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Introduction

Introduction

@ These slides are for a literature survey in preparation

> so they are lengthy
> in this talk | will cover some key points.
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Introduction

Cluster error correlation

Cluster error correlation

> errors are correlated within cluster (or group)
» and independent across clusters

* in the simplest case of one-way clustering.

Many (most?) microeconometrics studies have clustered errors.

Erroneously assuming error independence can lead to wildly
under-estimated standard errors

> e.g. one-third of correct standard error.

The standard cluster-robust inference methods

> are valid asymptotically
> but in very many applications the asymptotics have not kicked in

* tests over-reject and confidence intervals undercover
* called the “few clusters” problem but can occur with many clusters.
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Introduction

Basic References

@ Surveys are

» A. Colin Cameron and Douglas L. Miller (2015), “A Practitioner's
Guide to Robust Inference with Clustered Data,” Journal of Human
Resources, Spring 2015, Vol.50(2), pp.317-373.

» James G. MacKinnon, Morten @. Nielsen, and Matthew D. Webb
(2022), “Cluster-robust inference: A guide to empirical practice”,
Journal of Econometrics, in-press.

@ Recent texts place more emphasis on cluster-robust methods

> Bruce E. Hansen (2022), Econometrics, Princeton University Press.
> A. Colin Cameron and Pravin K. Trivedi (2022), Microeconometrics
using Stata, Second edition, Stata Press.
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Outline

@ Leading Examples

@ Basics of Cluster-Robust Inference for OLS
© Better Cluster-Robust Inference for OLS
@ Beyond One-way Clustering

© Estimators other than OLS

@ Conclusion
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NG SETEEN  Example 1: Individuals in Cluster (“Moulton setting")

1. Example 1: Individuals in Cluster

e Example: How do job injury rates effect wages? Hersch (1998).

» CPS individual data on male wages.
» But there is no individual data on job injury rate.
> Instead aggregated data on occupation injury rates 211

@ OLS estimate model for individual i in occupation g
Yig = "‘+X§gﬁ+7 X Zg + Uig.

@ Problem:

> the regressor zg (job injury risk in occupation g) is perfectly correlated
within cluster (occupation)

* by construction
> and the error ujg is (mildly) correlated within cluster

* if model overpredicts for one person in occupation g it is likely to
overpredict for others in occupation g.
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NG SETEEN  Example 1: Individuals in Cluster (“Moulton setting")

@ Simpler model, nine occupations, N = 1498.

@ Summary statistics

ooo0variable |00000000bsOO0000O0OMean0000Std.ODev.0000000Min00000000Max

000000000 lnw | 000000149800002.45519900000.5596540001.1394340004.382027
Do000occrate |000000149800003.20827400002.9901790000.46177300010.78546
0ooooOpotexp |(0000001498000019.91288000011.2233200000000000000000053.5
D0DOpotexpsq |(00000014980000522.40170000516.90580000000000000002862.25
00000000educ |0000001498000012.9729600002.3520560000000000300000000020

0000000union |[00000014980000.13217620000.33879540000000000000000000001
000Ononwhite |[00000014980000.10080110000.30116570000000000000000000001
0ooo0Onorthe |00000014980000.25033380000.43334990000000000000000000001
0pooooooomidw |00000014980000.26835780000.44325280000000000000000000001
00poo000Owest |(00000014980000.208945300000.4066910000000000000000000001

000000occ_id |000000149800000182.506000099.743370000000006300000000343
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NG SETEEN  Example 1: Individuals in Cluster (“Moulton setting")

@ Same OLS regression with different se's estimated using Stata

> (1) i.i.d. errors, (2) het errors, (3,4) clustered errors

global covars potexp potexpsq educ union nonwhite northe midw west

regress Inw occrate $covars

estimates store one__iid

regress Inw occrate $covars, vce(robust)

estimates store one_het

regress Inw occrate $covars, vee(cluster occ_id)

estimates store one_ clu

xtset occ_id

xtreg Inw occrate $covars, pa corr(ind) vce(robust)

estimates store one_ xtclu

estimates table one_iid one het one clu one_xtclu, ///
b(%10.4f) se(%10.4f) p(%10.3f) stats(N N _clust rank F)
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SN RTINS NSNS  Example 1: Individuals in Cluster (“Moulton setting")

@ Same OLS coefficients but

> cluster-robust standard errors (columns 3 and 4) when cluster on
occupation are 2-4 times larger than default (column 1) or
heteroskedastic-robust (column 2)

» and some p-values in the last two columns differ substantially: ¢(8)
(column 3) versus N(0,1) (column 4)

goo0variable |O0one_iid000000Oone_het000000one_clubO0d0Oone_xtclu

go0bb00occrate

noooooopotexp

JoOo0potexpsq

gooooooDeduc

goooo0Ounion

0pooo0.0448
00oo0o0.0044
0oooooo0.000
0oooo0.0420
0poooo.0039
0ooooop0.000
0oooo0.0006
oooooo0.0001
0pooooo.000
00oo0o0.0840
0oooo0.0055
0oooooo0.000
0oooo0.2557
00ooo0.0362
0ooooono0.000
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0oooo0.0448
00oo0o0.0044
0ooooono0.000
0oooo0.0420
0ooooo0.0037
0poooop0.000
0oooo0.0006
oooooo0.0001
0ooooono.000
0oooo0.0840
0oooo0.0065
0ooooono.000
0oooo0.2557
0oooo0.0336
0ooooono0.000

000000.0448
0ooooo0.0164
0ooooon0.026
00oooo00.0420
0ooono0.0073
0ooooon0.000
0oooo0.0006
0ooooo0.0001
0oooooo0.000
0oooo0.0840
0oooo00.0175
0ooooono.001
0oooo0.2557
00o0o00.0892
0ooooono0.021
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0ooooo0.004
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NG SETEEN  Example 1: Individuals in Cluster (“Moulton setting")

