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INTRODUCTION

e Data on y Is censored If for part of the range of y
we observe only that 4 Is in that range, rather than
observing the exact value of .

e.g. income istop-coded at $75,000 per year.

o Data ony Is truncatedf for part of the range of, we
do not observe at all.
e.g. people with income above $75,000 per year are
excluded from the sample.



o Meaningful policy analysis requires extrapolation from
the restricted sample to the population as a whole.

e But running regressions on censored or truncated data,
without controlling for censoring or truncation, leads
to Inconsistent parameter estimates.



o We focus on the normal, with censoring or truncation
a zero.
e.g. annual hours worked, and annual expenditure on
automobiles.

e The class of models presented in this chapter is called
limited dependent variable models or latent variable
models. Econometricians also use the terminology
tobit models or generalized tobit models.



o Censoring can arise for distributions other than the
normal.

e FOr e.g. count data treatment is similar to here except
different distributions.

o For duration data, e.g. the length of a spell of unem-
ployment, aseparate treatment of censoriiscgiven
there due to different censoring mechanism (random)
to that considered here.



OUTLINE
o Tobit model: MLE, NLS and Heckman 2-step.
o Sample selectivity model, a generalization of Tobit.

e Semiparametric estimation.
e Structural economic models for censored choice.

e Simultaneous equation models.



TOBIT MODEL

o INnterest liesin alatent dependent variable y*
v  =x'B+e¢.
e Thisvariableisonly partially observed.
e IN censored regression we observe
y* 1f y* >0

a { 0 if y* <.
e INtruncated regression we observe

y=vy* Ify*>0.



o The standard estimators require stochastic assumptions
about the distribution of ¢ and hence y*.

e The Tobit model assumes normality:
e ~ N[0,0%] = y* ~ Nx'8, 07



SIMULATION EXAMPLE
e Linear-log relationship between

— h : annual hours worked, and
— w : hourly wage.
o Data on desired hours of work:, generated by
hf = —2500 +1000Inw; +¢;, i=1,...,250,
e; ~ N[0, 10007,
Inw; = 1.51,1.52,...,4.00 = w; >~ 4.5,,...,55.

e The wage elasticity equalsoo/r* .
e.g.0.5 for full-time work (2000 hours).



o Peoplework if »* > 0 = about 40% do not work.
o We consider three different OL S regressions

— Uncensored sample: regresson in w.
(In practice such data are not observed)

— Censored sample: regress max(0, h*) ONlnw.

— Truncated sample: regresson lnw, where only
observations with* > 0 are included.

e Results are presented in Table 10.1.
e Clearly 2. and 3. are inconsistent.
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Variable

ONE

Inw

R2

Sample
Uncensored Censored Truncated
-2636 -082 -382
(256) (174) (297)
1043 587 AT7
(90) (61) (95)
.35 27 15

Observations 250 250 148
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e For the censored sample:

— Negative values af* have been increased to zero.

— This Increases the intercept afidttens regression
line.

e For thetruncated sample

— Observations witla < 0 dropped more than those
with ¢ > 0, sinces < 0 more likely to lead ta.* < 0.

— The mean of the error Is shifted up for lew

— This increases the intercept afidttens regression
line.
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e For censored and truncated data, linear regression is
Inappropriate.
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TRUNCATED CASE: CONDITIONAL MEAN

e For truncated data we observed y only when y > 0.
¢ Then the truncated mean Is

Elyly > 0]

:E[X’B+6\X’B+6>O] &Sy=x'8+c¢

=x'B8+E [¢e|e > —X/3] as x and ¢ independent
=x/'B8+ 0k [(¢/o)le/o > —X/(B/0)] transform to /o ~ N0, 1]
=x'B+o) (X'8/0) key result for Njo, 1].

o \(2)=¢(2)/P(2) IScaled the inverse Millsratio.
e Theregression function is nonlinear.
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e For consstent estimatesuse NLS or MLE, not OLS.
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ASIDE: INVERSE MILLSRATIO

o Consider » ~ N[0, 1], with density ¢(z) and cdf &(z).
e The conditional density of z|z > cI1S¢(2)/(1 — @ (c)).
o Thetruncated conditional meanis

