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ABSTRACT

The conditional moment (CM) tests of Newey (1985) and Tauchen (1985) were
developed as diagnostic tests of whether or not a moment condition holds. In
this paper CM tests against an explicit alternative are presented. In many
testing situations this is the natural way to proceed in constructing tests,
mirroring the procedure used for classical statistical tests. = Furthermore,
many diagnostic tests such as the information matrix test, apparently without
an alternative, can be interpreted as tests against an explicit alterhative.
The CM tests considered here are motivated by a regression, and are
accordingly called regression-based CM tests. Testing can be based directly
on this regression, when the momént fundamental to the test satisfies an
additional moment condition. An example where this condition holds yields new
tests for misspecification of the central moments. New CM tests based on

orthogonal polynomials are also presented.

Some Key Words: conditional moment specification tests; LM tests; score tests;
information matrix tests; orthogonal polynomials; generalized linear models;

heteroskedasticity; symmetry; kurtosis.



1. INTRODUCTION

Conditional moment (CM) tests, introduced by Newey (1985) and Tauchen
(1985), offer a unifying framework for tests of parametric model
misspecification, and are often simple to implement.

The richness of this approach is demonstrated in a recent book by White
(1990). He draws in to this framework the classical tests - the Wald,
Likelihood Ratio and Lagrange Multiplier (or Score) test principles - and
non-classical tests - Hausman, Information Matrix, and Encompassing Tests. He
obtains the distributions of moment test statistics under minimal assumptions
abbu’c the data generating process, and proposes auxiliary regressions to
compute the test statistics. White advocates a methodology of specification
analysis based on this theory. Pagan and Vella (1989) emphasize the
simplicity of CM testing and very strongly urge its adoption. ‘

Nonetheless, specification testing based on general moment conditions has
been slow to take hold. There are several reasons for this. First, there is
a perception that the newer moment tests, i.e. those not based on the three
classical test procedures, do not involve the f or‘mulatiop of an alternative
hypothesis model beyond stating that the null does not hold, and therefore are
more difficult to intuitively interpret. Second, the wide range of moment
conditions on which to base CM tests leads to aversion of seemingly ad-hoc
choice of moment conditions and reversion to moment tests based on classical
test principles whose properties are well known. Finally, in most
applications of CM tests, a density is actually specified under the null (e.g.
any information matrix test requires this), and a generalization of the
information matrix equality is used to justify computation of test statistics
by an auxiliary regression, called the outer-product-of-the-gradient

regression by Godfrey (1988) and Davidson and MacKinnon (1990), that has very
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poor size properties.

In this paper we propose an approach to CM testing, the regression-based
CM test, that overcomes these objections. A specified conditional moment,
called the "fundamental” moment, equals zero under the null hypothesis. The
fundamental moment is then embedded in a more general alternative: under the
alternative hypothesis the fundamental moment equals a specified function of
parameters and exogenous variables. The null hypothesis is tested by
performing a significance test on the coefficients from the regression of the
fundamental moment on the specified function of parameters and exogenous
variables. But this significance test is itself a test of a moment condition;
called a "regression-based" CM test. It generalizes the work of Cameron .and
Trivedi (1990a), who used this test in the context of testing variance-mean
equality, a property of the Poisson model.

Like any CM test, implementation of a regression-based CM test requires
replacing unobserved parameters by estimates of the parameters of the null
hypothesis model. In a number of leading examples, asymptotic results are
unchanged by this replacement, so that the signif icance tests mentioned in the
previous paragraph can be performed without modif ication. This permits direct
tests for the significance of subcomponents of the alternative hypothesis.

Thus the regression is more than just an auxiliary regression.

In other examples the replacement of parameters by estimates affects the
asymptotic distribution. We can then appeal to the general theory of CM
tests. Different estimators and different moment conditions lead to different
limit distributions of the CM test statistic. The corresponding chi-square
test statistics can then be computed by one or more diff efent auxiliary
regressions. White (1990) gives a very general treatment, that offers
alternatives to using the outer-product-of-the-gradient regression in many

common testing situations. Wooldridge (1990a) has developed a procedure to



transform the CM test statistic to one, not necessarily equivalent, for which
asymptotic theory is valid under relatively weak distributional assumptions.

The regression-based CM test approach decomposes CM tests into two
components: the fundamental moment (zero under the null hypothesis) and its
parameter‘izatioh under the alternative hypothesis. The choice of fundamental
moment is considered according to whether or not the conditional distribution
of the dependent variable is fully parameterized.

If distributional assumptions are to be minimized, it seems natural to
let the fundamental moment be the expectation of a function of the central
moments of the dependent variable, or equivalently of the error term. In
particular, we propose new tests of misspecification of the conditional
central moments of the dependent variable, i.e. heteroskedasticity, skewness,
and kurtosis.

When the conditional density under the null hypothesis is specified,
standard specification tests are the lagrange multiplier (LM), Hausman (H) and
information matrix (IM) tests. These tests can be interpreted as regression-
based CM tests. For the LM and H tests, the fundamental moment condition is
the expectation of a subcomponent of the score vector o’f the null hypothesis
model, while for the IM test the fundamental moment is the expectation of a
subcomponent of the sum of the outer product and the derivative of the score
vector.

For the LM test, interpretation as a regression-based CM test should not
be surprising, since there is usually a moment restriction whose imposition
gives the null hypothesis density as é special case of the alternative
'hypothesis density. However, the regression-based CM test approach is more
direct, less parametric, and often considerably easier analytically than the
LM test approach. Furthermore, the two approaches f requently give

asymptotically equivalent test statistics. To the extent that this happens,
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the regression based CM test is asymptotically equivalent not only to the LM
test, but also to the Wald and Likelihood Ratio tests.

For the IM and H tests, equivalence to a regression-based CM test permits
interpretation of the IM and H tests as being a test of a conditional moment
against_a specific alternative. This re-interpretation of these tests
overcomes one of their perceived weaknesses. It also suggests a wider class
of IM tests than generally used.

When the conditional density is specified, we also present a new choice
of fundamental moment condition, that based on orthogonal polynomial systems.
This new theory is related to LM and IM tests in the case of quasi?maximum
likelihood estimation for the linear exponential family with quadratic
variance function.

The general theory of regression-based CM tests is given in section 2,
and contrasted with the standard formulation of CM tests. Direct regressions
and auxiliary regressions to implement regression-based CM tests are presented
in section 3. Examples are given in section 4. These cover many common
testing situations, are easily motivated and implemented, and include some new
tests. Distributional assumptions are minimized in sections 2-4. In section
5, the regression—i)ased CM test approach is compared with other principles
used to obtain CM tests, including Lagrange multiplier, Hausman and
information matrix tests, for models whére the conditional density under the
null hypothesis is specified. A new class of CM tésts, that based on
orthogonal pol)}nomial systems is also presented. An application to the linear
exponential family with quadratic variance function is given in section 6.

Some concluding remarks are made in section 7.
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2. REGRESSION-BASED TESTS FOR MODEL SPECIFICATION

2.1 Conditional Moment Tests

In regression analysis, we are interested in explaining dependent
variables, a vector yt, conditional on explanatory variables, a vector Xt'
For siniplicity, this paper focuses on cross-section data, where the data ((yt,
Xt)’ t = 1,...,T) are independent across t. The approach can be extended to
dynamic models, where Xt is the vector of current and lagged values of the
exogenous variables and lagged values of the dependent variables, and (yt,Xt)
are no longer independent across t.

