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ABSTRACT

The conditional moment (CM) tests of Newey (1985) and Tauchen (1985) are based
on the asymptotic distribution of a function with zero mean. The construction
of a suitable moment function is the first step in this procedure. This paper
presents a unified theory for deriving the moment functions in the parametric
case using known results from the theory of series expansions of distributions
in terms of a baseline distribution and related orthogonal polynomials. The
approach is used to construct CM tests in a number of cases, including the
leading case of linear exponential families with quadratic variance functions.
This includes Poisson and negative binomial models for count data, exponential
for duration data and binomial for discrete data, in addition to the classical
regression model under normality. Modifications of the approach-when the data
are truncated and connections with the score test are also considered.
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1. INTRODUCTION

Consider a set-up with data {(yt, X.,), t =1,...,T} independent across t,

t
where the dependent variable is Yy and explanatory variables are the vector
Xt' The true data generating process (d.g.p.) for y given X is unknown,
but we have a hypothesized parametric density function, denoted f(y,X,0), 0 €
rY. Conditional moment tests are tests of the validity of moment conditions
implied by these assumed parameterizations. In this paper we propose an
approach to the construction of moment functions based on orthogonal
polynomials.

By definition, a conditional moment test is any test based on an sx1

vector of functions m(y,X,6) that satisfy the moment condition:

(1.1) : Eylmly,.X,,0) | X,1 = 0 ,

where the subscript 0 denotes expectation with respect to the assumed
distribution.
Tests based on a moment condition of the form (1.1), henceforth
called CM tests, were introduced by Newey (1985) and Tauchen (1985), who also
developed the associated asymptotic theory. Further results by Pagan and
Vella (1989), White (1987, 1990) and Wooldridge (1990) demonstrate the
unifying and simplifying power of CM tests as tests of specification. Since
most specification tests can be interpreted as CM tests, there is a strong
case for adopting it as the preferred general approach to specification tests.
The simplest version of a CM test based on (1.1) uses the corresponding

sample moment:

™M~

(1.2) n (0) = 771 m(yt,xt,g)
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To operationalize a CM test, the parameter 6 in (1.2) is replaced by an

~

estimator BT’

are statistical tests of the departure of mT(eT) from zero.

consistent under the maintained model. CM specification tests

To date most authors assume at the start that a suitable moment function
for constructing the test is available. However, since such moment functions
are not unique, it is desirable to avoid arbitrariness in this choice.
Specifically, the chosen moment functions should satisfy some optimality
criterion, and the relation between different moment functions should be
clarified.

In this paper we propose an approach to the construction of CM functions
based on orthogonal polynomials. The literature on orthogonal polynomials is
vast, their basic properties are well known and widely used, and many
excellent treatises on this subject are available. Some applicafions to
testing of nonlinear regression models exist (Kiefer (1985), Lee (1986), Smith
(1989), Cameron and Trivedi (1993)). These construct score tests against an
alternative hypothesis density function that is a series expansion in terms of
the orthogonal polynomials of the null hypothesis density. These examples are
quite specific, and generally use the approach as a way to specify an
alternative hypothesis density rather than fully utilizing the properties of
orthogonal polynomiéls. The approach retains considerable unexploited
potential as a general approach to specification testing within the CM
framework.

A related testing procedure is to use k-th order moment functions such as
[(y - u)k - El(y - u)k | X,8] where p = Ely | X,e1, as in, for example,
Pagan and Vella (1989), or yk - E[yk[ X,8], as in Smith (1989). These‘tests
in general differ from those obtained by the orthogonal polynomial approach.
Which approach leads to more powerful tests clearly depends on the alternative

hypothesis, as any CM test can be interpreted as a score (and hence locally
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most powerful) test against some alternative (White (1990)). We give some
conditions under which the orthogonal polynomial tests are more powerful. And
in those examples that we are aware of in which score tests are functions of
polynomials, they are functions of orthogonal polynomials.

We introduce orthogonal polynomials in section 2. Selected expressions
for orthogonal polynomials are given in this section, while impoftant general
results used in this and later ;ections are given in Appendix A. In section 3
we propose a general procedure for specification tests of distributional
misspecification based on orthogonal polynomials and suitable functions of
exogenous variables, and analyze local asymptotic power of these tests. In
section 4 the discussion is narrowed to the leading case of the linear
exponential family with quadratic variance function (LEF-QVF). This includes
Poisson and negative binomial models for count data, exponential for duration
data and binomial for discrete data, in addition to the classical regression
model under normality. Illustfatively, several specification tests, some well
known and some new, are very simply derived using orthogonal polynomials.

Many other applications are possible, and section 5 considers a ﬁodel with

truncation. Section 6 concludes.

2. ORTHOGONAL POLYNOMIALS: SELECTED PROPERTIES AND RESULTS

Let F(y) denote the distribution function and lét dF(y) = f(y)dy where
f(y) is the density of the independently distributed scalar continuous random
variable y. The density function f(y) is taken to be nonnegative and
integrable on an interval [a,b] and F(y) has points of increase on a
sufficiently large subset [a,bl. All arguments given below can be repeated
after appropriate change of notation for the case of a discrete random
variable and corresponding results for the discrete case may be reproduced.

It is assumed that finite moments of all order, denoted by un’ exist;



(2.1) po= E[yn] = I yn'f(y) dy , n=0,1,2...

In general f(y) may be a marginal or a conditional density, but for the
purposes of this paper f(yj will be a conditional density, usually denoted by
f(y,X,0 | X) where 68 is an unknown parameter and X is data. We use f(y)
forgenerality and more compact notation. While expectations in (2.1) and
elsewhere in section 2 are taken w.r.t. the assumed density f(y), this may not
be the true d.g.p.

Definition: A system of orthogonal polynomials, henceforth abbreviated to
OPS, Pn(y) (or Pn(y,X,e [ X)), degree [Pn(y)] =n, is called orthogonal with
respect to f(y) (or f(y,X,8 | X)) on the interval a =y =b if

{ ko if m=n

2.2 P P of d =
(2.2) j LB (y)+£(y) dy S

That is, Pn(y) is a polynomial of degree n, a positive integer, in vy

satisfying the orthogonality condition

(2.3) E[P (y)P ()] =8 Kk, k #0,

where & is the Kronecker delta, &8 =0 ifm#n, 8 =1 if m
mn mn mn

n. In the
special case of an orthonormal polynomial sequence, kn = 1.