Elz|z > c] = /:O 2(¢(2)/(1 — @(c))) dz
- /:O 2= exp(—377) CZZ/(1 — ®(0))
= [~ Aew(-43)] /(1 - @)
0 e
N 1—P(c) _CID(—C) = Al
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CENSORED CASE: CONDITIONAL MEAN

e FOr censored data we observe y = 0 If y* < 0 and
y = y*otherwise,
o The censored sample mean is

Ely] = Ey[Elyly”]
= Pr[y < 0] x 0+ Prly™ > 0] x E[y*|y*" > 0]

o s 20

_9(x
"o
= O(X'B)X'B+0¢ (x'B/0),
which is again nonlinear.

e For consstent estimates use NLS or MLE, not OLS.
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MLE FOR CENSORED DATA

o Let y* have density £*(y*) and c.d.f. F(y*).

o Consider censored y = max(y*,0).
e Thedensity for y is
—y >0l y=9y"S0f(y) = f*(v)
—y =00y <0S0f(0) =Prly" <0] = F*0).
o Defineindicator
1ify>0

d{OifyO.
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e Thedensity isthen
fly) = )" x F*0)'~¢
o Thelog-likelihood function is

n

InL =Y {dilnf*(yf,x;,0) + (1 — d;) n F*(0,x;,6)}
1=1
e This Is amixture of discrete and continuous densities
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CENSORED MLE FOR NORMAL

e For normal regression for notational convenience we
transform from f(y) the N[x'3, ¢%] dendity to ¢(z) the
N[0, 1] density.

o FOry >0
fly) = )
= (1/\/ 2mo ) X exp( —X/,8)2/202)
=~ 6 ((y-xB)/0).
where ¢(z) = (1/v/2r) exp (—22/2) iSNJ0, 1] density.
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o FOry =0
f(0) = Prly = 0]
= Prly" < 0]
= Pr[x/B +¢ < 0]
= Prle/o < —X'3/0]
= (_X/B/O-) )
where @(z) ISN|0, 1] c.d.f.
e Thus
1 d

flo)= |~ ¢ (v -XB)/o)| x [o(-—xB/o)

1—d
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e Thelog-likelihood function
nLB,o?) = {di In %gb (yz X ) +(1—d)nd (xgﬁ/g)} .

. 0)
1=1
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ASYMPTOTIC THEORY

e Tobin (1958) proposed the Tobit MLE.

o He asserted that usual ML theory applied, despite the
strange continuous/discrete hybrid density.

o« Amemiya (1973) provided a formal proof that usual
ML theory applies, with appendix that detailed the
extremum estimation approach that is now standard in
econometrics.
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o If density Is correctly specified the usual ML theory

yields after some al gebra
ﬂML B

a
SN 5|
UML

O

where defini ng o = ﬂ/a cbz =
¢7

1

11

Zazxz / Zbixg
Shixl Y _ 7
s(x;B) and @; = o(x/3),

a; = —ﬁxianbiJrl_q).—CDi
(]
1 X’-Oz><gb2
by = ——5(xj00)” x & + oy — ———
(]
1, .3 p X()z><gb2
c; = —p(xi(x) X ¢; + X0 X P — 1_@/ 20, .
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MLE FOR TRUNCATED DATA

o For truncated data only 4* > 0 observed.
e The conditional density is
Wy > 0)=fy")/ Prly*ly” > 0
= f(y")/F(0).
. Thelog-likelihood IS then

InL = Z{ln (yF,%x;,0) —In F*(0,%;,0)} .
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e For the normal thisleadsto

nL(8, o )Z{lnigb( 0'5> mg@((’jﬁ)}
1=1




NLS
e Estimate using the correct censored or truncated mean.
o Recall the censored and truncated means
Elyly > 0] = x'B+oA(x'B/o)
Ely] = X'Bx (X'B/0) + 06 (X B/o), >0
e Do NLS on these, where also control for heteroskedas-
ticity asViy|y > 0] # o2 andV[y] # o°.
o Consistency requires the nonlinear functi@fgy > 0]
or E[y] are correctly spefied.
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e This requires strong distributional assumptions on
underlying v*.

o Any departure leadsto different conditional mean func-
tions and hence inconsistency of the NLS estimators.
e.g. a heteroskedastic error rather than a homoskedast
error.

o Similarly for the MLE.
e This lack of robustness has led to much research.