@ And cluster-robust variance matrix is rank deficient

gooononwhite

gooooOnorthe

gooooooomidw

gopooO0O0oO0Owest

ooopopooo_cons

0oooo0.1057
0oooo0.0391
0ooooono0.007
000000.0501
00o0o00.0326
0oooopo0.125
0oooo0.0124
0ooon0.0319
0oooon0.698
0oooo0.0402
0oooo0.0339
0ooooon0.236
0oooo0.9679
0oooo0.0876
0ooooono0.000

0oooo0.1057
0oooo0.0369
0oooooo0.004
0oooo0.0501
0oooo0.0340
0oooooo.141
0oooo0.0124
0ooop0.0329
0ooooo0.707
0oooo0.0402
0oooo0.0347
0ooooo0.246
0ooo0o0.9679
opooo0.1014
0oooooo0.000

0oooo0.1057
0oooo0.0502
0ooooo0.068
00ooo0.0501
0ooo0o0.0225
0oooooo0.057
0ooono0.0124
0oooo0.0300
0oooooo0.691
0oo0oo0.0402
0oooo0.0370
0oooooo0.309
0ooo0o0.9679
0oooo0.2461
0oooooo0.004

0oooo0.1057
0oooo0.0501
0ooooono0.035
00o0o000.0501
0oooo0.0224
0ooooon0.025
0oooo0.0124
0ooon0.0299
0oooon0.679
0oooo00.0402
0oooo0.0369
0oooon0.276
0ooo0o0.9679
0oooo00.2453
0ooooono0.000

00000000000N
0000ON_clust
goooooodrank
0oo0o0oooooo0oF

00ooooo1498

0ooo010.0000
000095.2130

00000001498

0ooo010.0000
0oon89.0902

0ooo0oool498
0oooo9.0000
0oooo8.0000
oooooooooo.

00oooonol498

0oooo8.0000

0000000000000000000000000000000000000000000000000000Tegend:0b/se/p
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NG SETEEN  Example 1: Individuals in Cluster (“Moulton setting")

@ Moulton (1986, 1990) is key paper to highlight the larger standard
errors when cluster

> due to regressors correlated within cluster and errors correlated within
cluster.

@ The different p-values in columns 3 and 4 arise when there are few
clusters

> use t(8) or more generally t(G — 1) not N(0,1)
@ The rank deficiency of the overall F-test is explained below

> individual t-statistics are still okay.

A. Colin Cameron and Douglas L. Miller, . U Cluster-Robust Inference November 3, 2022 11 / 69



I CEL TN S ET LIS Example 2: Difference-in-Differences in State-Year Panel

Example 2: Difference-in-Differences State-Year Panel
(“"BDM Setting”)

@ Example: How do wages respond to a policy indicator variable d;
that varies by state?

> e.g. dis = 1 if minimum wage law in effect

@ OLS estimate model for state s at time t
Yis = & +X;5ﬁ+ v X dis + Uts.

@ Problem:
> the regressor dis is highly correlated within cluster
* typically dys is initially 0 and at some stage switches to 1
> the error ugs is (mildly) correlated within cluster
* if model underpredicts for California in one year then it is likely to

underpredict for other years.
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I CEL TN S ET LIS Example 2: Difference-in-Differences in State-Year Panel

@ Again find that default OLS standard errors are way too small

> should instead do cluster-robust (cluster on state)

@ The same problem arises if we have data in individuals (/) in states
and years

/
Yits = &+ Xitsﬁ + X dis + Uits
> in that case should again cluster on state.

@ Bertrand, Duflo & Mullainathan (2004) key paper that highlighted
problems for DiD

> in 2004 people either ignored the problem or with its data erroneously
clustered on state-year pair and not on state.
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2. Basics of cluster-robust inference

2.1 Intuition for cluster-robust inference

o Consider the sample mean 7i = y given data y; ~ (i, 0?).

Var(ii] = Varly] = Var | F £/ vi] = i |2 21 Covlyinyg) |-

o Clustering with equicorrelation (“‘exchangeble errors”):

Cov(y;, y;) = po? for i # j

So Var[y] = ¢? p L
: P
and Varly] = g [T/ Var(y) + 20 T2 Cov(vin )|

= H[No? + N(N —1)pc?] = Lo? {1+ (N —1)p}.

e Var[y] > 10? and the multiplier grows linearly in N and p
» e.g. p=0.1and N =81 then Var[y] = 9 x ({02).
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VRN SRS N [T A TS AT M 2.2 Cluster-robust variance matrix estimate

2.2 Cluster-robust variance matrix for OLS

@ Linear model for G clusters with N, individuals per cluster

Vg = XgB+ugi=1.,Ng,g=1.,G N=x N,
Yo = X;,,B—kug, g=1..,G
y = Xp+u,

@ Clustered errors: uj, independent over g and correlated within g
Eluig ujer|Xig, Xjgr] =0, unless g = g
o Then OLS estimator B = (X’X)"1X'y has
Var[B|X] = (X'X) " E[X uu’X|X](X'X)
= (XX) (TG EXupul X, |X])(X'X)
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VRN SRS N [T A TS AT M 2.2 Cluster-robust variance matrix estimate

Cluster-robust variance matrix estimate

@ For OLS with independent clustered errors
Var[B|X] = (X'X) " (L g1 E[Xuguy X, [X])(X'X)
@ A (heteroskedastic- and) cluster-robust variance estimate (CRVE) is
Ver[B] = (X'X) (L Xjtighy Xg ) (X'X)

@ U, is a finite-sample correction to Uy =y, — X, ﬂ
> Stata uses Uy = \/clg where ¢ = GG1 X /(/V ;1< = GG

@ Stata: vce(cluster) option or vce(robust) option following xtset

@ R: sandwich package CR1.
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2.2 Cluster-robust variance matrix estimate
When to Cluster and at what level

@ Rule of thumb: with one-way clustering then approximately the
incorrect default OLS variance estimate should be inflated by

T~ 1+p,p,(Ng—1)

v

(1) Px; is the within-cluster correlation of regressor x;

v

(2) p, is the within-cluster error correlation
> (3) Ny is the average cluster size.
Need both (1) and (2) and it increases linearly with (3).

v

@ This result provides very useful guidance in practice!
> though strictly speaking it is within cluster correlation of x;u that
matters.
@ It is not always obvious how to specify the clusters.