Orthogonal polynomials have several properties we exploit in the
construction of tests of moment restrictions such as (2.3). These include
uniqueness, linear independence, and minimum variance; they are summarized in
Appendix A.

The basic idea of the paper is that conditional moment restrictions

implied by models derived from parametric families of distributions can be
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expressed and tested using the corresponding sequences of orthogonal
polynomials, as an alternative to raw (non-orthogonal) moment restrictions. A
comparison between the two alternatives is considered in Section 3. Tests
will in practice be based on low order orthogonal or orthonormal polynomials,
rarely exceeding three or four. General conditional moment expressions
required for such tests can be derived using the methods of Appendix A.
Important special cases given in Table 1 are used in.section 4.

For most of the discussion in this paper we concentrate on tests of first
and second moments. We consider two types of tests, those based on orthogonal
polynomials and those based on their orthonormal counterparts. It is
convenient to provide general expressions for these. They can be specialized
to apply to specific distributions by substituting expressions for the

2 ;. _ 3,
) ’ ”'3 - [E(y “‘1) ’

relevant moments. Let By = E(y|X), ué = 02= E(y - My
u& = E(y - u1)4; further, let ¥, = El{y - ul)/O‘]3 and ¥y = El(y - ptl)/rr]‘4 -3
define the standardized skewness and excess kurtosis parameters. Then the

first two orthogonal polynomials (PO = 1), expressed as deviations from the

mean, are
(2.4) P1(yi) = Pl(y.l - “11) =V, T Hgy

— - — - 2 - ’ 7 - - ’
(2.5) Pz(yi) = Pz(yi “11) = (y:.L “11) (5131/;12.1)(yi “1i) MY -

To derive orthonormalized versions of these, each polynomial is standardized
by the respective variance expression, derived using the methods of Appendix
A. The resulting polynomials, which we denote by the symbol Qi(y) to avoid
confusion, have zero mean and unit variance property; they also incorporate
more information about the moment properties of the hypothesized distribution

than their orthogonal counterparts.



(2.6) Ql(yi) = Pli/ Vvvar Pli = (yi - uli)/oi
ly; - ”11)2 EELTA S PR ”i
(2.7) Qz(yi) = PZi/ vvar PZi =

4
o Ty * 27 7yy)
Such re-expression of orthogonal polynomials in terms of residuals, y - Ky

rather than in y alone, is natural in the regression context.

3. TESTS BASED ON ORTHOGONAL POLYNOMIALS
3.1 Conditional moment test based on orthogdnal polynomials
If the assumed distribution implies testable moment restrictions, the
tests can be carried out, singly or jointly, using orthogonal polynomials of
the appropriate order. Since EO[Pn(y,X,G)‘IX] = 0, use of the law of iterated
expectations, following Newey (1985, p.1055), suggests CM tests based on

moment functions of the form

(3.1) Eo[mn(y,X,G) X1 = 0,
where
(3.2) mn(y,X,e) = GD(X,9)°Pn(y,X,9),

and Gn(X,G) is a function of X and 6, and different subsets of X may appear in
the functions Gn and Pn. For a single moment restriction Gn(-) is a scalar
function, for a vector of moment conditions it is a matrix. For example, a
test of omitted variables, denoted by Xz, from the conditional mean function

may be based on the orthogonality condition (3.3) and (3.4) as appropriate:

(3.3) ED[ml(y,X,G) X1 = EO[XZ-Pl(y,Xl,B) X1 = 0,



(3.4) = EO[X2~(y - u(Xl,G)) [X] = 0 .
Similarly a test of misspecified variance function may be based upon

— . - 2 - 7 7 — - ’ —
(3.5) (Eo[mz(y,x,e 1X01 = IEO[GZ(X,O) ((y ”1) (u3/u2)(y ”1) uz)] = 0,

where My ué and ué are functions of X, 6. The same general approach can be
used to derive higher moment restrictions.

The approach based on orthogonal polynomials has considerable algebraic
simplicity. The derivation of CM tests for distributions with finite moments
(expressible in closed form) of requisite order requires no more than
substitution into appropriate formulae. When dealing with data for which the
first few moments are the same as those of a known distribution, the approach
suggests suitable moment functions for testing.

To test an nth order moment restriction we may use the nth order
orthogonal polynomial, and under the null hypothesis density the resulting
test statistic will be asymptotically independently distributed of all other
tests based on higher or lower order polynomials, in the absence of unknown
nuisance parameters. Linear independence of moment functions is an advantage
in testing when tests are likely to confound different moment
misspecifications. Correlation between (say) first and second moment tests
can distort the size of an individual misspecification test. When orthogonal
polynomials are used, ‘portmanteau’ or simultaneous tests of several
restrictions may be easily implemented when the joint test.is additive in its
components, as it will be in many cases. The properties of uniqueness and
minimum variance (in tﬂe class of monic polynomial functions) has implications
for the asymptotic local powef of tests based on orthogonal polynomials, as is

shown later in Section 3. 4.



Polynomial tests (orthogonal or nonorthogonal) of moments of order n are
based on moment assumptions up to order n. The derivation of optimal versions
of.such tests will involve moment assumptions to order 2n. These optimal
versions can be made robust by methods similar to Koenker (1981) so as to
depend on moment assumptions up to order n, though for high order n tests may

be numerically unstable unless the sample is very large.

3.2 Score tests based on orthogonal polynomial expansions for densities

Let f(y) be a continuous density function and let {Po(y),...} be the
corresponding set of orthonormal polynomials; Let g(y) be another density
assumed to be ¢2—bounded in the sense that ¢2+ 1 = Ifm{g(y)/f(y)}zf(y)dy < w,

then the following series expansion is formally valid (Ord (1972)):
(3.6) gly) = f(y)'[aOPO(y) +a P (y) + ]
Multiplying (3.6) by Pn(y) and integrating term by term, and noting Po(y)'= 1,

(3.7) a = J Pn(y)g(y)dy, ag = 1

[24]
(3.8) ¢$” =2 a

The coefficients {an} in the expansion are linear combinations of the moments
of gly).

Consider whether a finite number of terms in the series expansion
provides an adequate approximation to g(y), the unknown true data generating
process, the simplest case being the one in which we truncate the expansion
after the first term. Then, f(y) is some baseline density and we wish to test

its adequacy as an approximation to g(y). This is equivalent to the null



hypothesis

(3.9) H:a, =a, =.... =0.