28



HECKMAN TWO-STEP ESTIMATOR

o Heckman (1976, 1979) proposed estimation of the
censored normal regression model by a 2-step method
rather than NLS.

o Recall from that for positive

Elyly > 0] =x'B+ o\ (—X’B/a) ,
where(z) = ¢(z)/®(z) IS the inverse Mills ratio.

o Heckman noted that inconsistency of OLSyain x IS
due toomission of the regressar—x'3/o).

e He proposed including(—x'3/s) as a regressor.
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o The Heckman’s two-step procedurss:

— Using censored data, estimatsbit modelfor
whethery; > 0 or y; < 0 with regressors;.
That Is, estimate In

Prlyf > 0] = &(—xia), Wherea =pg/o.
Calculate the inverse Mills ratigxa) = ¢(xia)/?(x[e).
— Using truncated data, estimateandos In OLS
regression
i = X0 + o\x.a) + vj, y; > 0.
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o Advantages.

— Consistent estimates using only probit and OLS.
— Generalizes to permit weaker assumptions.

o Disadvantages:

— Usual OLS reported standard errors are incorrect.

— Formulae for correct standard errors take account of
two complications in the OLS regression:

— 1. Even witha known the error is heteroskedastic.
— 2. Two-step estimator with replaced by an estimate.
— These corrections are complex.
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DISCUSSION OF HECKMAN 2-STEP

o Aside: Note that the first-step probit only estimates
up to scale. Normally in probit we would have already
normalizedr = 1. For Tobit the error variance is instead
o and probit gives estimates af= 3/o.

o Variations to the second step use censored not truncate
regression and allow for heteroskedasticity.

o For simplest Tobit model there is little advantage to
using Heckman two-step rather than NLS or the MLE.

o Advantage Is In extension to more general models.
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COEFFICIENT INTERPRETATION

o INnterested in how the conditional mean of dependent
variable changes as the regressors change.

e This varies according to whether we consider the
uncensored mean, censored mean or truncated mean.

e Thusfor hours worked consider effect of achangein a
regressor on
— desired hours of work,
— actual hours of work for workers and nonworkers
— actual hours of work for workers.
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—or the standard tobit model we obtain
~0r uncensored mean
Ely*|x] = x'B
OE[y*|x]/0x = 3
—or censored mean (y = max(0, y*))
Elylx] = d(x'a){x'B + oA(X )}

OE[y|x]/0x = d(x')3

For truncated mean(only y > 0)
Ely|x] = X'B+ c\xX )

OE[y|x]/0x = {1 — (Xa)\x'a) — A\x )13
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wherewe use a = 3/0, A\(z) = ¢(2)/P(2), 0P(2)/0z = ¢(2)
and 0¢(z)/0z = —zd(2).

e The censored mean expression Is obtained after some
manipulation. It can be decomposed into two effects

(onefor y = 0 and one for y > 0). See McDonald and
Moffitt (1980).
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SAMPLE SELECTIVITY MODEL

e Most common generalization of the standard tobit
model Isthe sample selection or self-selectionmodel.

e This Is atwo-part model

— 1. A latent variable; that determines whether or not
the process of interest Is fully observed.