> cluster at the level of an aggregated regressor
> cluster at the highest level where there may be correlation

* e.g. for individual in household in state may want to cluster at level of
the state if state policy variable is a regressor of interest.
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2.3 Uup diifen: s
2.3 Two different settings

e Setting 1: Individual in regions or schools or ... (“Moulton”)

> natural starting point is equicorrelated errors or exchangeable errors
within cluster (e.g. random effects model v, = ag +¢j5)
» error correlation within cluster does not disappear with separation of

observations
* marginal information contribution of an additional observation in a
cluster can be very low.

@ Setting 2: Panel data (“BDM")

> now the individual unit is the cluster g (and 7 is time)

» natural starting point is autocorrelated error within cluster

» error correlation within cluster disappears with separation of
observations.

@ These different settings can lead to different asymptotic theory.
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2. Basics of cluster-robust inference 2.3 Two different settings

@ The CR variance matrix estimate was proposed by

» White (1984, book) for balanced case

» Liang and Zeger (1986, JASA) for grouped data (biostatistics)

> Arellano (1987, JE) for FE estimator for short panels.
@ Asymptotic theory initially had fixed and constant N, and G — o
@ Subsequent theory allows various rates for N, and G

» Christian Hansen (2007, JE) for panel data also allows T — oo
> Carter, Schnepel and Steigerwald (2017, REStat) also allows Ny — o
> Djogbenou, MacKinnon and Nielsen (2019, JE) and

Bruce Hansen and Seojeong Lee (2019, JE)

* more general conditions with considerable cluster-size heterogeneity
and normalization more complex than v/ G (B — B).

@ Inclusion of fixed effects
> in practice still leaves considerable within cluster correlation
* eg. if ujp = Ajigag +€jg rather than simpler v, = ag + ;5.
» can complicate proofs beyond one-way cluster for OLS.
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2.4 Confidence Intervals and Hypothesis Tests
2.4 Confidence Intervals and Hypothesis Tests

For a single coefficient B, asymptotic theory gives

Bbo_ ., N[0, 1].
v/ Var[B] [ ' ]
In practice we need to replace Var[B] with Vcgr[B].
Standard ad hoc adjustment is to then use the T(G — 1) distribution

PPy o T(G-1).

secr[p]

The T(G — 1) distribution has fatter tails and is better than N[0, 1]

> ad hoc though Bester, Conley and Hansen (2009, JE) derive for
fixed-G asymptotics and dependent data with homogeneous X’ng.

But in practice with finite G, tests based T(G — 1) over-reject

» and confidence intervals undercover.
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2.3 Srvey i
2.5 Survey methods

Complex survey data are clustered, stratified and weighted.

The loss of efficiency due to clustering is called the design effect.

Survey software controls for all three
> e.g. Stata svy commands.
@ Econometricians

» 1. Get standard errors that cluster on PSU or higher
» 2. Ignore stratification (with slight loss in efficiency)
» 3. Sometimes weight and sometimes not.

Randomized control trials are often clustered

> treatment within cluster may be homogeneous or may be
heterogeneous.
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2.6 Cluster-Specific Fixed Effects models
2.6 Cluster-Specific Fixed Effects Models: Summary
G
o Now yjg = X, B+ &g + ujg = X, B+ Lh_; agdhig + ujg.

e 1. FE's do not in practice absorb all within—cluster correlation of
Ujg
> still need to use cluster-robust VCE.
@ 2. Cluster-robust VCE is still okay with FE's (if G — o)
> Arellano (1987) for Ny small and Hansen (2007a, p.600) for Ny — oo
@ 3. If Ny is small use xtreg, fe not reg i.id_clu or areg
> as reg or areg uses wrong degrees of freedom.
. FGLS with fixed effects needs to bias-adjust for &, inconsistent.
. Need to do a modified Hausman test for fixed effects.

. Modify with idcluster option if bootstrapping.

e 6 o6 o
~N o o0 B

. Several ways of dealing with many two-way fixed effects
» reg2hdfe, felsdvreg, McCaffrey et al. (SJ, 2012) review.
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3. Better One-way Cluster-Robust Inference

3. Better One-way Cluster-Robust Inference

o Consider two-sided symmetric t-test

t = B_A’BO has c.d.f F(t)
se(B)

p o= 2x(1-F([E)

@ Three primary challenges to obtaining correct inference

> se(pB) has many-cluster bias
> se(B) has few-cluster bias
> se(pB) is a noisy estimate of St.Dev.[f]

o Failure to adequately control for these challenges can make /I-z(t) a
poor approximation for F(t).

@ Similar issues for confidence interval.

A. Colin Cameron and Douglas L. Miller, . U Cluster-Robust Inference November 3, 2022 23 / 69



3. Better One-way Cluster-Robust Inference 3.1 Challenge 1: Many-cluster bias in standard error

3.1 Challenge 1: Many-cluster bias in standard error

First-order reason for clustering standard errors.

Appropriate clustering gives valid inference for G = oo.

For one-way clustering the key is determining level to cluster at

> e.g. with individual panel data: individual (?), household (?7), state (?)
> e.g. in early work many clustered on state-year pair rather than state.

Trade-off: clustering at a broader level makes for noisier se(ﬁ) and is
more likely to lead to “few” clusters.

@ In some applications need more general clustering than one-way

» Multi-way clustering
» Dyadic clustering
» Spatial correlation.
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3. Better One-way Cluster-Robust Inference 3.2 Challenge 2: Few-cluster bias in standard error

3.2 Challenge 2: Few-cluster bias in standard error

@ Parameter estimates E overfit the data at hand.