Omitting the observation subscript, from (3.6) we have

(3.10) log gly) = log f(y) + logll + % anPn(y)]
(3.11) Va log gly) = Pn(y) ) i=1,2,..
n
a_=0
n
where Va = g/8a. We wish to test HO without estimating as that is to follow

the score test approach. The score test will be based on [ED[Va log gly)
n

] = 0, which implies that
a,=a =...=an=0

(3.12) E,P (y)] = 0.

Thus, if the unknown true density g(y) admits a formal series expansion in
terms of the baseline density f(y) and the corresponding orthonormal functions
Pn(y), then a test of the null hypothesis may be based on the formulation
EO[Pn(y)] =0, n=1,2, ..; that is, the expectation of the orthogonal functions
under the null density is zero. While the preceding argument derives this
test as a score test, note that (3.12) is implied by (3.7) under HO' A
comparison of (3.12) with (1.1) shows that any test based on an orthogonal
polynomial is a CM test. The analysis leading up to (3.11) shows that every
specification test based on an orthogonal polynomial is a score test against
some alternative. A test based on the nth order orthonormal function is a

test of the nth order moment restriction on the null density.



3.3 Implementation of tests
The conditional moment test based on the orthogonal polynomial will be

based on

! ).

T ~
t§1 mn’t(y,X,e | XT

(3.13) mn,T(eT) =T

~

The asymptotic distribution of m T(GT) may vary with the estimator GT.

Treatments are given in Newey (1985), Tauchen (1985), White (1987, 1990)

and Pagan and Vella (1989), the last reference giving a particularly

~

accessible presentation. In the special case where GT is the ML estimator

(see also Pierce (1982)) a xz(dim(mn)) test statistic can be conveniently

computed as T times the uncentered R2 from the auxiliary regression of 1

~ ~ ~

on m, and Sg, ¢’ where mo¢ = mn(yt,Xt,BT) and So.t denotes the

likelihood based score, 8 log Lt(e)/69l9=8 . A second special case is where

the following condition:
(3.14) EO[Vemn(y,X,e | X1 =0

holds. Then the asymptotic distribution of m T(OT) is the same as for
1/2

T m_ T(B) (Newey (1985)) despite the substitution of Gl

computation.

for 6, simplifying

3.4 Local asymptotic power analysis

Valid CM tests of k-th order moment restrictions can also be derived
using nonorthogonal polynomial functions. A leading example is testing for
overdispersion in the Poisson regression model. A second central moment ?est
may be based on {(y - u)z ~ M}, whereas the second order orthégonal

polynomial is {(y - u)z - (y = p) - pu}, i.e. {(y - ”)2 - y}. When
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premultiplied by a function GZ(X,G) as in (3.2), these lead to two different
test statistics. We emphasize that these different test statistics have
different distributions under a given sequence of local alternatives. This is
demonstrated analytically and by simulation in Cameron and Trivedi (1990a).
Which CM test is more powerfﬁl? Clearly the answer depends on the alternative
hypothesis, as any given CM test can be interpreted as a score (and hence
locally most powerful) test against some alternative (White (1990)). Under
thé standard alternative hypothesis that the mean is porrectly specified but y
is negative binomial with a more general variance, the CM test based on the
orthogonal polynomial coincides with the score test, and is therefore more
powerful than the CM test based on the second central moment.

Similar results hold in more general settings. ‘CM tests based on
orthogonal polynomials differ from CM tests based on nonorthogonal
polynomials. In a leading case which includes many examples where tests are
based on polynomials, 6rthogonal polynomial tests are locally more powerful
than tests based on nonorthogonal polynomials. In general the comparison
leads to an ambiguous conclusion.

To demonstrate these results, consider testing of the n-th moment, given

correct specification of the first (n-1) moments. Specifically, test:

k = -
HO' Eo[y | ¥,08] = m s k=1,...,n
against:
H-[E[yleG]=u k =1 n-1
L' L ’ k’ s b
n
EL[y | X,0] = Gn(X,e) LA

8/VT is a column vector of the same

where ”k denotes moments under HO’ an
dimension (g) as the row vector Gn’ and-8 is a constant. Let Rn(y) =

Rn(y,X,e) be any polynomial function of y of degree n, with leading

11



coefficient normalized to unity, such that ED[Rn(y) | X,8] = 0. ' Then under HL

given above:
(3.15) EL[Rn(y) | X,8] = Gn(X,e)'6/VT .
The obvious CM test is based on:

(3.16) m .(8.) =T

1M =
[

1t Tttt

where G, = G(Xt,e), Rt = R(yt,Xt,G), W, = W(Xt,e) is a scalar weight, and

t t
Gt’ Rt’ and wt are evaluated at GT. We analyze the asymptotically equivalent
quantity:
— ’ . ’
(3.17) % 1 = G GG T E GWR

~ ~

which can be interpreted as the coefficient from regfession of R, on G, with

t t
weights Wt.
3.4.1 Power when derivative condition (3.14) is satisfied.
When (3.14) is satisfied, under HL:
(3.18) ™% S, s tes o axTl g
’ n, T ' Tewe Towlwe Towe
1 1
- 3 - ’ . . 3 - ’ . =
where ZGWG = 1im T 'Z Gt Wth, ZGWQWG = 1im T "Z Gt thtWth’ and Qt
T30  t=1 TS0 =1

EL[RtRé | Xt] is the unspecified conditional variance of Rt' It follows that

the test statistic:

>
>
>
>
>
|
-

(3.19) T

-

ttt ttt

H M-
>
=
[ep I3

N ™M~

™M=
= s J8Y
=)
[rp I

o

t ottt
t=1

12



has limiting chisquare distribution with gq degrees of freedom under HO’ and

limiting noncentral chisquare distribution under H, with noncentrality

L

parameter A where

(3.20) A= 8's Sk .ws,
GWG ~ GWQWG ~GHWG

Power is maximized when the noncentrality parameter, which depends upon

the misspecification indicators G,, the weights W, and the variance Q, of the

t t

polynomial Rt’ is minimized. Given Qt’ which requires knowledge of the first

t’

2n moments, the noncentrality parameter is maximized when A = S’ZGWGS, where
T
! G 'Q 1G . This in turn is maximized when Q, is minimized. But

1im T t t t
T->00 t=1

from the uniqueness and minimum variance properties of orthogonal polynomials

(appendix B), Q, = Var(Rt) is uniquely minimized amongst monic polynomials

t

when Rt is the orthonormal polynomial. Hence orthonormal polynomials lead to

locally most powerful CM tests based on n-th order polynomials.
3.4.2 Power when derivative condition (3.14) is not satisfied
In some situations the derivative condition (3.14) will not be satisfied.