The true data generating process (d.g.p.) for y given X is unknown.
Instead, statistical inference is based on an assumed parameterized density
function (quasi-ML estimation) or an assumed parameterization of moments (GMM
estimation, e.g. least squares). Conditional moment tests are tests of the
. validity of moment conditions implied by these assﬁrned parameterizations.

Specifically, a conditional moment test is any test based on an sxl
vector of functions m(y,X,0), where 0 is a gxl vector of parameters,

that satisfies the moment condition:
(2.1 Ejlm(y,.X..0) | X1 = 0

where the subscript O denotes expectation with respect to an assumed
model, not necessarily the true d.g.p.

Tests based on a moment condition of the form (2.1), henceforth called CM
tests, were introduced by Newey (1985) and Tauchen (1985). Further results
are given by Pagan and Vella (1989), White (1987, 1990) and Wooldridge
(1990a). The simplest version of a CM test based on (2.1) uses the

corresponding sample moment:
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To operationalize a CM test, the parameter € in (2.2) is replaced by an

~

estimator BT, consistent under the maintained model. CM specification tests
are statistical tests of the departure of mT(BT) from zero.
The concern of this paper is CM testing. This has two dimensions: the

choice of moment to use in (2.2), and the effect of replacing 6 in (2.2) by

an estimator. We begin with the first of these.

2.2 Regression-Based Conditional Moment Tests
It is assumed that the process generating the data is such that the nxl

vector of functions r(y,X,0), satisfies the "fundamental moment condition":
(2.3) Hy Eglr(y,X.0) | X, 1 = 0

where the subscript O denotes expectation with respect to the null
hypothesis model. This moment condition is "fundamental” in the sense that
the aimension of r(+) in (2.3) is generally considerably less than the
dimension of m(+) in (2.1), as should be clear from the ensuing discussion.
In fact, n =1 in most commonly used tests, but for completeness we give the
theory for the more general case. Sections 4 and 5 will discuss at some
length the choice of fundamental moment condition.

Suppose that were the expectation in (2.3) to be taken with respect to
the true distribution, (2.3) would no longer hold. In particular, we wish to

test against the alternative that for the j-th moment condition:

le [El[r'j(yt,Xt,e) | Xt] = gJ.(Xt,G)-oc‘i , j=1...,n,



where the subscript 1 denotes expectation with respect to the true d.g.p.,
gJ.(Xt,e) = is a specified lpr. vector function, and oc“i is a pjxl vector of
additional unknown parameters. Continuing the earlier example, the
alternative moment condition may be that the error has non-zero mean due to
omitted variables g(Xt,e). Combining all n moment conditions we test HO

against the alternative that:

(2.4) le El[r(yt,Xt,e) | Xt] = G(Xt,e)'oc ,
where G(Xt,e) is a nxp matrix whose j-th row has gj in columns
(pl+ o* pj_1+ 1) to (p1+ o F pJ.) and zeroes elsewhere, p = (p1+ o+ pn),
and o = (oci, . ’ar’x)' is a pxl parameter vector.

Tests of the moment condition under HO against that under H1 are

tests of whether o« = 0. The obvious basis for such a test is the

estimated coefficient of « in the following multivariate regression:

(2.5) r(yt,Xt,e) = G(Xt,e)-oc * €,

where the sx! heteroscedastic error term €, is defined by

(2.6) g, = r(yt,Xt,e) - E[r(yt,Xt,G) | Xt]

Weighted least squares estimation of (2.5) with sxs symmetric weighting

matrix W(Xt,e) yields the usual weighted least sqﬁares estimator:

. T 4 T
(27 «={ZT GIX,0)  WX,0)G(X,0) )+ %

o . G(X.,8) 'W(Xt,e)'r(yt,xt,e) .

1



51 0TI

-~

For the purposes of statistical inference, tests based on « are

determined by the distribution of:

T
til G(Xt,e) ~W(xt,e)-r(yt,Xt,9)

(2.8) m_(8)

From section 2.1, this is a CM test based on the moment condition:

(2.9) IEO[G(Xt,B)’°W(Xt,9)'r‘(yt,Xt,6) | Xt] = 0

This test is called a "regression-based" CM test, or RBCM test, since
this Torm of the CM test is motivated by the regression of the fundamental
moment on to its parameterization under the alternative. This should not be
confused with the implementation of a CM test by an auxiliary regression.
It is in this latter sense that other authors have used, or perhaps misused,
the term "regression-based" in the context of testing. In s‘ection 3 we show
that sometimes the RB(£M test can be implemented directly from fhe regression
(2.5), while at other times an auxiliary regression may be necessary.

RBCM tests were introduced by Cameron and Trivedi (1990a), in the context
of testing variance-mean equality. Then in (2.5), Ve is scalar, r(yt,Xt,e)
= ((yt - ut(Xt,G))Z - yt), where “t(Xt’g) = [Eo[yt | Xt]’ and G(Xt’e) =

g(ut(Xt,B)) for specified scalar function g().

2.3 Optimal Regression-Based CM Test

Different choices of the weighting matrix lead to different test
statistics. The optimal test within the class of RBCM tests will be that
based on the most efficient estimator of «. This is the generalized least

squares estimator:
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T
— ’Q -10
(8) = til G(Xt’e) Z(X,,0) r(yt,Xt,B)v ,

(2.10) My, opt

where we make the additional assumption:

(2.11) Eoletet | Xt]
— . ’
= IEO[r(yt,Xt,e) r(yt,Xt,G) | Xt]
= Z(Xt,e) ’

for specified variance function Zt = Z(Xt,ﬂ). So the optimal RBCM test for
(2.3) against alternatives of the form (2.4) is a CM test based on:

3

‘, —1. _
(2.12) EO[G(Xt,e) Z(xt,e) r(yt,xt,e) | th = 0.

Specification of Zt usually requires distributional assumptions for the
null hypothesis model additional to the minimal assumptions needed for (2.3).
For example, in tests of omitted regressors in the classical regression model,
the usual additional assumption is constancy of the error variance. Such
additional distributional assumptions are not critical, since it is possible
to construct tests that are asymptotically valid even if Zt is not fully

specified..

2.4 Discussion

The RBCM tests differ from conventional CM specification tests in that
they are tests against an explicit alternative, given in (2.4). In this
subsection the two approaches are compared.

It follows immediately from section 2.3 that any CM test based on the
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moment condition

* *
(2.13) [EO[G (Xt,e) r (yt,Xt,e) ! Xt] = 0 ,

* * * * *
where G isanxp matrix and r isa n xl vector, is a RBCM test of:

*
(2.14) HO: 1E0[r (yt,Xt,e) | Xt] = 0 ,

against the alternative hypothesis
(2.15) Hl‘ lEllr‘ (yt,Xt,B | o= ( t,(5?)) . (Xt,e o«

* * *
where W (Xt,e) is the n xn weighting matrix used in the regression, and

* *
« is a n xl parameter vector. (2.13) corresponds to the optimal RBCM

*
’

* . ¥
test of (2.14) against (2.15) when W (Xt,e) = EO[rt'rt

I X, 1.