@ So residuals U are always in some sense smaller on average than
model errors u.

o Plugging 7 into CRVE formula will produce se(B) that is too small

> this problem goes away as G — oo.

@ In heteroskedastic errors case this leads to HC2 and HC3 standard
errors (MacKinnon and White (1985, JE)).

e Can generalize HC2 and HC3 to one-way cluster robust (Bell and
McCaffrey 2002)

» CR2 adjusts for leverage and CR3 is a jackknife.
> most studies use CR1 (the Stata and R default).
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3. Better One-way Cluster-Robust Inference 3.2 Challenge 2: Few-cluster bias in standard error

CR3 Standard Errors

The Ver[B] = (X'X) 1 (£C_, Xyiigii, X, ) (X'X)
Bell and McCaffrey (2002) instead use

» G-1 .
Ug = T[INg — Hgg]™ lug

Then VCR[B] is equivlent to the jackknife estimate of the variance of
the OLS estimator

> where ﬁ(g) are delete-one-cluster estimates of

r (g) (&) _ %
VCR3[ﬁ G Zg 1 _ﬁ)(ﬁ ﬂ)/
@ Recent research finds that this works well
» MacKinnon, Nielsen and Webb (2022, JE)

» Hansen (2022, WP) proves that CR3 is never downward biased whereas
CR1 can be extremely downward biased.

In Stata: vce(jackknife,mse)
Fast |mp|ementat|on MacKinnon, Nielsen and Webb (2022, QED

A\
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EIN SN ONTENEVA G TEETE T M NI 3.2 Challenge 2: Few-cluster bias in standard error

Reasons for small-cluster bias in standard error

o Few clusters
> G small
@ When clusters are asymmetric

> Ng varies across g
weights vary across g (if weighted LS)
design matrix X’ng varies across g

v

v

* leading example is few treated clusters

v

Qg = Elugug|Xg] varies across g
interaction between Q) and XX,

v

o Typically: the larger and higher leverage clusters will be more over-fit.
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3. Better One-way Cluster-Robust Inference 3.2 Challenge 2: Few-cluster bias in standard error

Leverage and Influential Observations

@ MacKinnon, Nielsen and Matthew D. Webb (2022, JE, Sections 7
and 8) present and illustrate

> cluster leverage measures based on X, (X'X) !X}
> cluster influence measures based on B(g) that omits cluster G

e MacKinnon, Nielsen and Matthew D. Webb (2022)

» Stata summclust command for cluster leverage and influence.

@ Young (2019, QJE) shows that leverage can lead to great
over-rejection using the conventional CRVE.

@ Sasaki and Wang (2022, WP) find that a small number of large
clusters leads to violation of the moment assumptions used to prove
consistency of standard CRVE of OLS and instead proposed weighted
LS estimator.
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3.3 Challenge 3: noise in standard error
3.3 Challenge 3: noise in standard error

@ The noise in the standard error leads to distribution other than
N(0, 1) with finite number of clusters.

@ There are many suggested methods detailed below

use T(G — 1) as statistical packages do

use t(G*) where data-determined G* is better than G — 1
use a better distribution than t(G*)

use a bootstrap with asymptotic refinement

use asymptotics with G fixed and Ng — oo

use randomization inference

use feasible GLS.

Yy VvV VvV VvV VYV VY
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3.3 Challenge 3: noise in standard error
3.3.1 T with Different Degrees of freedom

@ Imbens and Kolesar (2016, REStat).

Data-determined number of degrees of freedom for t and F tests
Builds on Satterthwaite (1946) and Bell and McCaffrey (2002).
Assumes normally distributed equicorrelated errors and uses CR2.
Match first two moments of test statistic with first two moments of x2.
vt = (ZJ-G:l /\j)2/(ZJ-G:1 )sz) and A; are the eigenvalues of the G x G

matrix G'QG.
e Pustejovsky and Tipton (2017, JBES)

» Extend Imbens and Kolesar to joint hypothesis tests.

vV Y VvV VY

A. Colin Cameron and Douglas L. Miller, . U Cluster-Robust Inference November 3, 2022 30 / 69



3.3 Challenge 3: noise in standard error
T with Different Degrees of freedom (continued)

o Carter, Schnepel and Steigerwald (2017, REStat)

> consider unbalanced clusters due to variation in Ng, variation in Xg
and variation in () across clusters

provide asymptotic theory

propose a measure G* of the effective number of clusters

that is data-determined aside from Q, = E[ugug|X].

no proof that one should use T(G*) but it seems better than
T(G-1).

@ Lee and Steigerwald (2018, SJ)

» provide Stata add-on command clusteff that computes G*

» default is conservative as it assumes perfect within cluster correlation
of errors

» option covariance() allows specifying p < 1 with equicorrelated
errors.

vV Vv Vvv
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2.9 Clizlleee & e i SEier e
3.3.2 Exact Distribution

@ Meiselman (2021, UT-Austin WP)

> fixed effects model
» assumes normally distributed equicorrelated errors
» derives exact c.d.f. of t2.
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3.4 Wild cluster bootstrap with asymptotic refinement
3.4 Cluster Bootstrap with Asymptotic Refinement

@ There are several ways to bootstrap

» different resampling methods
» different ways to then use for inference

* in some cases can get an asymptotic refinement.
@ A fairly general procedure to get an asymptotic refinement is

> percentile-t (or “studentized”) bootstrap that bootstraps the t statistic
> with cluster-pairs resampling that resamples with replacement (yz, Xz ).

e Cameron, Gelbach and Miller (2008) in simulations find better
performance with finite G if instead

> resample residuals Uz holding X fixed (“wild" cluster bootstrap)
> impose Hp in getting the residuals.
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3.4 Wild cluster bootstrap with asymptotic refinement
Wild Restricted Cluster Bootstrap

@ Obtain the restricted LS estimator ,/é that imposes Hp.
Compute the residuals ug, g = 1,..., G.