~

To compare the asymptotic variances of oy in the case of orthogonal and
nonorthogonal moment functions, we treat it as a sequential estimator and

follow the approach of Newey (1984). We consider the case of p moment

restrictions and (px1) parameter «. Let 6., be the solution to the first order

T
T n ~ ~
conditions X% s(yt,Xt,GT)= 0. The joint estimating equations for BT and oo
t=1 .
are:
T ~
(3.21) b s(yt,Xt,GT) = 0.
t=1 »
T R n N R R
(3.22) % G(X,,0.)" WX,,0.){R(y,,X,,8,) - G(X.,0,)-0p} = 0.

1

13



T ”~
This is a specialization of the estimator Z q(yt,Xt,BT) = 0, where B’'= (0’
t=1

a’), is ((g+p)x1) vector with components qlt(B) = s(yt,Xt,B) and th(B) =
G(Xt,e)’ W(Xt,e)-{m(yt,xt,e) - G(Xt,e)’-a}. For the estimator which satisfies

the first order conditions the asymptotic distribution of BT is given by:

d

(3.23) 2B, - B) -> N[O, AR -B(R)-A(R) ']
where
._1 T
(3.24) AB) =1im T ~ Z E[VBq(yt,Xt,B)]
T->0 t=1
...1 T
(3.25) B(B) =1im T ~ Z E[q(yt,Xt,B)'q(yt,Xt,B)’].
T->00 t=1 .
A1 A2 B B2
Partition A and B conformably with q: A = ; B = \
Ao Ao B B2

Then using partitioned inverse, together with the simplification A12 = 0, it

can be established that under HL:

(3.25) Tl/ZaT 45 N[v, V]
where
-1 -1 -1 I
v=8 - A21A11A11 l1im T ~ = EL[s(yt,Xt,eo)l Xt]
T o T=1
-1 -1, -1, -1, -1 -1
Vo= Ay (Byy + AyiA1BriA18107 Ao1R1Brp T BoghAyifp) A,
T
|
A11 = 1im T ~ % IEL[V9 s(yt,Xt,GO)l Xt]
T o T=1
Ay, =0 i
R ,
A21 = 1lim T ~ % EL[G(Xt,GO) W(Xt,eo) veR(yt,Xt,eO)l xt]
T T=1
....1 T
Ay = 1im T © E G(X,,8,) W(X,,0,)G(X,,8,)
T o T=1

14



T
. "'1 7

B11 = 1lim T ~ % EL[s(yt,Xt,GO) s(yt,Xt,OO) | Xt]
T o T=1
Bip = By .

- : -1 ,
B21 = 1im T~ % EL[G(Xt,OO) W(Xt’eO)R(yt’Xt’GO)S(yt’Xt’eO)] Xt]

T o Tm=1
...1 T

B22 = il: T T?l EL[G(Xt,eo) W(Xt’eO)R(yt’Xt’eO)

R(yt,xt,eo) W(xt,eg)G(Xt,eO) | Xt] )

and 6, is now the pseudo-true value under HL (White (1982)).

Consider tests based on different polynomial functions. Under HL’ these

converge to noncentral chi-square distributions with noncentrality parameters

A (1) v(l),v(l)v(l) a 3 (2) u(Z)’V(Z)u(Z)

nd using (3.25), where the

superscripts (1) and (2) denote respectively tests based on orthogonal

polynomial function Rl(yt’xt’e) and nonorthogonal polynomial function

Rz(yt,Xt,e). Let Biﬁ) (i,j,k =1,2) denote the partitions of the B matrix.

(1)_ L(2)_
Note that B11 = B22 = Bll'

(1) (2)

We first assume v = v . Two special cases are considered.
Case 1: s(+) is the likelihood score function and first order orthogonal
polynomial; 8 is MLE; R(+) is second or higher order orthogonal polynomial for
testing higher second or higher moment specification of the model. Assume

(1) _

EL[R(-)S(-)] = 0, which implies B = (0. For a nonorthogonal moment function

21

B(z) # 0; also (B(z) - B(l)) is positive definite because of the minimum
21 22 22
variance property of orthogonal polynomials. However, since

(1) _ ,-1,.(1) -1 -1 -1

v - A22[B22 * A21A11 B11A11 12]A22 ’

2) _ ,-1,,02) -1 -1 _ -1,(2)_ L(2) -1 -1
and VI = A lBonT Ay AaBrihghn T ApgAaBro T Byy ApphgplAg,
the difference (V(Z)- V(l)) is indeterminate without additional structure.

Case 2: Suppose that the density assumed under H_ obeys regularity

0
conditions such that, in addition to the assumptions of Case 1, the
generalized information equality applies so that A21 = B21, and A11 = Bll'

15



(1) -1 ,(1),-1

Then \ = A, B, A

22 722 22
(2) _ ,-1.,(2) _ (2) -1 ,(2),,-1
and \ = A22[B22 B,1 Bi1 By ]AZZ'
Once again without additional assumptions the difference (V(2)~ V(l)) is

indeterminate. Ranking in terms of power of tests based on orthogonal and
nonorthogonal moment functions is therefore difficult.

In general, the means of the moment functions under HL will differ, i.e.
U(l)¢ v(Z). Analysis will be even less conclusive in this case. To the
extent that the power of CM tests has been analyzed, stronger results are
obtained when attention is confined to the choice of misspecification
indicators rather than the underlying function of y (or generalized residual).
See Newey (1985), Bierens (1990). |

The preceding analysis demonstrates that orthogonal polynomials lead to
more powerful tests than nonorthogonal polynomials when (3.14) is satisfied,
as in the case of LEF-QVF discused in section 4. Even when (3.14) is not
satisfied examples can be found in which orthogonal polynomials are again
superior. For example, the score test of N(u, u) against N(w, pta-g(u)) is
the same as a CM test based on the second-order orthonormal polynomial that
is obtained by application of (3.5).