Note that (2.13) is exactly of the form of the CM test of Newey (1985).
In Newey’s framework G*(Xt,a) is an arbitrarily chosen matrix of functions,
and r*(yt,Xt,B) gatisfies (2.14). The motivation is that if (2.14) holds,
then by the law of iterated expectations, (2.13) holds for a wide range of
choices of G*(Xt,e). Little guidance is given for the choice of G*(Xt,e),
except in the case where the distribution of A is specified under both H0

*
and Hl’ and the score under H_. is multiplicative in r (yt,Xt,G). In this

0
*
case, Newey gives the optimal choice of G (Xt,e). By contrast, the optimal
RBCM test interpretation imposes less structure, and provides a direct
. .
approach to choosing the optimal G (Xt,e), i.e. specify the variance of
* *
r (yt,Xt,e) under HO and the mean of r (yt,Xt,B) under Hl'
Pagan and Vella (1989) also use the form (2.13). Tauchen (1985)

10
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considers the simplest case where G*(Xt’e) = 1. White (1987,“ 1990) and
Wooldridge (1990a) call r': "generalized residuals” and G: "rnisspecif ication
indicators". The terminology generalized residual is used following Cox and

Snell (1968), though the examples below suggest that a better terminology

might be functions of the residual. The RBCM framework provides a natural way
to select, or to interpret, the misspecification indicators. The choice bf
generalized residual, or equivalently of fundamental moment, is still an open
issue.

Wooldridge (1990a) factorizes (2.13) further to:

* * *
(2.16) IEO[Q (Xt,e) W (Xt,9)°r‘ (yt,Xt,G)] = 0

Wooldridge specializes to this form because many specification tests are of

this form. From section 2.3, (2.16) is the optimal RBCM test of (2.14)

against
k3 . , * *
#* ' *
if W (Xt,e) = Var(r (yt’Xt’e) | Xt)' So the RBCM test approach

additionally provides an interpretation of the weighting function in (2.16).
Standard CM tests can be interpreted as RBCM tests. Strictly speaking,

hypothesis tests merely reject or do not reject the null hypothesis. However,

specifying an alternative hypbthesis provides a very direct way to construct

CM tests for particular forms of misspecification of a fundamental moment, as

illustrated in section 4. The relationship between (2.13) and (2.15) or

(2.14) and (2.17) can be used to interpret and contrast many standard tests,

as done in section 5. And for a narrow but widély—used class of models, CM

tests can be implemented directly by running the regression (2.5) of the RBCM

11
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test.

2.5 Locally Equivalent Alternatives
In principle, under the alternative hypothesis the right hand side of
(2.4) may be nonlinear in « and g. For simplicity, consider the standard

case of one fundamental moment condition:

(2.18) H: Elr(y,X,,0) | X,] = h(X,8,8) ,
*
where h(Xt,G,B=B ) = 0. Then by first-order Taylor series expansion about
#* »* * * *)
B = B, hiX.6,B ) = 0 + VBh(Xt’e’B )+(B - B ), where vBh(Xt’e’B

: *
denotes the derivative of h(Xt,e,B) w.r.t. B, evaluated at B = B8 . But

this is of the form (2.4). The remainder term in the Taylor series expansion

-1/2). Thus at least to local

will disappear asymptotically for B - B* = OP(T
alternatives the linear form (2.4) nests nonlinear alternatives of the form
(2.18). We use (2.4) as it is simpler, but could use (2.18) and estimate the
corresponding regression by nonlinear, rather than linear, least squares.
Locally equivalent tests are discussed in Godfrey (19é8). An example

given in section 4 is the use of locally equivalent alternatives to transform

specification tests for the conditional mean to an omitted variables problem.

3. IMPLEMENTATION OF REGRESSION-BASED CONDITIONAL MOMENT TESTS

The RBCM test approach can always be used to motivate and/or interpret

‘the moment condition tested in a CM test. To implement RBCM tests, the

parameter vector 6 in (2.5) needs to be replaced by an estimate. The RBCM
test is simplest to use when this replacement does not effect the asymptotic

distribution of the test.

12



3.1 Tests when the RBCM Test Regression can be directly implemented
The estimator « in (2.7) can be viewed as maximizing, with respect to
«, the quasi-likelihood function:
T

pod L] -— . 2
(31)  -Qple,8) = til W(X,,0)+{r(y,.X,,0) - G(X,,0)-a}

To implement RBCM tests, we need to replace © by an estimate. It is known,
e.g. Pagan (1986) or White (1990), that minimization of QT(oc,e), where 6 is
consistent for 60, the true value of @, yields an estimator o which has the

same, asymptotic properties as the estimator o which minimizes QT(O(.,BO), if

2
Q.. (e .,0.)
T'%% _

For the quasi-likelihood function (3.1), this condition will be satisfied
under FIQ (or local alternatives to HO), if in addition to the fundamental

moment condition (2.3), the following moment condition is satisfied:

(3.3) EO[ Ver‘(yt,Xt,e) I Xt] = 0

This condition implies zero asymptotic covariance between the moment criterion

function Tllzr(yt,Xt,B) and TV (0

- 60) which are assumed to be
asymptotically jointly normally distributed. (Pierce (1982, p.478). Models
for which this condition holds are presented in sections 4 and 6.

When (3.3) holds, the asymptotic theory of section 2 is unchanged by
replacing 90 by BT' Therefore we can tesf HO in (2.3) against Hl in (2.4) by

testing the signif icance of the weighted least squares estimator of o in the

regression:

13



(3.4) r‘(yt,Xt,eT) = G(Xt,GT)-a +ou,
with weighting matrix Wt(xt’eT)’ and apply the usual theory of weighted
least squares treating r(yt,Xt,eT) as a regular vector dependent variable

and G(Xt’eT) as a regular matrix of regressors. We have:

~ ~ ~ ~ __.1 ~ ~ ~
(3.5) «a={% G'WG,} + = G'Wr
t=1 t tt t=1 t tt
where Gt = G(Xt'eT)’ Wt = W(Xt’eT)’ and ry r‘(yt,Xt,GT). We consider
the limit distribution of ‘Tl/z- L. under local alternatives HL: Q= T.l/zy, or
more formally
(3.6) H : Elr(y,X.,0) | X.] = G(X,0)(T %)
L’ LA A t t’ ’
where ¥ is a finite vector. Then under HL:
N 4T _ L, T
37 ™26 9 No, imTlz 6 /WGl UimT s 6 'WoWG]
W t tt t tttt
Tow t=1 T To>w t=1
. Nim T 'z Gt’Wth]_l ,
T t=1
where Gt = G(Xt’GO)’ Wt = W(Xt’eo)’ r, = r(yt,Xt,GO), and Q =

E[rtr‘t' | Xt] is the unspecified conditional variance of r,.

Specializing to HO, (3.7) yields t-tests for individual components of  «

equalling zero. A consistent estimate of the variance-covariance matrix in

(3.7) replaces G, by , W, by W,and Q by Q, where , is such
,lt t t t Tt t t
. _1 ~ , A A A A _ . _1 , .
that plim T z Gt thtWth = 1lim T Z Gt tQtWth' We use the obvious
T t=1T T t=1
b — 7
estimator Qt = til rtrt .

14
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A joint test of whether all components of « equal zero is given by the

chi-square test statistic:

n ™M~

(3.8) dw = [

r'wWGl«[Z G'WQWG,]I
¢ tt Z

gt t
Under HO’ dw is asymptotically chi-square distributed with p degrees of
freedom.

Implementation of these tests in principle requires a multivariate
regression package and matrix multiplication routines. When n = 1, however,
we need only use an instrumental variables package along the lines suggested
by Domowitz (1983) f or‘vinf‘ erence based on heteroskedastic consistent
estimators of the variance-covariance matrix of the least squares estimator.