@ Do B iterations of this step. On the b!" iteration:

@ For each cluster g =1, ..., G:

Form uy = dg x Uy vxhere dg = —1 or 1 each with probability 0.5

Hence form y; = X, B + .

This yields wild cluster bootstrap resample {(y7, X1),.... (¥, X¢)}
@ Calculate the OLS estimate B;b and its standard error Sg -
Hence form the Wald test statistic w;; = (B;b - El)/sﬁ’{b'

O Reject Hy at level « if and only if
w < W[’;/z} or w > W[*lia/z],
where wi’, denotes the g™ quantile of wy, ..., wg.
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3. Better One-way Cluster-Robust Inference 3.4 Wild cluster bootstrap with asymptotic refinement

Wild Restricted Cluster Bootstrap (continued)

@ Implementation is fast and easy for practitioners.
@ Roodman, MacKinnon, Nielsen and Webb (2019, SJ)

» boottest add-on command to Stata is very fast

» implements wild and score bootstrap of Wald or score test for many
estimators

» provides confidence intervals by test inversion.
e MacKinnon (2022, E&S)

» further computational savings using sums of products and
cross-products of observations within each cluster.
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3.4 Wild cluster bootstrap with asymptotic refinement
Wild Restricted Cluster Bootstrap (continued)

e Webb (2014, QED WP 1315) proposed a 6-point distribution for dg

e
in Uy = dglg

> better when G < 10.
e MacKinnon and Webb (2017, JAE)

> unbalanced cluster sizes worsens poor test size using V¢g[B].
» wild cluster bootstrap does well.

e Djogbenou, MacKinnon, Nielsen (2019, JE)

> prove that the Wild cluster bootstrap provides an asymptotic
refinement (using Edgeworth expansions).

e Canay, Santos and Shaikh (2021, REStat)

» provides randomization inference theory for the wild bootstrap when
Ng — o0 and symmetry holds
» considers both studentized and unstudentized test statistics.
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3. Better One-way Cluster-Robust Inference BB WATEEN Nl TEETE

3.5 Few treated clusters

o Few treated clusters

» often arises especially in differences-in-differences settings
» basic cluster-robust inference can work poorly.

e MacKinnon and Webb (2018, PM)

> extreme problem if only one treated cluster as then the OLS residuals
in that cluster sum to zero
> this leads to too small a variance estimate.

@ Solutions often require strong assumptions such as

exchangeability within cluster

homogeneity across cluster

symmetry

identification can be obtained using only within-cluster estimates.

Yy vV VY
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3. Better One-way Cluster-Robust Inference BB WATEEN Nl TEETE

Few treated clusters (continued)

e Wild cluster bootstrap with few (treated) clusters
» MacKinnon and Webb (2018, EJ)

o T distribution for t statistics from cluster-level estimates
> |bragimov and Miiller (2010, JBES)

* only within-group variation is relevant, separately estimate ﬂgs and
average, G small and Ny — oo.
_ 7
* rules out y;, = xigﬁ +2z,7 + ujg.

> |bragimov and Miiller (2016, REStat)
* extend to allow treated and untreated groups.
o Difference in difference settings

» Conley and Taber (2011) assume exchangeability and have fixed T,
fixed treated clusters, number of control clusters — co
» Ferman and Pinto (2019) extend this to (known) heteroskedastic errors.
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3. Better One-way Cluster-Robust Inference 3.6 Randomization Inference

3.6 Randomization inference

@ A permutation test (Fisher) provides a test of exact size.
@ For settings where data are exchangeable under the null hypothesis
> e.g. two-sample difference in means test with two samples from the
same distribution
@ The procedure:

» 1. Compute the test statistic using the original sample.

» 2. Recompute this test statistic for every permutation of the data.

» 3. p-value = fraction of times permuted test statistic > original
sample test statistic.
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3. Better One-way Cluster-Robust Inference 3.6 Randomization Inference

Randomization inference (continued)

@ Extends to a regressor of interest that is uncorrelated with other
regressors

> e.g. if the regressor is a randomly assigned treatment.
e Young (2019, QJE) does this and compares to conventional methods
and bootstrap.

e MacKinnon and Webb (2020, JE) consider when treatment is not
randomly assigned.

@ MacKinnon and Webb (2019, book chapter) adjust when there are
few possible randomizations.

e Young (2022, WP) considers interactions between treatment effects
and covariates.

e Toulis (2022, WP) uses randomization with exchangeable errors
within cluster.
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3. Better One-way Cluster-Robust Inference 3.6 Randomization Inference

Randomization inference (continued)
e Canay, Romano and Shaikh (2017, Ecta)

» extend to symmetric limiting distribution of a function of the data
under Hy
» covers DinD with few clusters and many observations per cluster.

Cai, Kim and Shaikh (2021)
» Stata and R packages to implement in linear models with few clusters.
Hagemann (2019, JE)

> assigns placebo treatments to untreated clusters to get nearly exact
sharp test of no effect of a binary treatment.

Hagemann (2020)

> a rearrangement test for a single treated cluster with a finite number of
heterogeneous clusters.

Hagemann (2021)

> adjusts permutation inference to get non-sharp test on binary
treatment with finitely many heterogeneous clusters.
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3. Better One-way Cluster-Robust Inference 3.7 Design-based inference

3.7 Design-based inference

AAIW (2022, QJE) discussed below propose alternative inference
methods that can lead to substantially smaller cluster-robust standard
errors than traditional inference.

Let Y = f(U, Z, ) where

» U is treatment variable
» Z is other variables (called “attributes” rather than “controls”)
> £ is error.

Randomness may potentially come from U, Z, € and from sample S
from the population.

Traditional approaches

» randomness is due to model errors ¢ (called “model” approach)
» randomness is due to selection of sample S from the population

* problem if sample is the population e.g. states.