We now consider joint tests of the first n moments, rather than testing
the n-th order moment conditional on correct specification of the first (n-1).
Since a set of moment functions have more than one parameterization, they may
be equivalent for testing purposes. To the extent that an orthogonal set may
be transformed to an equivalent nonorthogonal set, there is no theoretical
advantage in using the latter. This aéditionally requires transformation of
misspecification indicators, however, which in practice is not done.
Investigators typically perform CM tests with a given set of misspecification

indicators. Furthermore, sequential rather than joint tests are the norm in

applied work. In sequential testing, orthogonal polynomial tests have the

16



advantage that they do not require a fixed n. For testing an individual or a
subset of moment restrictions, with n not fixed, different moment functions do

not have the same size and power properties.

4. APPLICATION TO SPECIFICATION TESTS IN THE LEF-QVF

4.1 Conditional Moment tests based on orthogonal polynomials for the LEF-QVF

To illustrate the use of orthogonal polynomials as the basis for the
choice of moment function, we consider linear exponential families (LEF) with
quadratic variance functions (QVF). This covers many commonly used
econometric models: regression models under normality with constant variance;
discrete choice models such as probit and logit; Poisson models for count
data; and gamma models for continuous positive data. In this leading case,
the fundamental moments from various testing approaches are closely related,
and are the first few terms in an orthogonal polynomial system. To keep the
focus on essentials the detailed statement of the LEF-QVF class is given in
Appendix B.

In regression applications of the LEF, regressors X, are introduced via

t

o’ v1 and

2“% defined in (B.4), which may be

the mean parameter, By = u(Xt,G), and possibly via the parameters v

of the QVF, V(ut) =v_+ Vv + v

i) o " Vit
parameterized in terms of ut'and a nuisance parameter w. The function p is
such that the parameters 6 can be identified (McCullagh and Nelder (1983)).
Note that some or all of VO, v1 and v2 will be known. As discussed in section

3.3, the procedure is to progressively test forn = 1,2,..
(4.1) H_: Eo[mn(yt,xt,e) | X,1 = 0 ,

0 t

(4.2) m (y,,X,,8) = G_(X_,0)-P_(v,,1(X,,0)),
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for some chosen function Gn(Xt,e), where for simplicity we have suppressed the
nuisance parameter a. The recurrence relation (B.6) generates Pn(yt,u(Xt,e)).
The variance of Pn,t for the optimal test is easily obtained using (B.8) and
(B.10). Tests based on different degrees of polynomial are orthogonal by
(B.9). The first three orthonormal polynomials, denoted by Q, for several
members of the LEF-QVF are given in Table 1; in the binomial and the negative
binomial cases we give orthogonal polynomials.

The orthogonal polynomials can be directly used to generate specification
tests for the associated distributions, which span mést of the standard
parametric models for the various types of cross-section data. In some cases
these tests are new, while in other cases these tests coincide with existing
tests, as indicated below in the discussion for specific examples. 1In all
cases these tests are simpler to obtain than the usual approach of embedding
the distribution of a specific LEF~QVF member, e.g. Poisson, in a more general
parametric family, e.g. negative binomial, and algebraically obtaining the
score test. And by property (B.10) CM tests based on the ortﬁogbnal
polynomials for LEF-QVF without nuisance parameter « satisfy the derivative

condition (3.14).

4.2 Discussion for specific members of the LEF-QVF

In discussing results for specific members of the LEF-QVF, we focus on
comparison with tests obtained by other methods. This is done to illustrate
that basing CM tests on orthogonal polynomial is not only simple, but is
capable of leading to standard tests obtained by other methods. The
orthogonal polynomial approach may of course be applied in any testing
situation where necessary moments are defined, including situations where no
standard tests exist. Two of many such examples are given towards the end of

section 4.2.
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Since the tests here are based on parameter estimates under the null
hypothesis only, it is natural to compare the tests with score tests, where
such tests have appeared in the literature, rather than Wald or likelihood
ratio tests. We also compare the tests with CM teéts based on the k-th order
moments yk - E[ykl X,8] or (y-u)k - E[(y—u)k! X,01, and with the
information matrix test for the normal.

We say that tests‘coincide if Y, appears in the corresponding moment
condition only via the function Pn(yt’ u(Xt,e)).‘ In particular, consider a
score tes# based on the alternative hypothesis density g(yt,Xt,e,y) such that
g(yt,Xt,6,7=y*) yields the null hypothesis LEF-QVF density. If the
factorization

bt * -
v, In g(yt,Xt,e,y)[W G*(X,,0)P_(y,, n(X,,0))

:la'*
occurs, for some G;(Xt,e), then the score test coincides with the CM test
based on the nth order orthogonal polynomial.1

Tests based on P - ut) coincide with score tests of omitted

1,t = Wy
variables from the conditional mean function in an LEF-QVF model (Cameron and
Trivedi (1990b}). They also coincide with the score test for misspecified
functional form of the conditional mean, where the alternative hypothesis
model is embedded in an LEF-QVF, (Gurmu, and Trivedi (1990b)).
- - 2 _ - _

Tests based on PZ,t = {(yt ut) a(ut)(yt ”t) ut}, where the

function a(ut) differs for different members of the LEF-QVF, correspond in

some cases to score tests for misspecification of the conditional variance.

These tests differ from tests based on the second central moment, i.e.

! We note that often the score tests that appear in the literature lead to a
very specific choice of G;(Xt,e), whereas we permit quite general choice, as

in (3.2). For example, see the discussion for the normal distribution.
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{(yt - ut)z - ut}, unless a(pt) = 0 which is the case for the normal but not
for any other LEF-QVF member.

We consider some examples of tests based on second and higher order
polynomials in each of the LEF-QVF families.

Example 1 - Normal: CM tests based on the order two polynomials are
equivalent to the standard score test for heteroskedasticity. CM tests based
on order two, three and four orthogonal polynomials are tests of
heteroskedasticity, skewness and non-normal kurtosis identical to score tests
against the Pearson system.