Under HL’ dw is asymptotically distributed as non-central chi-square

with noncentrality parameter:

(3.9) A = e

w vg*g#VG##G**Vgigt
-1 T -1 -1 T
where V =[lim T % G'WG]1", 'V =[limT £ G /'WQWG.]I.
G*G* To t=1 t tt GRRGH* Te t=1 t tttt

The optimal RBCM test based on (2.5) uses weights Wt that maximize the

local power by maximizing Aw in (3.9). As expected, this is Wt = Q't'l,

Q

the generalized least squares estimator. Thus, we assume that under H 5

0’

= Zt, defined in (2.11), which entails stochastic assumptions in addition to
(2.3) and (3.3). We obtain the test statistic:

T ~ l\_l/\

T,\ To\
3100 d®°P = (=z rs61 12 G656 [ 2 G.’%, 1]
W t=lttt t= -

15
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This optimal test is easily computed as the square root of the explained
sum of squares f‘rom the OLS regression

R A

(3.11) = o + u

Tt 't Tt Tt t

This regression can also be used to test whether individual components of «
equal O, using the usual t-tests. It is the regression that is directly
suggested by the theory of section 2, and is viewed as the regression that is
the basis for the test, rather than an auxiliary regression used to compute a
test statistic.

" The Pitman relative efficiency of dW relative to d‘:_pt is given by

d vcvcﬁvgt*gﬂivgagl
ey | = | =
d°P V o+ +
w G G
1 T -1 -1
where V ++ =[lim T S G’Q "G.] . This shows the reduction in Pitman
GG t=1 t 7t Tt

relative effciency due to the use of the robust rather than the optimal -
version of the test.

The optimal RBCM test does not require specification of the conditional
distribution of y under HO. However, it does require sufficient assumptions
on the distribution of y to determine the second moment of r(yt,Xt,e), while
the less powerful tests based on the weighted least squar'eé regression (3.4)
can be implemented using only (3.3) and the initial assurnption that r'(yt,Xt,e)
has zero first moment.

To guard against the possibility of misspecification of Zt’ we can of
course compute asymptotically valid versions of the individual t-tests , using
S -1

the result (3.7) with Wt = (Zt)

Furthermore it can be shown that (3.8) is chi-square distributed if Wt

16
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= Qt (a non-trivial result since Wt then depends on ry directly as well as
indirectly via eT). Therefore, T times the uncentered R2 from the
univariate regression of the Txl vector of ones on Gt’Wtrt is

asymptotically distributed as chi-square under HO. This regression, unlike

regressions (3.4) or (3.11), is an auxiliary regression.

3.2 Tests when the RBCM Test Regression cannot be directly implemented

Most of the tests in this paper deliberately choose r(yt,Xt,B) so that
(3.3) is satisfied. This is a departure from previous studies, aside from
that of White (1990), who also exploits the simplification that arises when a
condition similar to (3.3) is satisf ied..

For tests of misspecification of the conditional mean of Yoo given in
section 4.1, (3.3) will not hold. A separate theory for RBCM tests of the
conditional mean can be developed, permitting inference on the estimated
coefficients from the regression of r(yt,Xt,éT) on G(Xt,aT), assuming that
éT is a weighted least squares estimator or a maximum likelihood estimator.
Instead, we consider the joint test of significance of all coefficients, and
appeal to fhe general theory of CM tests.

The general CM test (2.2) is implemented by using an estimator ET of @,
consistent under HO’ to form mT(aT). Under appropriate assumptions,
Tl/zmT(aT) has a limit distribution that is multivariate normal, which is the
basis for a chi-square test of the null hypothesis moment condition. This
test statistic can often be computed by an auxiliary regression.

The relevant theory is given in great detail in White (1990). A nice
exposition is given in Pagan and Vella (1989), For any moment condiﬁon,
under suitable conditions, by a first-order Taylor series expansion:

1 \ VP

2 s 172 | ) _
(3.12) T ml‘(eT) = T m.r(eo) + BO T (BT 0.) + op(l)

0

17
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where 90 = plim BT and BO = plim VemT(G) . The implementation of CM

tests differs according to whether or not the following condition is

satisfied:
(3.13) . lEO[ Vem(yt,Xt,e) | Xt] = 0

When the conditional moment m, = m(yt,Xt,e) is chosen so that (3.13) is
satisfied, under HO, Bo = 0, so that the asymptotic distribution of mT(GT)

coincides with that of mT(eo). Since [Eo[mt ] Xt] = 0, and m,  are

assumed independent over t, a central limit theorem yields under HO’

. T
@) T ’m (e 4 No, 1imT' s m m*) ,
t 't
T t=1

so that under HO,

T . T . . -1 T .
(3.15) (Z mt’)'[ = m, mfc J (2 mt) 3 x"(n) ,

t=1 =1 t=1

~

where m, = m(yt,Xt,GT) .

Three things should be noted about this test statistic. First, it can be
conveniently computed as T times the uncentered Rz from the auxiliary

regression of 1 on m Second, it is relatively robust in that the only

»
assumptions are that (2.2) and (3.13) hold under HO' Third, we note that
(3.3) implies (3.13), and that the test statistic (3.15) and the corresponding
auxiliary regression are the same as those for the RBCM test mentioned at the

end of the previous subsection.

The condition (3.3) may not be satisfied when, for example, there are
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nuisance parameters in the p.d.f. If (3.3) does not hold, irﬁplying (3.13)
also does not hold, the asymptotic distribution of mT(éT) can still be
obtained, but will in general differ from that of mT(GO) and will vary with
the choice of consistent estimator éT' Furthermore, the corresponding
chi-square statistic can no longer be simply estimated from an auxiliary
regression, though other alternatives similar to (3.4) may be available in
certain special cases; see White (1990).

By restricting attention to certain classes of estimators and/or certain
classes of conditional moments, a chi-square statistic can again be computed
from a convenient auxiliary regression, even if (3.13) doc.-;:s not hold. White
(1990) presents a number of auxiliary regressions. These regressions are
applicable to a narrow range of situations, e.g. the Gauss-Newton regression,
or are more gener‘él but have poor empirical peff ormance, e.g. the Outer
Product of the Gradient (OPG) regression used extensively by Tauchen (1985),
Newey (1985) and Pagan and Vella (1989). White’s results do indicate,
however, that these authors sometimes use the OPG regression when other,
potentially better, auxiliary regressions might be used.

When the sample moment mT(G) is of the form (2.8) but does not satisfy
(3.13), Wooldridge (1990a) has proposed a quite general method to transform
m.r(e) to a sample moment m;(e) which does satisfy this condition, so that
we can then appeal to the simpler theory. His tests are "robust", in
the sense that they are asymptotically valid provided only that (2.3) holds,
and "regression-based" in the sense that they can be computed from one or two
auxiliary regressions. His results are especially useful for CM tests of the
conditional mean in models estimated by quasi-maximum likelihood using a
density in the linear exponential family with nuisance parameters; see
Wooldridge (1990b). In other cases, however, tests using m.:.(e) may differ,

even asymptotically, from tests using mT(G). In the next section, with the
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exception of conditional mean tests, we focus on examples where (3.3) holds,

in which case the transformation proposed by Wooldridge is not necessary.