Design-based approach (newer)
» randomness is due to assignment of treatment U.
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3. Better One-way Cluster-Robust Inference 3.7 Design-based inference

Pure design-based inference

@ Suppose randomness comes solely from treatment assignment.
e Neyman (1923, English translation 1990) had two innovations

> a potential outcomes framework (though did not call it that)
» designed-based inference that treats potential outcomes as nonrandom

* so not “model-based” with a model error term
* instead randomness comes solely from treatment assignment.

@ For binary treatment

v

Var[y; —¥o] = Varly1;]/m+ Var(yy;]/no— Var[y1; — yoi]/ (no + m)
is less than standard Var[yy;]/n1+ Varlyg;]/ no if there is
heterogeneous treatment effect

though Var[y1; — yp;] is inestimable (without further assumptions)
Imbens and Rubin (2015, ch.6) detail this.

v

v

v
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3. Better One-way Cluster-Robust Inference 3.7 Design-based inference

Design-based inference plus sampling-based inference

e Abadie, Athey, Imbens, Wooldridge (2020, Ecta)

> independent observations as for Neyman (1923)
> design-based treatment and no model error as for Neyman (1923)
» add sampling-based inference

* allows for a subset of a finite population to be sampled
* Neyman instead implicitly viewed entire population as sampled.

@ They obtain a variance estimate V c,ysal sample [@] that

.

> is generally less than Eicker-Huber-White V gy [0]
> is nonzero even if the entire population is sampled

* because across repeated samples the treatment varies, leading to
different potential outcomes being chosen

.

> equals Ve [0] if sample treatment effects are constant

N

> equals Vgyyy [0] if the fraction sampled goes to zero

.

> is approximately 65% of V gy [0] in AAIW's simulations.
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Detail for AAIW (2020)

e Y7(-) are potential outcomes, U; is treatment, Y; = Y*(U;) is

observed.
@ Introduce “attributes” Z; (includes intercept)

> these are needed to provide an estimate of B,,4 given below.
Define X; = U; — U; where U; prediction from regress E[Ui] on Z;.
OLS of Y; on X; and Z; gives same 0 as OLS of Y; on U; and Z;.
Define residual &j = Y; — 0X; — Z'y.

Theory views a sequence of samples each drawn from the same
population with n fixed observations on Y, U, Z.

Veuw 0] = A Bepw A" where Begw = lim L Y71 E[e2X?]
Veausal,sample[0] = A~ Beong A™! where Beong = lim L Y71 Var|[X:e/]

@ Bepyw — Beond = lim % Y, E[eiXi] x E[g;iX;] is pos. semidefinite.

@ In practice can only conservatively estimate Bopq.
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3. Better One-way Cluster-Robust Inference 3.7 Design-based inference

Additionally allow model error

@ Starz and Steigerwald (2022, WP)

> independent observations

> extend AAIW (2020, Ecta) by bringing in possible model error.
@ Let 6 be the average treatment effect (ATE) in the population.
o Then the variance of 8 has two components

» AAIW-like term that controls for treatment assignment and finite
sampling
+ standard OLS result due to model error.

o The estimate of the variance of 0 then varies with the proportion of
shocks due to the model error
> if all is due to model errors then use the usual robust VCE
> if none is due to model errors then V[0] can be much smaller,

especially if there is considerable heterogeneity and/or most of the
population is sampled.
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2.7 [eedgriizsen (7 e
Details for Starz and Steigerwald (2022)

e Consider simplest case of the sample mean (so no treatment)

» sampling binary indicator R; is Bernoulli with p = Pr[R; = 1]
» random error so Y; = y; +¢&; where E[y;] = p and g; is i.i.d. (0,02).

o Estimator of pis i, = (1 Y7, RiY:)/ (A0 R)).
o Then Var[fi,] = (1 —p)1 Xq(vi —¥)*/on + 02/pn
» first term is usual finite sampling term
* goes to zero if p — 1 or heterogeneity in y — 0

» second term is usual formula for variance of the mean
o First term is estimated by (1 — —) - where $2 = L Y7 Ri(Y; —7i,)?
> this gives lower bound for V[7i, ] of (1 — F)SN if 02 = 0.

. . 2
@ The second term is estimated by %Sﬁ

> this gives upper bound for \A/[ﬁn] of (1— N)% + ﬂ

2‘ 0)
=%
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3. Better One-way Cluster-Robust Inference 3.7 Design-based inference

Clustered data and design-based plus sampling-based
inference

e Abadie, Athey, Imbens, Wooldridge (2022, QJE, revision of 2017,
NBER WP) “When Should You Adjust Standard Errors for
Clustering”.

> extends AAIW(2020) by considering the clustered case.

o Estimate the population average treatment effect 8 using 0= 1i— ¥

@ Define Var[] to be the limiting variance under the assumptions
» sampling: sample clusters and then sample units within chosen clusters
> treatment: binary treatment may be correlated within cluster
> model error: none.

@ Then \7CR[§] (the usual cluster-robust VCE) can greatly

.

over-estimate Var[6)]

» though not if only a few clusters in the population are sampled
» and not if treatment effects are constant across clusters
» and not if all units in a cluster receive the same treatment.
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2.7 [eedgriizsen (7 e
Details on AAIW (2022)

@ Potential outcomes with binary treatment

Y7*(-) are potential outcomes (2022 paper uses y;(-))

U; = (0,1) is stochastic binary treatment (2022 paper uses W;(+))
Y; = Y/ (U;) is observed

i denotes individual unit and m denotes cluster.

v VY VY

@ Sampling process
» R; = (0, 1) is stochastic sample inclusion

* first sample cluster with probability g € (0, 1]
* second sample units in chosen clusters with probability p € (0, 1].

@ Treatment assignment process

» U; = (0,1) is set to one with with random probability A, € [0, 1]
> the cluster-specific probability A, is drawn from (u, ¢%) distribution

* assignment is correlated within cluster if 02 > 0.
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2.7 [eedgriizsen (7 e
Details on AAIW (2022) continued

o Let Vcev [@] denote the newly proposed estimate.

@ When g = 1 do the following two-step bootstrap resampling
procedure.