Versions of these score tests given by Bera and Jarque (1982) differ in
the following way. For testing symmetry, the orthogonal polynomial approach
leads to a CM test of E[G3(Xt,6){(yt - ut)3 - 3@2(yt - “t)}], whereas Bera
and Jarque (1982), and many others following, instead use the modification
E[G3(Xt,9)-(yt - ut)3]. Similarly for non-normal kurtosis the test of

24 304}] is usually modified to the
4

4 2
E[G, (X.,0){(y, - u)" - 60" (y, - )

fourth central moment EI[G - 3@4}]. These lead to tests

4(Xt’9){(yt - ut)

which, in general, are not asymptotically equivalent under the alternative
hypothesis. For the specific alternative considered by Bera and Jarque,
however, they do coincide.2

Hall (1987) has shown that for the general linear regression model with
normal errors and correctly specified conditional mean function (X%B), the

information matrix test of White (1982) can be decomposed into three

2 For particular choices of G3(.), G4(.) and estimator, the sample moments
corresponding to the above moment functions may coincide. This will be true
when the following conditions are satisfied: Zt G3 t(.)'(yt—ut)= 0, and Zt
~ 2 T2 ; _ _
G4,t£')(yt:”t) = ztG4,t(')' In Bera and Jarque (1982), G3,t = Xt’ G4,t =
1, B and o are ML estimates, so these conditions are satisfied as they are

the first-order conditions for the MLE.

20



components which are the Bera-Jarque tests for heteroskedasticity, skewness
and non-normal kurtosis. The OPS approach suggests a wider range of
simultaneous ("portmanteau") tests of homoskedasticity, zero skewness and
non-normal kurtosis by using different linear combinations of Pz £ P3 t and
. : . 3 4
rather than linear combinations of PZt’ (yt ut) , and (yt ut)

Pa,
304. Linear dependence of the orthogonal polynomials implies additivity
property of the former simultaneous test.

Example 2 - Poisson: The Poisson density is the benchmark model for
count data, where Vi takes values 0,1,2,... A common feature of count data is
that, cbnditional on regressors, the variance exceeds the mean
(overdispersion), whereas the Poisson imposes variance-mean equality. Tests
for overdispersion are the analogues of tests of heteroskedasticity in the
normal case. CM tests of overdispersion in the Poisson may be based on the

second order polynomial P2 £ = (yt - ut)z T Yy As noted in section 3.4, this

leads to different CM tests than those based on the more obvious (yt - ut)z -
By the difference between the second-order central moment, (yt - ut)z, and
ite expectation under the null hypothesis. The usual score test for Poisson
versus the negative binomial (or more generally the Katz system) coincides
with the test based P2,t'

CM tests for non-Poisson skewness may be based on the third order
polynomial given in Table 1. Lee (1986, equation (5.12)) derives essentially
the same test as a score test of the Poiséon against a truncated Gram-Charlier
series expansion. A considerably simpler derivation of Lee’s test results is
possible if one directly exploits knowledge of the Poisson-Charlier orthogonal
polynomials together with the results of section 3, as has been done here.

Example 3 - Exponential; CM tests of the exponential may be readily

obtained using Laguerre polynomials in Table 1. A special case, the unit

exponential arises in diagnostic tests for any uncensored parametric hazard
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model, where the generalized residuals €, are defined by the integrated hazard

t

function which has a unit exponential distribution. Then EO[SJ] = j1, j=0.
In duration models a likely source of misspecification is neglected

heterogeneity, which leads to generalized residuals €, having non-unitary

t

variance. The CM test based on P2 ¢ can be used to test for zero neglected

heterogeneity. Lancaster (1985) considers the score test against a

noﬁ—unitary constant variance. Then the CM test based on P2 ¢ = e%— Zet -1
reduces to a second’moment test based on e% - 1 since Ztet = T. However, for
a test against a heteroskedastic variance, the CM test based on P2 t will

differ from the second moment test.

The interested reader may readily construct several new specification
tests using the results in Table 1, along the lines of Cameron and Trivedi
(1990c). Two examples are given.

Example 4 — Negative Binomial. The negative binomial is the standard
fully parametric model for overdispersion in count data. To test whether the
negative binomial, with mean p and variance p + uz/u adequately models
overdispersion, the results in this paper suggest using a CM test based on

)2

Pz,t(yt) = (yt~ut - (1+(ut/u))yt.

Example 5 - Binomial. For the binomial with n trials,3 use CM tests
= Y - - -
based on PZ,t(yt) = (yt ut) + (Z(ut/n) 1)yt ut(l (ut/n)).
Implementation of the above tests for LEF-QVF examples is usually

straight-forward since by (B.10), E[VHPn] = [E[(—an/an )P 1 =0, so (3.14)

-1""n-1

holds. To the extent that no nuisance parameters are present, the computation

of the asymptotic variance of the moment function and the test is simpler.

3 In the case of the binomial density with n=1, e.g. probit or logii{ models,

it is meaningless to make tests based on polynomials of order higher than one

because the density has only two support points.
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This is also the case for the normal density, in spite of the presence of the
; 2
nuisance parameter ¢ .

Thus to implement all of the CM tests given in this section aside from
the negative binomial example, but additionally including tests for the
binomial with known number of trials (n>1), we need simply regress 1 on

~ - X 2 . : X 2
Gn,t(xt’eT) Pn,t(xt’eT)' T times the uncentered R™ from this regression is ¥

with degrees of freedom dim(Gn ¢

Furthermore, note that the orthogonal polynomials approach leads exactly

) under HO'

to tests for which (3.14) holds, whereas this is generally not the case when
k-th order moments alcone are used. For example, for skewness in example 1 we
3
)

have P - 302(yt- ut), whereas most authors use Pt = (yt - ut)

3t = W My
which does not lead to tests for which (3.14) holds.

5. ORTHOGONAL POLYNOMIAL TESTS FOR TRUNCATED MODELS

Truncated regression models provide a useful illustration of the
differences between OPS based CM tests and conventional score tests. Truncated
distributions feature widely in applied econometric work but there is little
consensug on the use of appropriate diagnostic tools. The application of
diagnostic tests in such cases is especially desirable since the failure of
common distributional assumptions such as homoskedasticity of the latent
dependent variable in a Tobit type model can have serious implications for
consistency, not just efficiency (Amemiya (1985)). The diagnostic tests for
these models are often cumbersome to derive and to compute as evidenced by,
inter alia, Bera, Jarque and Lee (1984), Lee and Maddala (1985), Robinson,
Bera and Jarque (1985), Gurmu and Trivedi (1992). Computatioﬁ of the CM test
may be simplified using the popular OPG variant of the information matrix, but
this frequently has unsatisfactory properties.