A. APPLICATION TO SPECIFICATION TESTS OF CENTRAL MOMENTS

The regression-based CM test approach essentially splits the choice of
moment condition into two pieces: choice of the fundamental moment and choice
of its expectation under the alternative. A corresponding decomposition into
generalized residual and misspecification indicator is used in the standard CM
test approach. In either case, choice of the fundamental moment condition is
discretionary.

When the conditional density is specified, testing principles such as the
LM and IM determine the fundamental moment. This case is considered in
section 5. In this section, we instead consider the case where distributional
assumptions are to be minimized. It is then natural to focus on tests of the
first few conditional moments of the dependent variable, since inference, such
as OLS and GMM estimation, is typically based on these. Where possible, the
fundamental moment is chosen to satisfy (3.3). For simplicity, the dependent
variable is scalar.

The examples given here can be viewed as generalizing the tests of
misspecification of the mean and variance in the linear regression model with
constant variance given in Pagan and Hall (1983) and Pagan (1984). However,
in generalizing their work, choosing the fundamental moment to satisfy (3.3)
leads to different CM tests than does using moment conditions to be the direct

analogues of those for the linear regression model with constant variance.
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4.1 Tests for Misspecified Conditional Mean

In the null hypothesis model, lEO[y,c ! Xt] = u(Xt,e), for some scalar

function p. We therefore consider RBCM tests of:

(4.1) Hy: IIEO[(yt - u(Xt,e)) | Xt] = 0
against
(4.2) HI: lEl[(yt - u(Xt,e)) ] Xt] = g(Xt,e)wx
Here the choice of fundamental moment, - r'(yt,Xt,B) = (yt - u(Xt,O)),

is obvious. Tests for different types of misspecif ication of the mean
correspond to different choices of its expectation, i.e. the additional
variables in g(Xt,G), under the alterngtive hypothesis. Two standard forms of
misspecification are omitted variables and misspecified functional form. To
illustrate, we specialize to the common case where u(Xt,B) equals u(Xt'O).

For omitted variables we have:

. - ’ ‘
Hy: tEl[yt | Xt] “(Xt 6+ Z a)

By a first order Taylor series expansion of the right-hand side about a = 0,

and rearranging, locally equivalent tests are based on the moment condition:

(4.3) H,: Ellyt - u(Xt’G) | Xt] = Vau(Xt’G)'Zt-oc ,

where Vau(°) denotes the derivative of p(+). In this example we choose
’ - 0Ye
g(Xt ) = VmpL(Xt 0) 2

For incorrect functional form it is typically assumed that:
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- - ’
(4.4) Hl’ !El[yt ] Xt] “a(xt o,n) ,
where u(Xt’G,a) evaluated at « = 0, say, equals u(Xt'e). By a first

order Taylor series expansion about o = 0, locally equivalent tests are based

on the moment condition:

(4.5) HI: l‘r.‘l[yt - u(Xt’e) ] Xt] = Veua(xt’e)m ,
where Veuu(Xt’e) denotes the derivative of ua(Xt’B,a) w.r.t. 0 evaluated
at oc’=0.

For any test of the conditional mean, the optimal RBCM test (2.10) will
require a second moment assumption on i |

The above moment conditions for CM tests of the conditional mean are
motivated without appeal to a conditional density. When a density is
specified, examples of CM tests of misspecification of the mean are given in
Pagan and Hall (1983) for the linear regression model under normality, in
Newey (1985) for the probit model, and in Pagan and Vella (1989) for the
tobit, probit and some duration models. These CM tests are often presented as
tests of the assumed density, but in fact may only be tests of the conditional
mean. In particular, any model for discrete choice data must have the
property that all moments are uniquely determined by the the mean, so
specification tests will always be equivalent to tests of the mean. Thus
so-called tests for "heteroscedasticity" and "nonnormality” in the
distribution of the underlying latent variable for the probit model are best
viewed as tests for a misspecified mean. For discrete choice models, the
optimal RBCM test should always be used as it entails no additional

assumptions: the variance of ‘A is always the product of the conditional mean
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and unity less the conditional mean. Furthermore, the tests of Newey (1985,
p.1062) can be very simply derived as optimal RBCM tests.
For conditional mean tests, an auxiliary regression is always needed to

implement the joint test of o = O, since

(4.6) | IEO[ Ve(yt—u(Xt,G)) I Xt] = Veu(Xt,e) # 0

so that (3.3) will not be satisfied. Implementation of CM tests will

therefore vary according to the estimator of 6. When estimation is based on
a quasi-likelihood in the linear exponential family, in which case a weighted
least squares estimator of 6 is used, the results of Wooldridge (1990b) are

directly applicable.

4.2 Tests for Misspecified Variance
We assume that (4.1) holds under both the null and alternative
hypotheses, i.e. the conditional mean is correctly specified. However, under
the alternative hypothesis the conditional variance is misspecified. We
consider the case where the variance under the null hypothesis is a function
of the mean, not necessarily constant. We have HO: EO[(yt - p.(Xt,e))2 | Xt]
= V(M(Xt,e)). It should be understood that throughout this section,
additionally lE[yt - u(Xt,e) ] Xt] = 0 under both HO and H..

1

The obvious fundamental moment condition is:
y 2
(4.7) HO' IEo[(y,C - u(Xt,e)) - V(p(Xt,e)) | Xt] = 0 ,
and to test this against the alternative that the expectation equals
g(Xt,e)'a.

This is the fundamental moment used in tests of heteroskedasticity in the
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regression model with constant variance. Then V(M(Xt,e)) = 0‘2, and tests of
heteroskedasticity are presented as tests against Hi: l‘r.'l[(yt - M.(Xt,e))2 | Xt]
= h(Xt,oc), where h(Xt,oc=O) = 0‘2. But a locally equivalent alternative is
HI: Ell(yt - M(Xt,e))2 - 0‘21 Xt] = Vah(Xt,oc=0)-o¢, and indeed one way to
compute the Breusch-Pagan test for heteroskedasticity is as the test of
significance in the regression of (yt - }.L(Xt,G))Z on Vah(Xt,oc=O).

When V(u(Xt,B)) is constant, (4.7) is a convenient choice of fundamental
moment since then (3.3) is satisfied. But when V(M(Xt,e)) varies with @,
(3.3) will no longer hold. For example, for the Poisson regression model,
where V(u(Xt,G)) = u(Xt,e), Cameron and Trivedi (1990a), propose RBCM tests
basec} on the fundamental moment condition IEO[(yt - M(X,C,G))2 - Yy | Xt] = 0.
This coincides with the leading examples of LM tests in this situation.

More generally, Cameron (1990) proposes regression-based CM tests for the

variance-mean relationship (4.7) based on the fundamental moment condition:
2
(4.8) Hy: lE()[((yt - ut) - V(ut)) + V”V(ut) (yt - ”t) | Xt]< =0 ,

where B = u(Xt,G). The motivation is that we can add a term h(pt,t)'(yt -
ut), since II‘.'.O[yt - K | Xt] = 0, and the choice h(“t) = VuV(ut) ensures
that (3.3) is satisfied. This nests both the constant variance and Poisson

examples, since VuV(pt) equals O for the normal and -1 for the Poisson.

2

(4.9) HI: !Ell((yt - ) - V(ut)) + VMV(u,C)'(yt - “t) | Xt] = g(Xt,G)wx ,

t
and it is understood that additionally [El[yt - utl Xt] = 0.