@ At replication b

» 1. For each cluster m = 1, ..., M draw the cluster-level fraction treated

—b . . —b b
U, with replacement from the sample cluster-level fractions Uy ,...,U),.
» 2. For each cluster m =1, ..., M with N, units draw with replacement

NmUz units from the treated and Ny, (1 — U,i) from the untreated.

@ When g < 1 (so not all clusters in population are sampled)

> adapt the above as given in paper section 4.3 L
> use a linear combination of the new Vccy[0] and the usual Vcg|[6]
with weights g and (1 — q).
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3.7 Desigi-tesed ienee
Comments on AAIW (2022)

@ The method can make a big difference when most clusters are
sampled, treatment varies within cluster, treatment effects vary across
clusters and there are many observations per cluster.

@ U.S. cross-section example with all 52 states, 50,000 observations
average per state, binary treatment at individual level and not state
level

> usual cluster-robust se is 7 times larger than new CCV se
» and with state fixed effects usual cluster-robust se is 20 times CCV.

@ Main critiques would be conceptual

> is there no role for a model error?

» the new method assumes that the probability of an individual in
California receiving treatment is a random draw from the empirical
distribution of the treatment fractions for the 52 states.

@ And generalizability
> e.g. to panel data (static and dynamic).
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3. Better One-way Cluster-Robust Inference BRCRAIPIEST-{EVERCL RIS

Design-based approach with cluster-level treatment
assignment

e Su and Ding (2021, JRSSB)

> designed-based inference (no model error and no sampling issues)
> treatment assignment: units in a cluster are either all treated or all not
treated.

o Consider the efficiency of various estimators of the ATE

> should estimators be at individual level or use cluster averages (possibly
weighted)
» add control variables (“model-assisted” ) to improve efficiency

* these are unnecessary for consistent estimation as we consider an RCT.

@ Favors regression based on cluster totals.
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4. Beyond one-way clustering

4. Beyond one-way clustering

@ Richer forms of clustering than one-way

» Multi-way clustering
» Dyadic clustering
» Spatial correlation.
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4.1 (ufti-Wey Clusiziig
4.1 Multi-way Clustering

@ What if have two non-nested reasons for clustering

> e.g. regress individual wages on job injury rate in industry and on job
injury rate on occupation
» e.g. matched employer - employee data.

@ Obtain three different cluster-robust “variance” matrices by

> cluster-robust in (1) first dimension, (2) second dimension, and (3)
intersection of the first and second dimensions

» add the first two variance matrices and, to account for
double-counting, subtract the third.

Viwo-way [B] = V6 Bl + Vi [B] = VerulBl
@ A simpler more conservative estimate drops the third term

> this guarantees that \A/t\,\,o_way [B] is positive definite.
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4.1 (ufti-Wey Clusiziig
Multi-way Clustering (continued)

@ Independently proposed by

» Cameron, Gelbach, and Miller (2006; 2011, JBES) in econometrics
> Miglioretti and Heagerty (2006, AJE) in biostatistics

» Thompson (2006; 2011, JFE) in finance

» Extends to multi-way clustering.

e Davezies, D'Haultfoeuille and Guyonvarch (2021, AS)

> provides empirical process theory that assumes exchangeability and
propose a pigeonhole bootstrap.

Menzel (2021, Ecta)

» provides theory and proposes a bootstrap.
e MacKinnon, Nielsen and Matthew D. Webb (2021, JBES)

» provide theory and propose various Wild bootstraps.

Chiang, Kato and Sasaki (2021, JASA)

» inference and bootstraps for high-dimensional exchangeable arrays.
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CONETAI GG ERVEVREITE A -8 4.1 Multi-Way Clustering

e Villacorta (2017, WP)

> proposes an improvement on 2-way cluster-robust for panel data when
N and T are small
» does FGLS using a spatial autoregressive model.

e Chiang, Hansen and Sasaki (2022, WP)

» for panel data two-way controls for cluster dependence within i and
within t

> this paper adds two terms to control for serial dependence in common
time effects.

o Powell (2020, WP) for panel data allows correlation across clusters.
e Chiang, Kato, Ma and Sasaki (2022, JBES)

> multiway cluster-robust double/debiased machine learning.

o Verdier (2020, REStat)

> linear model with two-way fixed effects and sparsely matched data.
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42 Decle Qs
4.2 Dyadic Clustering

@ A dyad is a pair. An example is country pairs.
@ The errors for two pairs are correlated with each other if they have
one person in common.
> Call the pairs (g, h) and (g, H')
» Two-way picks up error correlation for cases with g = g’ and h = #
> Dyadic-robust additionally picks up g = h’ and h = g’.
e Fafchamps and Gubert (2007, JDE)

> provide variance matrix
> apply to a sparse network where it makes little difference.

e Cameron and Miller (2014, WP)

> apply to international trade data where the network is dense and find it
makes a big difference.
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42 Decle Qs
Dyadic Clustering (continued)

@ Aronow and Assenova (2015, Political Analysis)

> prove variance estimate but not asymptotic normal distribution.
Tabord-Meehan (2018, JBES)

> use a central limit theorem for dependency graphs (S. Jannson (1988)).
Davezies, D'Haultfoeuille and Guyonvarch (2021, AS)

» provides empirical process theory that assumes exchangeability and
propose a pigeonhole bootstrap.

Chiang, Kato and Sasaki (2021, JASA)
» inference and bootstraps for high-dimensional exchangeable arrays.
e Graham, Niu and Powell (2019, WP)

» consider kernel density estimation for undirected dyadic data
» obtain variance estimator and asymptotic normal distribution.
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£ G| o ifon
4.3 Spatial Correlation

Consider state-year panel data.

Cluster assumes independence across states.

Spatial correlation allows some dependence across states that decays
with distance.