— 2. A latent variable: that is of intrinsic interst.
o Classic example is labor supply

— y} determines whether or not to work and
— y5 determines hours of work.
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o Complication arises as the unobserved components of
these two processes are correl ated (after controlling for
regressors).
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e Thetwo latent variables are determined as follows
yl = x181+e1
Y3 = x5 + &2,
o Neither yi nor y4 are completely observed.
o Instead we observe whether 47 Is positive or negative
1If y; >0
TV 0ifyr <o,
and only positive values of

R If y7 >0
2700 ifyr <o
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 The error terms are usually specified to be joint normal

2
€1 ~ N 0 | o 0122
€9 0 12 05
e FOr identification there mast be at least one variable

Included 1n x5 that 1s not included in x;, or that o5 = 0.

e Aside: In labor supply extra complication that even
If we observe individuals with 0 hours, for these non-
workers we typically are missing data on the offered
wage, a key explanatory variable. This complication
can be handled by adding a third equation for the
offered wage. See e.g. Mroz (1987).
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MLE IN SAMPLE SELECTIVITY MODEL

"he MLE maximizes the log-likelihood function.
"his Is based onthe jointdensity, , v2) = f(yo ly1) f(y1).

ne densityf(ys ly1 = 1) = f* (w2 |y > 0) by déinition.
NUSF(L,y2) = f*(y2|y] > 0) X Prly;™> 0]

ne densityf(y,|y; = 0) places probability on the

valuey, = 0 and probabilityo on any other value since
y, always equals wheny; = 1.

Thus£(0,v21) = f(y2ly1 = 0)f(y1 = 0) = Prly; < 0].
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o Thenl Ikelthood function is

1—wyq; i
L = TTPelwts < 012 { Flami] vy > 0) x Prlyy™> 0]},
1=1

o When the bivariate density is normal, the conditional
density in the second term is univariate normal and the
problem is not too intractable.
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HECKMAN 2-STEP: JONT NORMALITY

e Most studies use Heckman’s method rather than ML.

o If the errors(cy, s9) In are joint normal then

012
622—281—|—v,
0

1
wherev Is independent of;.
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o Aside: This follows from the more general result that
for

Z1l N 211 212

o lz2| |[[H2] | 221 229 |
the conditional distribution is
70|21 ~ N |po + S0 211 (z1 — 1), Do — D01 57 Do -

o Thuszy = py + Z2121_11(Z1 — )
plus a zero mean normal error independent of z;.
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e Then
E[yoly] > 0] = E[x582 + 2|x] 81 + 1 > 0]
= x5y + E[ea|e1 > —x! 8]
— X/2,32 +E [(012/0%) X €1+ vle] > —X’1,31]
= x48; + (012/07) X E[ei1ler > —x/ 8]

/
% £1,€ x, 3
:X/Q/BQ‘I_ 0_112E [ 1| 1 > . 1] ’

g1 01 01

where the third equality uses earlier result.



o Thisleadsto the key result that
Elyaly] > 0] = x58, + (;—112 x A (x1;81/01)
where \(c) = ¢(c)/®(c) using earlier result.
o Clearly OLS of y, on x, will lead to an inconsi stent

estimate of 3 since the regressor \(x}3;/71), IS omitted
from the equation.

o Heckman'’s solution Is to obtain an estimate of this
omitted term, and include it in the OLS regression.
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o The Heckman’s two-step procedurss:

— Using censored data, estimatsbit modelfor
whethery;; > 0 or y;; < 0 With regressors;.
That Is, estimate; In
Prlyf; > 0] = &(—x;a1), Wherea; = 3;/01.
Calculate the inverse Mills ratigx),a;) = ¢(x},a1)/®(x};c

— Using truncated data ap, estimate3, andos In OLS
regression

yoi = Xo;30 + (012/01)AN(X];01) + vy, yo; > 0.

e As In the classic Tobit model the resulting estimators
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of 3, are consistent, inefficient and it IS cumbersome to
construct the variance covariance matrix of OLS.
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HECKMAN 2-STEP: WEAKER ASSUMPTIONS

o The Heckman two-step method relies omeaker distri-
butional assumptiornthan the MLE.

o The MLE requires joint normality of; andes.

e The Heckman 2-step estimator requires the weaker
assumption that

g9 = 01+,

wherev Is independent of; ands; Is normally dis-
tributed.

e In the case of purchase of a durable good, this says
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that the error in the amount purhased eguation is a
multiple of the error in the purchase decision equation,

plus some noise where the noise is independent of the
purchase decision.