The optimal RBCM test requires assumptions up to the fourth moments of
Yy though RBCM tests using assumptions on the first and second moments can

also be constructed.
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The regression-based tests are valid for any null hypothesis model for
Y. in which the mean is the specified function u(Xt,G) and the vériance is
the specified function V(u(Xt,e)). However, if considerably more structure
is placed on Yy by specifying both a null hypothesis and alternative
hypothesis distributions satisfying (4.8) and (4.9) respectively, Cameron
(1990) gives a number of examples, beyond the normal and Poisson, for which
the LM test of a = O is the optimal regression based test using the
fundamental moment condition (4.9). However, the LM test is not always a
function of the fundamental moment (4.9).

The RBCM test is easily implemented, since (3.3) is satisfied.
4.3 Tests for Misspecified Third and Higher Central Moments

The tests for the variance in the preceding section can be generalized to
tests of higher order moments. We illustrate this for the third moment.

Begin with the moment condition:

3
(4.10) Hy: Egly - m°= vy} + hy(w{(y - w? - v, (W)

]
o

+ hl(u)'(y - u) | XI

where we suppress the subscript t, and vJ.(u) = {Eo[(y - u)‘] | X]. Then

(
(3.3) is satisfied if and only if the hJ.(u) are chosen so that:
(4.11) (—3v2(u) - V“va(u)} + hz(u)%—vuvz(u)} - hl(u) = 0.

Different null hypothesis models for y, assume different moments vz(u)
and v3(p.). For example, consider a test for symmetry of the distribution of
Yy when the variance of Vs is constant, i.e. vg(u) = 0 and vz(p.) = 0‘2.

These are of course moment restrictions implied by the normal regression
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model. Then (4.11) implies -302 - hl(p.) = 0. So CM tests are most easily

implemented if based on the fundamental moment condition:

(412)  Hy Egily - > + hy(weity - w% - ¢® - 362y - | X1 = 0.
Note that a range of functions hz(u) may be used. One criteria is to choose
choose hz(u) so that the test of third moments based on (4.12) is orthogonal

to the second moment test based on (4.8). This. orthogonality will r‘equire.
assumptions on up to the fifth moment of Vi The theory of orthogonal
polynomial systems, presented in section 5, uses this criteria.

The analysis can obviously be extended to higher central moments, such as
tests for homokurtosis. When a density for y under the null hypothesis is
specified, and is in the linear exponential family with quadratic variance
funstion, analysis is simplified by using orthogonal polynomial systems. This
is done in section 6.

The analysis can also be extended to factorial moments, rather than
central moments. For example, the optimal RBCM test for misspecification of
the third factorial moment is much simpler to derive than the equivalent LM
test of Lee (1986) the testing the Poisson against a system of discrete

distributions generated by the Pearson difference system.
4.4 Tests for Serial Correlation
For tests of serial correlation, the choice of fundamental moment
. condition is uncontentious, being:
(4.13) HO: EO[(yt - “(Xt’e)).((yt—j - u(Xt_J.,e)) | Xt ] = O

Under the alternative hypothesis:
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(4.14)  H: E|lly, - u(xt,e))-((yt_j - “(Xt-j'e)) I X, 1 = g(X,,0) e

’

The simplest tests are for errors that are autocorrelated but not
conditionally heteroskedastic. Then LEO[(yt - u(Xt,G)):Z | Xt] = 10‘2, and
g(Xt,G) = p0‘2. The optimal RBCM test, assuming constant fourth moment,
regresses (yt - M(Xt,e)) .(yt—j - “(Xt-—j’e)) on 0‘2, which is equivalent to
the usual LM test against AR(j) or MA(j).

For this time series example, Xt potentially includes lagged endogenous
variables. If lagged endogenous variables are excluded, and the mean u(Xt,B)
is correctly specified, (4.16) satisfies (3.3), and the RBCM tests can be
directly implemented. When lagged endogenous variables are present, (3.3) is

no longer satisfied, and implementation is accordingly more complicated. This

is essentially the observation of Durbin (1970).

5. APPLICATION TO SPECIFICATION TESTS BASED ON QuAsi-ML ESTIMATION

When the conditional density under the null hypothesis is specified,
standard specification tests are the lagrange multiplier (LM), Hausman (H) and
information matrix (IM) tests. These tests can be interpreted as regression-
based CM tests.

Many parametric single equation econometric models are based on one
canonical parameter, typically the mean in some underlying model, which in
turn is a function of several parameters. Sometimes, an additional parameter
is needed, along with the canonical parameter, to determine the variance, but
even then this may be a nuisance parameter.

In such parsimonious models, various test principles lead to

specification tests based on a f undamental moment condition of low dimension,
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often scalar. Depending on the form of this fundamental moment condition,
tests can be performed under assumptions considerably weaker than the
assumption that the assumed conditional density is correctly specified.
Specifically, quasi-ML inference is based on an assumed density. For the
case where y;c is i.i.d., there is a large menu of density functions of the
form f (yt,'n), where 7 1is a hxl vector. In regression analysis, the
dependence of y, on variables Xt is captured by letting 7 = n(Xt,e),
where 0 is a gx1 vector of unknown parameters, so that the assumed density is

of the form
(5.1) f‘(yt,Xt,e) = f(yt,n(Xt,e)).

Typically h is considerably less than q. For example, in the Poisson
regression model 7 is a scalar, the mean, usually specified to equal
exp(Xt’e).

Inference is based on the score vector:
(5.2) V6 log f(yt,Xt,B) = (Vn log f(yt,'n('Xt,e))} 'Ven(Xt,B)

5.1 Lagrange Multiplier (LM) Tests and CM Tests

In classical testing, the alternative hypothesis density is of the form
(5.1), and the null hypothevsis density is a specialization of (5.1)
obtained by placing restrictions on 6. For ease of exposition, we suppose
these restrictions are of the form 62 = 0, where 62 is a q2x1

subcomponent of 6. We have:

(5.3) Hy f(yt’xt’el) = f(yt,n(Xt,el,E)Z:O)) ,
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(5.4) HI: f’(yt,Xt,e) = f(yt,n(Xt,e)) , 8 = (61' ,92’)'

The LM, Wald and likelihood ratio tests are different tests of these
restrictions that are asymptotically equivalent and locally most poWerful if
the true d.g.p. is the null hypothesis density. Specification tests focus on
the LM test, since its implementation only requires estimation of parameters
of the null hypothesis density.

The LM test, or score test, is a test of whether the score vector
for the alternative hypothesis density', evaluated under the null, is zero,

i.e. it is a test of the moment condition:

(5.5) EO[ '(Vn log f(yt,’n(Xt,Gl,O))) 'VelTl(Xt,Gl,O) | Xt] = 0
using (5.2), where VT) log f'(yt,’n(Xt,el,O)) = Vn log f(yt.n(Xt,e)) 5 = and
=
A n(Xt,el,O) = V9 n(Xt,B)
1 1 92=0

Therefore an LM test is a CM test of the fundamental moment

(5.6) HO: EO[vn log f(yt,’n(Xt,Bl,O)) I th = 0 )

and is the optimal RBCM test against the alternative

s - —1. .
(5.7) Hl' Ellvn log f(yt,n(Xt,Bl,O)) | Xt] = Z(Xt,e) Veln(Xt,el,O) o
where
(5.8) z(xt,e) = EOIVn log f(yt,'n(Xt,Gl,O))'Vn log f(yt,”n(Xt,el,O)) ] Xt].