Different asymptotics that uses mixing conditions.
Driscoll and Kraay (1998, REStat) panel data when T — oo

» generalizes HAC to spatial correlation for panel data with T — oo.

e Cao, Christian Hansen, Kozbur and Villacorta (2021)

> inference for dependent data with learned clusters.
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5. Estimators other than OLS

@ The asymptotic cluster robust inference methods for OLS extend to

other standard estimators
» FGLS

linear IV

nonlinear m-estimator
GMM

quantile

vV VY VY

@ More challenging for these are
> finite-cluster corrections

* e.g. Wild cluster bootstrap with refinement uses a residual

» handling fixed effects.

o Finally, consider machine learning.
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5. Estimators other than OLS IRRNZEEST ENE| RS

5.1 Feasible GLS

Potential efficiency gains for feasible GLS compared to OLS.

And for one-way clustering there is a cluster-robust VCE (as G — o)

-1 _
YR _ (x'H-1 G rA-1a o -1 1&-1
VerlBrows) = (XO7'X) (L, X 07 0,00, 1%, ) (X 7'x)

Stata offers many FGLS estimators with CR standard errors.

Yet this is not done much in economics.
Brewer and Crossley (2018, JEM)

> panel data with fixed effects and AR(2) error and bias-adjust
» find much better test size performance using BDM data.
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5. Estimators other than OLS 5.2 Instrumental variables

5.2 Instrumental variables

o Cluster-robust variance generalizes immediately.
» main focus is on cluster-robust inference with weak instruments.
Chernozhukov and Hansen (2008, EL)

» Cluster-robust version of Anderson-Rubin test is immediate.

Weak instruments diagnostics

» First-stage F-statistic should be cluster-robust
Olea and Pfleuger (2013, JBES)

> a cluster-robust version of the Stock-Yogo relative asymptotic bias test.
Magnusson (2010, EJ)

» weak-instrument-robust tests and confidence intervals for IV estimation
of linear, probit and tobit models
» includes cluster-robust and two-way robust for not just AR.

e Finlay and Magnusson (2019, JAE)

> residual and Wild cluster bootstraps for IV with weak instruments.

@ Young (2021) considers leverage and clustering in applications.
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5. Estimators other than OLS 5.3 Nonlinear m-estimators

5.3 Nonlinear m-estimators

@ Cluster-robust methods extend to nonlinear estimators

» e.g. logit and nonlinear GMM.
> e.g. generalized estimating equations (Liang and Zeger 1986).

e Kline and Santos (2012, EM)

> wild score bootstrap
> rather than resample U, resample the score X’gﬁg
» this extends to nonlinear models such as logit and probit.
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5. Estimators other than OLS 5.4 GMM

5.4 GMM

Cluster-robust extends to GMM.
Hansen and Lee (2019, JE)

» provide very general asymptotic theory for clustered samples
Hansen and Lee (2021, Ecta)

» inference for Iterated GMM under misspecification
> consider heteroskedastic errors (journal dropped clustering).

Hansen and Lee (2020, WP)
> also has clustered errors.
Hwang (2019, JE)

> two-step GMM fixed-G asymptotics with recentering of the CRVE used
at the second step.
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.3 Qe o
5.5 Quantile

e Parente and Silva (2016, JEM)

» quantile regression with clustered data.

@ Yoon and Galvao (2020, QE)

» cluster-robust inference for panel quantile regression models with
individual fixed effects and serial correlation.

e Hagemann (2017, JASA)

» Cluster-robust bootstrap inference.
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5. Estimators other than OLS 5.6 Machine learning

5.6 Machine learning prediction and clustering

e Cameron and Trivedi (2022, chapter 28) provide an accessible
introduction to machine learning.
@ Leading ML methods used by econometricians in order of current
usage
> lasso (and to a lesser extent ridge)
» random forests (collections of regression trees)
> neural networks (including deep nets).
@ For lasso linear regression with independent data choose B to
minimize
> Q/\(,B) = NZ/ 1()’1 —X; ﬁ) +)\Zp 1KJ|,BJ|

* where in the simplest case the regressors are standardized and x; = 1.

With clustered data we could use the same objective function.

Stata instead uses a weighted average

N,
> QuB) = £ TE { A T (- XB)2} + AL k1B
» same as simple unweighted in the case of balanced clusters.
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5. Estimators other than OLS 5.6 Machine learning

Causal machine learning

@ A key general paper for double/debiased ML is Chernozhukov,
Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, J. (2018,
EJ).

@ A leading example is the partial linear model with scalar regressor of
interest d and many potential controls x.

> y = ad; + g(xc) + u where g(+) is unspecified.
@ Then

> a machine learner is used to approximate g(xc)

> estimation of « is based on an “orthogonalized” moment condition that
enables standard inference on « despite the first-stage use of a a
machine learner

» performance is improved by using cross fitting

* a bigger part of the data is used in the ML stage and the smaller
remainder is used in second stage estimation of a.
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5. Estimators other than OLS 5.6 Machine learning

Causal machine learning and clustered data

@ With clustering the cross fitting needs to be adapted.
e For one-way clustering (such as panel data)

> Belloni, Chernozhukov, Hansen, and Damien Kozbur (2016, JBES)
> cross fitting keeps clusters intact.

For two-way clustering (such as panel data)

» Chiang, Kato, Ma and Sasaki (2022, JBES)
» cross fitting in simplest case splits sample in each direction in half
giving 22 = 4 distinct groups.

For dyadic clustering (such as panel data)
> Chiang, Kato, Ma and Sasaki (2022, WP)
» a more complex cross fitting is proposed.
@ Recent work challenges sparsity assumption and develops alternative
inference for regular OLS
» Cattaneo, Jansson and Newey (2018b, JASA), Li and Miiller (2021a,
QE), Riccardo D'Adamo (2019, WP).
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6. Conclusion

6. Conclusion

@ Where clustering is present it is important to control for it.
@ Most empirical work is for OLS and one-way clustering.

@ Even in this case it is not clearly established what is the best method
when there are few clusters or clusters are very unbalanced /
heterogeneous.
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