o Given this assumption we obtain
Elyoly] > 0] = x985 + 6E[eq|e) > —x7131].
o Heckman’s two-step method can be adapted to
— distributions fors; other than normal

— semiparametric methods which do not impose a
functional form forgfe;|e; > —x|31].
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COEFFICIENT INTERPRETATION
e Agan interested in how the conditional mean of

dependent variable changes as the regressors change.

e This varies according to whether we consider the

uncensored mean, censored mean or truncated mean.
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e FOr uncensored mean
E[y5]x] = x589
OF|y5|x2]/0x9 = B9
e [FOr censored mean
Elyalyy > 0,%] = x'By + (012/07)ANX'B1/01)]
OE[yoly} > 0,x]/0x = (B1/01)d(x)B1/01)[x B + (012/07)MNX'B1 /o1
+0(x/B1/01)[By + (012/07)ONX By /1) /0x]
e FOr truncated mean...
Elyoly > 0,x] = x/Bo + (012/01)AX'B1/01)
OE[yaly} > 0,x]/0x = x+(012/07)ONX By /01) /0x].
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SEMIPARAMETRIC ESTIMATION
o Consistency of all the above estimators requires correct
specification of the error distribution.

o Any misspecification of the error distribution leads to
Inconsistency e.g. fallure of normality.

e S0 preferable to have an estimator that does not require
specification of the distribution of the error.

o A number of semiparametric estimators that do not
require distribution of the error distribution have been

proposed.
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e For the standard tobit model this has been done.

o Unfortunately, this model is often too smple and the
generalized tobit model needs to be used. Then there
are fewer results on semiparametric estimators.

o A recent application for the sample selectivity model 1s
given in Newey, Powell and Walker (1990).

e Thisisamajor area of current research by theoretical
econometricians.

o These often use Heckman's two-step framework.
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MIXED DISCRETE/CONTINUOUSMODELS

o Hanemann (1984) and Dubin and McFadden (1984)
develop models from economic theory of utility maxi-
mization.
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SIMULTANEOUSEQUATIONS TOBIT MODELS

o An example isthe generalized tobit model, with latent
variables

yi = X181 + Y3 + 1y + €
Y5 = XofBo + anyl + Yoy + €2
o This has the added complication that regressors in the
first equation include y4 or v, and ssmilarly y; or y; In
the second egquation. ldentification conditions will of
course not permit all of these variables to be included.
o Treatment of simultaneity in these models is very
difficult.
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o Often very ingenious methods allow estimation using
just regular probit, tobit and OL S commands.

o But getting the associated standard errors of estimators
IS very difficult.

e The simplest modd has as right-hand side endogenous
variables only the latent variablgsor ;.

o We can then obtain a reduced form fgrandy;, in
exactly the same way as regular linear simultaneous
equations, and do tobit estimation on this reduced
form.

o Estimators for this case are given in Nelson and Olson
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(1978), Amemiya(1979), and Lee (1981).
o Treatment is much more difficult when right-hand side
endogenous variables are the observed variables
Y1
e See Heckman (1978) and Blundell and Smith (1989).
o Simultaneity in tobit (and probit) models can generally

be handled, but can require a considerable degree of
econometric sophistication.

o If possible, specify the models such that the simultane-
Ity Is due to the latent variables and not the observed
variables.
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APPLICATION: LABOR SUPPLY

o Use dataof Mroz (1987) on 753 married women from
the 1976 Panel Survey of Income Dynamics (PSID).

o Dependent variable HOURS Is annual hours worked in
previous year. For this sample there is a bunching or
censoring at zero since 225 (or 43%) had zero hours.
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e Theregressors are a constant term and

1. KL6: Number of children lessthan six

2. K618: Number of children more than six

3. AGE: Age

4. ED: Education (years of schooling completed)

5. NLINCOME: annua nonlabor income of wife mea
sured in $10,000's.
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Variable Coeff t-stat
COLS TOLS Tobit COLS TOLS Tobit