This decomposition makes clear that the LM test relies on distributional
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assumptions on the first two moments of Vn log (yt,n(Xt,Gl,O))’, a hxl
vector, rather than on the entire conditional density f (ytm(Xt,el,O)). This
explains why many commonly-used LM tests are appropriate under assumptions
weaker than those used to derive the test.

If tests under even weaker null hypothesis assumpfions are desired, a CM
test assuming only correct specification of the first moment can easily be
constructed, as in section 2.2.

A wide range of RBCM tests based on (5.6) and alternatives of the form
(2.4) can be developed. In particular, many null hypothesis models depend on
only one parameter, say my, or there are additional parameters but these can
be treated as nuisance parameters. In tests of omitted variables, =7 = n

and we wish to test whether 6, in =0(X,,8

5 " 1,6)2) equals zero. In this case

fhe fundamental moment is simply EO[Vn log f(yt,n(Xt,Bl) I Xt] . In tests
2
of a richer model 7 = ('nl, nz)’ is a 2x1 vector, and n, depends on 91 alone

and n, depends on 62 alone. Then the fundamental moment is EO[Vn log
2

fly,(X,0,) | X.]

Hausman tests can be considered as tests based on the score vector, for
example see Ruud (1984) and White (1990, section 9.4.d). Given such a
representation, Hausman tests can also be represented as RBCM tests along

lines similar to that of the preceding section.

5.2- Information Matrix (IM) Tests and CM Tests

We consider tests of models with null hypothesis densities of the form
(5.1), and hence score vector (5.2). The IM test is based on the information
matrix equality, that the sum of the outer product of the score vector and the

derivative of the score vector is zero under the null hypothesis. Define
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I/
(5.9) le(yt'xt’e) = VT) log f‘(yt,n(Xt,e))
* X 4
+ anog f‘(yt,n(Xt,e)) anog f(yt,n(Xt.e)) )

where V12' = 62/61)2. Then the IM test is based on the moment condition:

(5.10) EO[VBn(Xt,e) -RIM(yt,Xt,e)-Ven(Xt,e) :

h
/gl =
+ i-z-=1 v"xlog f(yt,n(xt,e)) veni(Xt,e) | Xt] = 0 ,

where n, is the i~-th component of 7. Since EO[anog f(yt) ] Xt] = 0,
the term on the second line is dropped. Vectorizing, the IM test is

equivalent to a CM test of:
(5.11) Eol(Ven(Xt,e) ®V9n(Xt,9) )°vec(RIM(yt,Xt,9)) | Xt] = 0

For notational simplicity we ignore the obvious point that because of the
symmetry of second derivatives, we would only select the subset of unique
elemgnts of in Ven(Xt,G) ®Ven(Xt,B) and vec(RIM(yt,Xt,e)). (5.11) is the

optimal RBCM test of

(5.12) EO[veC(RIM(yt,Xt,G)) ! Xt] = 0 |,
against
. 0 ,
(5.13) EllveC(Rxm(yt’Xt'e)) | Xt] = Z(Xt,e) (Ven(Xt,G) ®V6n(Xt,9)) o,
where
- . r .
(5.14) Z(Xt,e) = EO[vec(RIM(yt,Xt,B)) VeC(RIM(yt’Xt’e)) lXt] .
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Therefore the IM test can be interpreted as a test of a null hyothesis
moment condition against one for the alternative hypothesis. This overcomes
one of the perceived weaknesses of the IM test. The above results also
explain why IM tests can have poor power. The IM test as usually used does
not vary with possible alternative hypotheses. It is clear from (5.13) that
the IM test can be generalized to test (5.12) against alternatives G(Xt,e)'oc
other than that given in (5.13), thereby increasing the power of the IM test

in certain directions.

5.3 CM Tests based on orthogonal polynomials
Another possible choice of the fundamental moment is that based on
orthogonal polynomials. A very brief presentation of orthogonal polynomials
is given; for more details see, for example, Szegd (1975).
Let f(y) be a function of the scalar variable y, a< y =b. The function
f(y) is taken to be nonnegative and integrable on an interval (a,b) and taken
to be positive on a sufficiently large subset (a,b). It is further assumed
that finite moments of the variable vy,
b
poo= (E[yn] = ‘[ yfly) dy , n = 0,1,2...
' a
exist up to the required order.
A system of orthogonal polynomials Pn(y), degree [Pn(y)] = n, is called
orthogonal with respect to f(y) on the interval a =y =b if
b

I [Pn(y)'Pm(y)'f(y)] dy = 0, m#n; nm = 0,1,2....

a

By the fundamental theorem of orthogonal polynomials, a real orthogonal
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polynomial system (OPS) corresponding to the density function exists and is
uniquely determined (Szegd, (1975), chapter II).
For the OPS, Pn(y) is a polynomial of degree n in y, with

(5.11) {E[Pn(y)Pm(y)] =8 k, kn#ko

mn n

where an is the Kronecker delta. In the special case of an orthonormal
polynomial sequence, kn=1. The orthonormal polynomial sequence may be
determined, using (5.11) above, in a step-by-step manner by the (Gram-Schmidt)
orthogonalization process.

As an example, let a=-w and b=+wn, f(y) = exp(—(y—e)z); then Pn(y—e). is,
except for a constant factor, the Hermite polynorhial. As another example,
let a=0 and b=+w, f(y,08) = exp(’-(y-e))(y—e)a, « > -1; then Pn(y—e) is, except
for a constant factor, the Laguerre polynomial. See Szegd (1975, p.22).

Orthogonal polynomials are discussed in detail in Cameron and Trivedi
(1990b). In applying them for testing, we replace the function f (y) by the
density function f (yt’Xt’e | Xt)' The orthogonal polynomials accordingly
become Pn(yt’xt’e ] Xt)'

They are especially useful for the choice of fundamental moments for
several reasons. First, they are easily generated via a three-term recurrence
relationship. This can be especially advantageous compared to LM tests which
require finding, under the null hypothesis, the limiting value of the score
vector for alternative hypothesis density. Second, because they are
polynomials in y, distributional assuinptions may conceivably be minimized.
Thirdly, because of the orthogonality result (ii) given above, CM tests based
on polynomials of progressively higher degree will be statistically
independent. Finally, in a leading example, given in the next section, tests

based on orthogonal polynomials coincide with commonly-used LM and IM tests.
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8. APPLICATION TO SPECIFICATION TESTs IN THE LEF-QVF

To illustrate the use of orthogonal polynomials as the basis for the
choice of fundamental moment, we consider linear exponential families with
quadratic variance functions, henceforth abbreviated to LEF-QVF. This covers
many commonly used econometric models: regression models with constant
variance; discrete choice models such as probit and tobit; poisson models for
count data; and gamma models for continuous positive data. In this leading
case, the fundamental moments from various testing approaches are closely
related, and are the f irst few terms in an orthogonal polynomial system.

We use the results of Morris (1982). The LEF is defined by

(6.1) fly, ) = explyy - o) + k(y)} ,

where ¢ is a scalar parameter, and the dependence of ¥ on exogenous

regressors has been suppressed for notational convenience. The LEF has the

property
(6.2) Elyl] = p = pX¥) =_Vw<p(t/1)
(6.3) varly] =

v;w(w)

where VI'/: = a“/aw“.