In this section we consider CM tests derived using orthogonal polynomials
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when the baseline sample density is obtained by restricting the set of support
points forxthe parent distribution. Kiefer (1985) for the censored
exponential and Smith (1989) for some limited dependent variable models use
orthogonal polynomial expansions, but in terms of the underlying latent
variable. Smith actually bases tests on k-th order moments of the latent
variable; see also Pagan and Vella (1989). In our approach we consider the
series'expansion (3.6) around a truncated null density:

00

(5.1) gly) = £*(y)+[1 + n§1 a;P;(y)].

f(yt)

(5.2) f*(y, |y, € ¥) =
1 -Flyly, €Y)

where f*(y) is a truncated density with support points restricted to set Y,
P;(y) are corresponding orthogonal polynomials, and a; are functions of the
moments of gly). Specification tests of the truncated distribution based on
P;(y) are tests of the null HO: aT =, = a; = 0. The results given in section
2.2 can be used to derive orthogonal polynomials for the truncated case after
interpreting all relevant moments as those of the truncated distribution.
Since the OPS for a given baseline distribution is unique, the 0OPS based CM
criteria will be different from those in the regular (untruncated) case. But
the approach to the construction of CM tests is unchanged.

Compare the above strategy with that used in the construction of a score
test where the starting point is likely to be the selection of a baseline
truncated model and a truncated alternative. (For example, Gurmu and Trivedi
(1992) derive a score test of overdispersion for the truncated Poisson
regression as the null model and the truncated negative binomial as the

alternative.) Though the OPS based CM test is a score test, it will be based

on an implicit alternative density g(y), which in general will be different
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from that used in the derivation of a score test against a specific
alternative. Therefore, OPS based CM tests may differ for truncated
distributions even when they coincide for the untruncated éounterparts.

Further, conventionally designed score tests of moment restrictions in
truncated models are generally not independent. This feature of score tests
appears in the context of some non-truncated models where the parameterization
of the model does not lead to a block diagonal information matrix. The OPS
based CM tests have the independence property by design, but the test may be
based on an implied direction of departure from the null different from that
of another conventionally designed score test.

As an illustration we reconsider the example of left truncated Poisson
distribution analyzed in Gurmu and Trivedi (1992). Let the untruncated
Poisson pdf be h(yt,wt)= exp(wt)wtyt/yt! where wt is the untruncated mean,
usually specified to be log-linear in a set of exogenous variables. Consider
the positive Poisson (Poisson distribution without zeroes). This has the pdf
h(yt)/(l - h(0)), or

y
£
vy

(5'3), FWpbelyg = 1) = (exp(y,) - 1)-y£!

The first three (truncated) moments of the positive Poisson are as follows:

_ i . _ B . . 2 2
Hpg =V * 8 By =¥~ Syl — 1) kg =+ 2y (g - W) 8, (B 4
1); where 8, = wt/[(exp(wt) -1)1.

We may construct an OPS based CM test of the second moment restriction

using (2.15), which yields

— 2 - ’ 7 - ’

where g, = (yt - ). By contrast the score function given in Gurmu and

t Mt
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Trivedi (1992) is the sum of terms that are a multiple (not depending on yt)

of the polynomial

— 2__ —
(5.10) Pscore(yt’xt’e) = (st yt) + (st yt)ét.

Evidently, unlike the case of untruncated Poisson considered in example 2
of the last section, in the truncated case the OPS-based CM test is different

from that based on the score function.

6. CONCLUDING REMARKS

Orthogonal functions offer a new and convenient approach to specifying CM
functions and deriving CM tests. Formulae given in this paper permit
construction of orthogonal polynomials, particularly of low order such as in
(3.5), in general settings. Even simpler formulae are presented in Table 1
for members of the LEF-QVF families, which subsume a wide range of commonly
used econometric models.

For the LEF-QVF examples, to the extent that CM tests based on orthogonal
polynomials coincide with existing tests, these tests are score tests. By
contrast, in the example of truncated models, CM tests based on orthogonal
polynomials differ from existing score tests. These examples are a small
subset of the possible applications of the orthogonal polynomial approach.

OPS based CM tests are designed to be orthogonal in a specific sense. CM
tests based on sequential k-th order moments, and the conventional score
approach in which one examines the departure from the null in one direction at
a time, do not in general ensure orthogonality of tests. The linear
independence of tests based on OPS is an important advantage in some

situations. For example, separate tests of homoskedasticity and normality in
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Tobit type models are correlated. Yet even in high level applied work
investigators sometimes apply diagnostic tests one at a time, ignoring
possible correlation. When the tests are not independent, the interpretation
of the test outcome is problematic since tﬁe tests will not then have the
nominal asymptotic size. The orthogonal polynomial approach may have an

advantage in such cases.
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Table 1: Orthonormal polynomial functions for selected members of LEF-QVF

Normal
fly) = (Znoz)_l/zexp(—zéz-(y-u)z)
o<y <m Elyl =p V(g =o°
Poisson
£ly) = Ve Myt
y=0,1,... Elyl = p =2, V() =pu
Gamma
fly) = aexp(-ay)
Ely] = o; varlyl = az
Binomial
f(y) = { ; ]py(1-p)n‘y, y =0,1,..
p = Elyl = np; V(u)=p(l-u)/n

Negative Binomial

fly) = (1+0) %Y oY [y;““l},

y=0,1,..; =08, Vi) = u + uz/a

Hermite

Ql(y) = (y-p)/c

Q,(y) = {ly-w® - *IV2Z®
Q (y) = {ly-w)°- 30° (y-p) }/VBo>
Poisson-Charlier

(y-m)/VE

Ql(y)

Q,(y) = {ly-)° - y}/V2p,

Q3(y) = {(y—u)3 - 3(y—u)2 -
3/2
(3u-2) (y-p) + 2u}/vVéu

Generalized Laguerre

Ql(y) = (y-a)/a

Qz(y) = ((y—a)z—Za(y—a) —az)/Zaz

0,(y) = (y-a)® - 6aly-a)? +

3&2(y—a) + 4&3)/(6u3)

Krawtchouk

Pl(Y) = (y-np)

Pz(y) = (y—np)2+(2p—1)y -np(1-p)

Po(y) = (y-np)°+ (6p-3)y° +

+H3m+2)p? - 3(n+2)p + 2}y

+ 2np(2p2 - 3p + 2)

Meixner

Pl(y) = (y-u)

P,(y) = {ly-)% - (1 + (wa)y}
Po(y) = {ly-)°> - 3(20+1) (y-w)?
+ {3(2—a)-(92+9) + 2} (y-p)

+ {200 (26%+30+1)}
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Appendix A
We shall review a number of important results on orthogonal polynomials.
No proofs are given and the interested reader may wish to consult Cramer
(1946), Lancaster (1969), and Szegd (1975) for proofs and further details.
Existence: Given a random variable y with distribution function F(y) and
density dF(y)=f(y)dy, for an arbitrary real moment sequence {un} to give rise
to an OPS unique up to an arbitrary constant, a necessary and sufficient

condition is that the determinants IAnI are positive where A = [Aij] and Ai'

= ”i+j—2’ where moments may be taken either about the mean or an arbitrary
origin;

o Hy KBy -ooes B

By By Hgeeoo.. Ko
(A.1) fag = %2 " Fa P2l > 0, nm0,1,2,...

no HFpsr Mon

For proof see Cramer (1946, chapter 12.6) or Szegd (1975, chapter II).