ONE 1346 2118 1111 4.7 6.2 2.3
KL6 —504 =341 —-1060 —-79 —-34 —84
K618 —82 —114 —-106 —3.3 —=3.7 =25
AGE —20 -8 =36 —44 —14 47
ED br =16 127 4.1 —-1.0 =54
NLINCOME —-104 —43 —-220 —1.2 —44 —45
n 753 428 753 753 428 753
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o Estimates from censored OLS (COLYS), truncated OL S
(TOLS) and censored tobit (tobit) with associated
t-ratios are presented in the table.

o As observed earlier, both censoring and truncation
flatten the slope cogtients.

e The truncated regression suggests that some variable
such as AGE, ED and NLINCOME may have more
Impact on the decision whether to work or not than an
actual hours of work.
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ASYMPTOTIC THEORY FOR HECKMANSS 2-
STEP METHOD

o Two different methods, which give the same result, are
presented.

— One method Is spdit to least squares type estima-
tors.

— The second method is a general method for any 2-
step estimator, including those for highly nonlinear
models.

o We wish to estimate the parameters (3,0) In the
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equation

yi = XiB + oA(x;a) + 1,
where n; = y; — x/8 — oA(x,a) 1S heteroskedastic with
variance o, defined in ?? The first step of the two-step
procedure Is to obtain an estimatef the unknown
paramete. The second step Is to estimate by OLS
the model

vi = X8 + oA(xj@t) + v,
where

v = + o(AX&) — A(xjar))
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e First method of proof.

o Rewrite the second-step model as
Y; = V?/',ZH + V;
wherew; = (x;, A(x/@)), Or In matrix notation
Yy = W0 + v.
e By the usual techniques the OLS estima#or
o~ —1 —~
(W’W) W'y can be re-expressed as

~ ~,—~\ —1 ~
V(0 — ) = (n_1W’W) nV2Wy.
e NOW plim n~'W'W = lim n'W'W, wherew’ = (x/, \(xa))'.
e The hard part is to obtain the limit distribution of
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n~1/2Wv . By afirst-order Taylor series expansion the
error term:
O\

Vg =1t a,(a—a)
which is both heteroskedastic wiaand potentially
correlated via the second term. It is obvious that
v; asymptotically has zero mean. It can be shown
that thefirst and second terms on the right-hand are
asymptotically uncorrelated, and we just consider the

two terms In i1solation .
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o |t follows that
nV2Woy 4 N [o, lim n " "WE[n/|W + limn \WDV o DW

where D has it row D; = 9),;/0a and & is asymptoti-
cally N[a, V.
o Combining these results gives the Heckman two-step
estimator
0 LN, Vp),
whereVvy Is consistently estimated by

AN TN S,

Vg = (WW)~ (W’ZAW + W DV,DW)(WW)!
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where W'w = Z W, W/, WD = Z wd;, d; = ON(xia) /da |5
1=1 =1
and 3 is adiagonal matrix with ;% entry &

e This estimate Is straightforward to obtain |f matrix
commands are available. The hardest part can be
analytically obtaining o7 = Vn,] .

o If thisisdifficult wecan mstead Uses? = (y; — x/B + o )i(xia
following the approach of White (1980).
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o Second method of proof isto write the normal equa
tions for the two parts of the two-step estimator as

n

2

1=1

where thefirst eo

Xq

A

n
Y g(xj,a) =0
i=1

(y; — x;8+ N(x;a)0) = 0,

uation Is théirst-order conditions

for o and the second equation gives Ofifst-order
conditions forg.
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o These eguations can be combined as
> alx;,7) =0,

1=1
where~ = (o/, 3')'.
o By the usual first-order Taylor series expansion
e L s

N oq(x;, ik oq(x;,
FEN (v | Y ((372,7) > alxpvaxi) | | q(a,; 7
1=1 1=1 1=1

o We are interested in the sub-component correspondin
to 3.
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o Simplification occurs because dq(x;,~)/0~ 1S block
triangular because 3 does not appear in the first set of
equations. Newey (1984) gives the ssimpler formulae
for this case.

o Applying it to the example here will give the result
given earlier. Related papers are Pagan (1986) and
Murphy and Topel (1985).
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