�'�

�
/��

Ei TE 3��f��
2 � 

3
�

l��

�
kS?

�'�
�
/��
/��cfEi TE 

3
��f��

2 � 
3
�

l
�
kS?

�'�
�
/��

Ei TE 3��f��
2 � 

3
�

l��

6::::8 c

� The variance matrix of e�:(;3 is estimated by replacing
�f by e�:(;3, /�� ' i TE3�c h��, and /��cf by e�2� , where e�� '
+� � i TE 3�e�:(;3�.

� This estimator is robust to misspeci¿cation of /��.
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� If one is prepared to do inference assuming that /��cf '
i TE33��� is correctly speci¿ed then the estimator is in
fact the feasible nonlinear GLS estimator.

� The preceding result simpli¿es (because /�� ' /��cf) to

e�:(;3
@� 1

597�fc

57 ?[
�'�

�

Ei TE33����
2
Ei TE 3��f��

2 � 
3
�

68��
6:8 �

� This estimator of the variance matrix is generally not
used as it is not robust to misspeci¿cation of /��.
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COEFFICIENT INTERPRETATION

� We are particularly interested in Y(d+m o*Y .

� For general regression function }E c�� it is customary
to present one of the following estimates.

– The response of the individual with average charac-
teristics:Y(d+m o*Y m7 .

– The average response of all individuals in the sample:S?
�'� Y(d+�m �o*Y �.

– The response of a representative individual with
characteristics '  �: Y(d+m o*Y m �. e.g. a female
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with twelve years of schooling etc.

� In the linear regression model, (d+m o '  3� , Y(d+m o*Y '�

so these three measures are all the same.

� For nonlinear regression models, however, these three
measures differ.
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SINGLE-INDEX MODEL

� For general }E c�� the coef¿cients � are dif¿cult to
interpret.

� Interpretation possible for single-index model
(d+m o ' }E 3���

� Then nonlinearity is of the mild form that the mean
is a nonlinear function of a linear combination of the
regressors and parameters.
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� For single-index model
Y(d+m o
Y%�

'
Y}E 3��

Y�
��c

� Therelative effectsof changes in regressors are given
by the ratio of the coef¿cients since

Y(d+m o*Y%�
Y(d+m o*Y%&

'
q�
q&

�

� And for }E�� monotonic it follows that thesignsof the
coef¿cients give the signs of the effects.

� Single index models are particularly advantageous due
to their simple interpretation.
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EXAMPLE: EXPONENTIAL REGRESSION

� Then (d+m o ' i TE 3��.
� This is a single-index model.

� Thus if, say,eq� ' f�e andeq& ' f�H the impact on(d+m o of
a one unit change in the&|� regressor is twice that of a
one-unit change in the�|� regressor.

� FurthermoreY(d+m o*Y 'i TE 3��� � ' ,d+m o� ��

� So the parameters can be interpreted as semi-elasticities.

� Thuseq� ' f�e implies that a one unit increase in the�|�

regressor leads to a 40% increase in(d+m o.
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DATA EXAMPLE: EXPONENTIAL REGRESSION

+ � exponentialEi TEk n q%n �5��

%c 5 correlated normal
R-squared' .2 for regression

Point and interval estimates.
Misspeci¿ed variables.
Omitted variables.
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TIME SERIES

� Preceding cross-section results can be adapted to
nonlinear time series

+| ' }E%|c��n�|c | ' �c ���c A�

� There are several ways to proceed depending on
whether or not

– regressors%| include lagged values of+, such as+|��

– �| is serially correlated.
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� If �| is serially correlated use ARMA error model
�| ' 4��|�� n � � � n 4R�|�R n 0| n k�0|�� n � � � n k^0|�^c

where 0| is iid with mean f and variance j2.
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TIME SERIES METHODS

� 1. Include in the regressors suf¿cient lags of + that the
error is serially uncorrelated.
Do NLS with i.i.d. errors.
Simplest NLS results for iid error apply.

� 2. Specify ARMA model for correlated errors. Regres-
sors that may or may not include lags of+.
Do nonlinear GLS.
In simplest case of AR errors can estimate� and� by
using Cochrane-Orcutt transformation to obtain model
with i.i.d. error, and estimate this transformed model
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by nonlinear GLS.

� 3. Do not include lags of + as regressors and let error
be serially correlated.
Do NLS even though the error is serially correlated.
Fet adjusted standard errors that are correct in presence
of serial correlation. This is the analog of White.

� Aside: A fourth possible approach gives inconsistent
estimates. Include lags of + and do NLS with error
that is serially correlated. Then  | and �| are correlated
violating the assumption that (d�m o ' f.
Instead the second approach needs to be taken.

49



TIME SERIES: UNSPECIFIED l

� White and Domowitz (1984) considered heteroskedas-
ticity and serial correlation of unknown functional
form.

� Restrict serial correlation to at most lag length, periods.
Also allow heteroskedasticity.
Then

lfcr| ' (d�|�ro mr� |m � ,

' f mr� |m : ,�
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� Then one can use the general result for NLS with el
that has r||� entryelr| ' e�re�| mr� |m � ,

' f mr� |m : ,c

where e�| ' +| � }E |c e�� is the NLS residual.

� Then e9de�1/6o is that given earlier where the consistent
estimate of �E�f� is

e�E�f� '
�

?

57 ?[
|'�

Y}|
Y�

Y}|
Y�3

����e� e�2| n ,[
�'�

?[
|'�n�

Y}|
Y�

Y}|��

Y�3
����e� e�|e�|��

68 �
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� Again this estimates works because it leads to a con-
sistent estimate of thê� ^ matrix�E�f�, even thoughel is not consistent for the?� ? matrixlf.

� This general result specializes to results for het-
eroskedasticity and for serial correlation.
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EXAMPLE: EXPONENTIAL REGRESSION

� Dgp is an exponential density with exponential mean.
+�m � � exponentialEi TEq� n q2%2� n q�%����

E%2�c %��� � 1df��c f��( f��2c f��2c f�ffDo

Eq�c q2c q�� ' E�2c 2c 2��

� ' �c ���c 2ff�

� For the joint normal the means, variances and co-
variance are respectively given. The implied squared
correlation between%2 and%� is f�2D.
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� For the particular sample of 2ff observations drawn
here

– sample mean of+ is 0.21

– sample standard deviation of+ is 0.22.
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� For the exponential the conditional mean and variance
are

(d+m o ' i TEq� n q2%2 n q�%��

9d+m o ' E(d+m o�2 �
� It follows that

– OLS with meanq� n q2%2 n q�%� is inconsistent.

– NLS with meani TEq� n q2%2 n q�%�� is consistent
but is inef¿cient with standard errors that should be
adjusted for heteroskedasticity.

– MLE is consistent and ef¿cient.
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�u7 �u7 �u.

��. f��e ���He �2�SH

E�f��� E��D�f� E��b�b�

%� f�eH 2�ff ��2�

E��2� E2�S� E����

%2 f�2f f�Sf ��2.

E��D� Ef�b� E����

-2 �fH �fb
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� The coef¿cients are relatively imprecisely estimated
for this sample with -2 * f�fb.

� In particular the slope parameters for NLS and MLE
are generally different from their theoretical values of
2�f.

� Though this difference is not statistically signi¿cant at
DI (t-ratios are given).
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