The determinant in (A.1) may be partitioned as follows:

_ n-1
(A.2) lAnl =

....................

For a positive definite An’ A;l exists V n, and the application of the
bordered determinant theorem yields the following alternative representation:

(A.3) |Anl = My An_1| - d’ Adj (An_ ) d

1

where a’ = (p B g By )5 IA_1| = lel =1



The above discussion has assumed an infinite number of points of increase but
the results will apply to finite discrete distributions if only polynomials of
degree less thén the number of points of increase are considered.

Derivation of the orthonormal polynomial: For a given moment sequence {un}
the orthonormal OPS, with leading coefficient one (i.e. monic), can be

generated by the following relationship:

1

(A.4) Pn(y) = [IAn~1I] . an(y)l where
By By My e By
By My Hgeeeees ]
(A.5) ol = ff2 P o o Fe2] 2 0, n=0,1,2,...
Boq oreeees P
2 n.
1 VY V e y

Equation (A.4) is the solution of (2.2) with kn=1, which establishes that the
result is an orthonormal polynomial.

Derivation of the result (A.4): First partition |Dn(y)l as follows:

(A.6) ID

The partitioned bordered determinant theorem yields

— n — 7 A .
(A.7) o, = v a4l c’'(y) Adj (A _,) d
ID. ()] _
(A.8) S N R TN
IA I n"].
n-1
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where c’'(y) = (1 v y= vy ..... y

Uniqueness: The orthonormal (monic) polynomial sequence {Pn(y)} is unique.
If {Qn(y)} is also an OPS, then there exist constants cn¢ 0 such that Qn(y) =

cnPn(y), n=0,1,2,..

Completeness: An orthonormal polynomial sequence is complete if any function
0

Y(y) has varly(y)] = 2 a? < o where a, = E[w(y)Pi(y)]; for proof see

Lancaster (1969, chapter 4.4).

Covariance properties: For an OPS {Pn(y)} and for every polynomial Rm(y), m

1A

n, (i) E[Rm(y)Pn(y)] =0 form<n; (ii) E[Rm(y)Pn(y)] # 0 for m = n;
‘s m _

(iii) Ely Pn(y)] ks k # 0, for m=n.

Let Pn(y) be an orthonormal polynomial, and nn(y) be any other

orthonormal polynomial. Then
(A.9) Elw (WP (WT =]a] ~ 02 1 . fa_f =1

Minimum variance property: (1) If lAnl >0 (n = 0), then the orthonormal
polynomial Pn(y) satisfies the following property fcf every non-orthonormal
orthogonal polynomial nn(y) # Pn(y): Var(Pn(y)) < Var(nn(y)). (ii) In the
monic class of polynomials of degree n the orthogonal polynomial has the

smallest variance.
Appendix B

A particularly helpful reference for orthogonal polynomials in the

LEF-QVF is Morris (1982). The LEF is defined by
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(B. 1) fly,y) = expiyy - o) + k(y)} ,

where Y is a scalar parameter, and the dependence of ¥ on exogenous regressors

has been suppressed for notational convenience. The LEF has the property

(B.2) Elyl = u = Vw¢(w)

(B. 3) varly]

]

Vip) = V;w(!ll)
where VE = a%/ay".

In a more general exponential family f(y,y) = exp{g(y,y) - ¢(W) + k(y)}.
The LEF is the specialization where the function gl(y,y) is linear in y, in
which case y is called the natural observation, and linear in Y, in which case
Y is called the natural parameter. Other studies, such as Gourieroux,
Montfort, and Trognon (1984), use the mean parameterization of the LEF: f(y,pu)
= exp{A(un) + B(y) + C(pn)y}, where the functions A, B and C are such that the
density integrates to 1 and conditions corresponding to (B.2) and (B.3) are
satisfied. Here the natural parameterization of the LEF is used, which Morris
(1982) called the natural exponential family. These are Jjust two different
parameterizations, using the mean u or the ngtural parameter Y, of the same
family of densities.

An important subclass of LEF is one with quadratic variance functions,

meaning the variance is a quadratic function of the mean so that Vi)

satisfies the relationship
(B.4) V() = v, + v.u + v uz
) 0 1 2 ’

where various possible choices of the coefficients v v, and v lead to

0 1 2
six exponential families, five of which, the normal, Poisson, binomial,

gamma, and negative binomial families constitute the Meixner class (Meixner
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{1934)). Thus the restriction to QVF leavés a wide range of commonly used
models.

The following results are useful in deriving the fundamental moment
restrictions for the LEF-QVF class.
(i) For the LEF-QVF the orthogonal polynomial system Pn(y,u) is.defined by

the Rodrigues formula (see Morris (1982))
(B.5) P (y,n) = Vn{vzf(y,w)/f(y,W)}, n=0,1,2...

where Pn(y,u) is a polynomial of degree n in both y and u with leading term
yn, n=12,..., and f(y,¥) is the LEF-QVF density.

(ii) The polynomials {Pn(y,u)} satisfy the recurrence reiationship

(B.6) Ple1 = (P1 - nVuV(u))Pn - n(l + (n—l)vz)v(u)Pn_l, n = 1.
(iii) Let a, = 1, and define
n-1
= 1 3

(B.7) a, n.igo (1 + 1v2), nz=1
Then
(B.8) EP =0, nz=1;

On
(B.9) EPP =& _a V', mn =0 ;

Omn mn n
(B.10) vep =(¢-1'(asa )P, n=1,r=1,...,n

KL n n “n- -r
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