In a more general exponential family, f(y,y) = expi{g(y,¥) - o) + k(y)}.
The LEF is the specialization 'wher'e the function g(y,) is linear in y, in
which case y is called the natural observation, and linear in , in which
case Y is called the natural parameter. Other studies, such as Gourieroux,

Montfort, and Trognon (1984), use the mean parameterization of the LEF: f(y,u)
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= exp{A(p) + B(y) + C(u)y}, where the functions A, B and C are such that the
density integrates tq 1 and conditions corresponding to (6.2) and (6.3) are
satisfied. Here the natural parameterization of the LEF is used, which Morris
(1982) called the natural exponential family (NEF). These are just two
different parameterizations, using the mean u or the natural parameter v,
of the same family of densities.

Morris (1982) restricts analysis to quadratic variance functions,
meaning the variance is a quadratic function of the mean so that V(p)

satisfies the relationship
(6.4) Vip) = v +vu+vu2
) 0] 1 2 ’

where various possible choices of the coefficients Vor vy and Vs lead to six
exponential families, five of which are the normal, Poisson, binomial, gamma,
and negative binomial families. So the restriction to QVF still leaves a wide
range of commonly used models.

The following results (Morris (1982)) are useful in deriving the

fundamental moment restrictions:

(i) For the LEF-QVF the orthogonal polynomial system Pm(y,n) is defined by

(6.5) Pm(y,h) = Vm(vr:f(y,w)/f(y,sb)), m=0,1,2,...

where Pm(y,u) is a polynomial of degree m in both y and p with leading term

vy, m=1,2,..., and f(y,) is the LEF-QVF density.

(ii) The polynomials (Pm(y,u)) satisfy the recurrence relationship
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(6.6) P, = 1

0
P, = yu
Pm+1 = (P1 - mV”V(u))Pm - m(l + (m-—l)vZ)V(u)Pm__1 , for m=l .
(iii) Let a0=1, and for mzl,
m-1
S 1 i
(6.7) a_ m.lI=I0 1+ 1v2).
Then
(6.8) IEOPm =0, m=z=1,
(6.9) EP P =6&_a V" mnz=0,
Omn mn m
(6.10) VP =(-Dasa P, m=1l,r=1L..,m.
K m m “m~r’ m

We shall use (6.8) as the fundamental moment condition for CM tests.
In regression applications, Y or equivalently p is parameterized in terms
of Xt and 0, i.e. ¢ above is replaced by B = u(Xt,e). The procedure

is to progressively test for m = 1,2,..

(6.11) HO: EO[Pm(yt’Xt’e) | Xt] = 0 ,
against:
(6.12) Hl: Ell?m(yt,xt,e) | Xt] = Gm(Xt,e)wm ,

where the recurrence relation (6.6) generates Pm(yt’xt’e) = Pm(yt,u(Xt,e)) =

Pmt in the shorthand notation above.
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By property (i) above, Pmt is a polynomial of degree m in (yt - ”t)
and M, SO that the distributional assumptions used in performing the optimal
RBCM test are that the first 2m central moments of y are correctly specified,
and non-optimal RéCM tests can be validly used assuming that the first m
central moments are correctly specified. The variance of Pmt for the
optimal test is easily obtained using (6.7) and (6.9). Tests based on
different degrees of polynomial are orthogonal by (6.9).

The tests are easily implemented, since by (6.10) condition (3.3) holds
for m > 1, provided Eolpm-l,t] =0 .

In comparing tests based on these orthogonal polynomials with other
tests, such as LM and IM tests, we say the tests are identical if they have
the same fundamental moment condition. There is, of course, the separate
issue of the choice of G(X,,0). |

Tests based on Plt = (y, - “’c) coincide with the tests of conditional

t
mean given in section 4.1. The optimal RBCM test ﬁses Zt = V(ut). This test
is easily shown to coincide with the LM test for omitted variables in an
LEF-QVF model. It also coincides with the LM test for misspecified functional
form of the conditional mean, where the alternative hypothesis model is
embedded in an LEF-QVF, proposed by Gurmu and Trivedi (1590).

Tests based on Py, = (yt - ut)z - V(”t) - V“V(“t)(yt - ut) coincide with
the tests of conditional variance given in section 4.2. The optimal RBCM test
uses Et = 2(1+v2)(1+2v2)v(ut). Cameron (1990) gives a number of examples
where this corresponds to LM tests where a specific family in the LEF-QVF is
embedded in various alternative densitiés. Cameron shows that a variant of
the IM test uses PZt as the fundamental moment. Wooldridge (1990b)
considers the more general multivariate LEF with nuisance parameter, and uses

a different variant of the IM test that does not satisfy (3.3).

For tests based on higher order polynomials, it is easiest to consider in
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turn each of the LEF-QVF families in turn. This is done in Cameron and
Trivedi (1990b). We consider two examples here.

For the the normal family with mean p and variance 0'2, Vip) = a‘z implies
that the variance does not depend upon the mean so that V V(u) = O, V=V, =

2

0 and the recurrence relationship for the orthogonal polynomials is Pm+1 =

Ple - rnVPm_l. The orthogonal polynomials of order two, three and four are
2

respectively ((y~-u)2 - o}, ((y—u)3 - 30*2(y-—u)), and ((y-—u)4 - 60‘2(y—y.)2 +
304) , and their variances are respectively 20‘4, 60‘6, and 240‘8. These lead
directly to tests of heteroskedasticity, skewness and non-normal kurtosis
identical to the LM tests of Bera and Jarque (1982).

-For the Poisson family with mean g, V(u) = p, VuV(u) = 1, v, = 1, v, = 0.

The recurrence relation for the orthogonal polynomials is Pm+

L= (P‘1 - m)Pm -
mVP__.. The orthogonal polynomials of order tWo and three are (y--ﬂ)2 - y and
(y--u)3 - Z(y--u)2 - yly-p) + 2(y - py + uz) , with variances 2u2 and 6u3.
The test of overdispersion has already been discussed. A test of the third
moments based on P3 coincides with the LM test of Lee (1986, -equation
(5.12)). The derivation here is much simpler.

While these tests based on qrthogonal polynomials assume a density under
the null hypo’thesis, and are compared to LM and IM tests, we reiterate
that their validity. rests on correct specification of lower order moments

rather than the entire density. This should be especially clear from section

5 where similar tests were obtained without specification of the density.

7. CONCLUSION

Parametric estimation theory has developed beyond that for maximum
likelihood (ML) estimation assuming a correctly specified likelihood function

to more general theories of quasi-ML estimation, White (1982), and estimation
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based on moment conditions, Hansen (1982). For testing of parametric models,
the conditional moment testing approach of Newey (1985) and Tauchen (1985)
permits a similar movement away from likelihood theory. The regression-based
CM tests do just this.

Theoretically, RBCM tests provide a useful framework for contrasting
various specification tests. Different CM tests correspond to different
fundamental moments and parameterizations of the fundamental moment under the
alternative. Various choices of the fundamental moment are discussed.

Practically, new tests for heteroscedasticity, skewness and kurtosis can
be easily derived. These tests can be implemented by a convenient regression
that is not auxiliary. Though not likelihood-based, these new tests can be
viewed as generalizations of LM tests or variablé addition tests based on the
quasi-MLE of the regression model under normality to tests based on the
quasi-MLE of regression models with density in the linear exponential family.
Thus familiar tests for the classical regression model can be extended to a
wide range of models that includes discrete choice models (probit, logit, ..),

count data models (Poisson, exponential), and positive data models (gamma).
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